
Citation: Baghalzadeh

Shishehgarkhaneh, M.; Moradinia,

S.F.; Keivani, A.; Azizi, M.

Application of Classic and Novel

Metaheuristic Algorithms in a

BIM-Based Resource Tradeoff in Dam

Projects. Smart Cities 2022, 5,

1441–1464. https://doi.org/10.3390/

smartcities5040074

Academic Editor: Rita (Yi Man) Li

Received: 22 September 2022

Accepted: 17 October 2022

Published: 19 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

smart cities

Article

Application of Classic and Novel Metaheuristic Algorithms in a
BIM-Based Resource Tradeoff in Dam Projects
Milad Baghalzadeh Shishehgarkhaneh 1 , Sina Fard Moradinia 2,*, Afram Keivani 2 and Mahdi Azizi 3

1 Department of Construction Management, Islamic Azad University of Tabriz, Tabriz 5157944533, Iran
2 Department of Civil Engineering, Islamic Azad University of Tabriz, Tabriz 5157944533, Iran
3 Department of Civil Engineering, University of Tabriz, Tabriz 5166616471, Iran
* Correspondence: fardmoradinia@iaut.ac.ir

Abstract: In recent years, dam construction has become more complex, requiring an effective project
management method. Building Information Modeling (BIM) affects how construction projects are
planned, designed, executed, and operated. Therefore, reducing execution time, cost, and risk and
increasing quality are the primary goals of organizations. In this paper, first, the time and cost of
the project were obtained via the BIM process. Subsequently, optimization between the components
of the survival pyramid (time, cost, quality, and risk) in construction projects was completed in a
case study of the Ghocham storage dam in five different modes, including contractor’s offers, BIM,
actual, and two other modes based on the expert’s opinions. For this aim, five different meta-heuristic
optimization algorithms were utilized, including two classical algorithms (Genetic and Simulated
Annealing) and three novel algorithms (Black Widow Optimization, Battle Royale Optimization,
and Black Hole Mechanics Optimization). In four cases, once each element of the survival pyramid
was optimized separately, all four cases were traded off simultaneously. Moreover, the results
were obtained from all the mentioned algorithms in five scenarios based on the number of function
evaluation (Nfe), Standard Deviation (SD), Computation Time (CT), and Best Cost (BC). MATLAB
software completed the coding related to the objective functions and optimization algorithms. The
results indicated the appropriate performance of GA and BHMO algorithms in some scenarios.
However, only the GAs should be considered effective algorithms in a dam construction projects’
time–cost–quality–risk (TCQR) tradeoff.

Keywords: optimization; survival pyramid; meta-heuristic algorithms; building information model-
ing (BIM); Ghocham storage dam

1. Introduction

Infrastructure projects are large, intricate, and typically cost millions. These projects
can affect millions of people, possess a long-life cycle, involve complicated management,
and have considerable uncertainty. Building Information Modeling (BIM) is an emerging
and effective technology and process that has rapidly changed how buildings are conceived,
designed, constructed, and operated [1]. The rapid development of BIM provides novel
opportunities to ameliorate the efficiency and effectiveness of the construction procedure
and improve the employment of emerging technologies throughout the project life cycle,
not only in buildings but also in infrastructure [2]. BIM is defined as “the systematic process
of managing and disseminating the overall information generated during the development
and operation of the project’s design” [3,4], fundamentally describes the exchange, interpre-
tation, and use of metadata around computer-aided design (CAD) models, and supports
the multiple roles of various stakeholders in the construction and operation process [5].
Integrating BIM into each project’s early design phase provides an intriguing opportunity
for project management [6,7]. Compared with a set of CAD drawings, BIM is a “richer
repository”; that is, some multi-disciplinary methods can build construct information and
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the characteristics of buildings’ BIM models digitally and graphically. By sharing and
exporting the data required by the project team, BIM enables the usage of information
in the architectural model, reducing the need to recreate the model and accelerating the
design whilst allowing for some more repetition [8]. In broad terms, BIM increases design
and construction quality, lowers project labor and costs, and is a quicker and more effective
method to manage construction [9].

Because of overpopulation and the increasing complexity of construction projects, the
project manager should balance the project’s time, cost, quality, and risk at the early stages of
the project. Evidence suggests that most project activities can be consummated earlier than
scheduled in construction projects by reducing their time or allocating additional resources
and equipment, thus increasing project costs exponentially. In addition, shortening the
operating time can reduce project quality and increase risk because uncertainty decreases
with increasing time. Therefore, optimization problems are prominent topics in scientific
and practical engineering research. Based on the number of optimized goal functions,
optimization problems can be divided into single-objective and multi-objective.

Regarding multi-objective optimization (MOP) problems, two or more objective func-
tions must be computed simultaneously. In addition, these objective functions are always
inconsistent [10]. Time–Cost–Quality–Risk Trade-off Problems (TCQRTP) are one of the
significant challenges in project management. In this situation, there are some practical
solutions. Various optimization techniques have been proposed for TCQRT problems.
The Critical Path Method (CPM) can be used as a basic quantitative technique for project
management with no time limit and resource constraints. Assuming an ideal completion
time, the CPM sets the minimum time required to complete the project. However, it has
been abolished due to limitations such as its arithmetic complexity, especially in large
construction projects [11]. Mathematical programming methods transform TCQRTP into
mathematical models and use linear programming [12]. As a method for achieving the
best results, linear programming (LP) was proposed by Volkerson and Perra, assuming
a continuous time–cost relationship represented by linear relationships. However, it can
only be used considering a linear relationship between time and cost for any activity on the
network. As the number of activities increases, the network becomes too intricate; the LP
method requires much computational effort [13,14].

Furthermore, heuristic methods are based on general rules and lack mathematical
precision. They provide but do not guarantee optimality. Most innovative methods only
consider linear time–cost–quality–risk relationships in a project’s activities [12], thus indi-
cating its inefficiency in TCQRTP. However, over the last few years, researchers have most
frequently used meta-heuristic optimization algorithms to solve TCQRTP. Meta-heuristic
optimization algorithms are designed by imitating insects, animals, and birds [15]. In
general, nature-inspired meta-heuristic algorithms fall into four main groups: (i) evolution-
based algorithms, (ii) swarm-based algorithms, physics-based algorithms, and (iii) human
behavior-based algorithms.

Chassiakos, Samaras, and Theodorakopoulos [14] presented a time–cost tradeoff model
based on the CPM method that can be used for any discrete cost–time relationship for project
activities. Feng, Liu, and Burns [12] developed a new algorithm using the GA and Pareto
methods for time–cost tradeoff (TCT) problems. In another paper, the authors presented the
time–cost tradeoff model under uncertainty using genetic algorithms (GA) with simulation
techniques [16]. El-kholy [17] presented a TCT model that considers budget variability
and time uncertainty based on a linear programming model. Aziz et al. [18] proposed a
new approach called the Smart Critical Path Method System (SCPMS), which combines
CPM and GA. The authors aimed to optimize resources to simultaneously reduce project
time and cost with maximum quality. Ballesteros-Pérez et al. [19] proposed a non-linear
model for TCT problems with three main variables: crashed durations, crashed costs, and
the number of resources. The authors concluded that the proposed models allow both
discrete and continuous configurations and definite and random ones. Chen and Tsai [20]
analyzed time–cost tradeoff problems with fuzzy parameters, a practical method for complex
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project networks. Since the fuzzy environment in TCT problems includes only membership
functions, with uncertainty about projects and their duration, Abdel-Basset et al. [21] used the
neutrosophic theory to solve TCT problems. Albayrak [22] proposed a new hybrid algorithm
(NHA) developed by combining particle swarm optimization (PSO) and a genetic algorithm
to solve TCT problems. However, with the development of countries worldwide, various
projects, in addition to time and cost, added other parameters, such as quality, safety, risk, etc.,
to their contracts. These novels and emerging contracts put more pressure on decision-makers
in the construction industry to find optimal/near-optimal models while maximizing quality
and minimizing construction costs and time [23].

Regarding the time–cost–quality tradeoff, Babu and Suresh [7] suggested that the
quality element should be included in the TCT problems. A linear programming model
was created by the authors in order to address time–cost–quality tradeoff (TCQT) problems;
Khang and Myint [24] employed the model at a cement factory in Bangkok, Thailand
in order to validate the suggested model. El-Rayes and Kandil [23] developed a three-
dimensional time–cost–quality tradeoff analysis rather than conventional two-dimensional
analysis. The authors used this model to minimize a highway construction project’s time
and cost while maximizing its quality. Tareghian and Taheri [25] solved a TCQT problem
using an electromagnetic scattering search that can be performed on large projects. In
addition, Kannimuthu et al. [26] designed a framework for TCQT problems in a multi-state
resource-constrained project planning environment solved by the Relaxed-Restricted Pareto
Filtering (RR-PARETO3) algorithm. Tran et al. [27] developed the opposition multiple
objective symbiotic organisms search (OMOSOS) approach, an appropriate method to
solve time, cost, quality, and work continuity tradeoff problems. Using an opposition-
based multiple objective differential evolution algorithms, which employs an opposition-
based learning strategy for early population onset and generational leap, Luong et al. [28]
solved the TCQT problem. On the other hand, there have not been many studies on
tradeoff concerns, including time, cost, and quality. To put it another way, researchers
have hardly ever considered the risk component in TCQT issues. Mohammadipour and
Sadjadi [29] considered risk in the cost–quality tradeoff. The authors used appropriate
linear programming to reduce not just the total extra cost of the project but also the overall
risk of the project as well as the overall decline in the quality of the project as a whole.
Safaei [30] developed a multi-objective mathematical programming model for the sake
of the time–cost–quality–risk tradeoff solved by the Multipurpose Genetic Algorithm
(NSGAII). Some other applications of metaheuristic algorithms can be found in [31–35].

However, several papers on integrating BIM and optimization for different purposes
in the architect, engineering, and construction (AEC) industry have been published recently.
Although various meta-heuristic algorithms can solve optimization problems, genetic
algorithms (GAs) have been the most commonly used in previous studies, indicating their
appropriate and efficient performance in optimization problems in civil engineering [36–40].
In dam construction projects, there are a wide variety of resources, each of which has its
own time and cost, affecting the project’s risk and quality. Hence, the project managers
should balance them to achieve the minimum time, cost, and risk and maximum quality.
In this study, for the time–cost–quality–risk tradeoff, five meta-heuristic optimization
algorithms were used, including Genetic Algorithm (GA), Annealing Simulation (SA),
Black Widow Optimization Algorithm (BWO), Battle Royale Optimization Algorithm
(BRO), and Black Hole Mechanical Optimization Algorithm (BHMO). The primary purpose
of selecting the mentioned algorithms was to compare the performance of traditional and
novel meta-heuristic optimization algorithms in a civil construction project. However, being
parameter-free and having a fast convergence behavior and the lowest possible objective
function evaluation could be deemed the privileges of the meta-heuristic algorithm. For this
purpose, the Ghocham storage dam was selected as a case study. Five different modes were
implemented for this problem; in four cases, each component of the survival pyramid was
optimized separately, and finally, all four cases were traded off simultaneously. Research
has rarely focused on the time–cost–quality–risk tradeoff of construction projects based on
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the BIM process. Hence, the key novelty of this research work is the employment of novel
and classic metaheuristic algorithms to resource tradeoffs in dam construction projects
based on the Building Information Modeling (BIM) approach. In contrast, previous papers
have assessed the capabilities of metaheuristic algorithms in resource tradeoff problems in
residential buildings. The core purposes of this research were:

Evaluating the role of the Building Information Modeling (BIM) process in reducing
the execution time and cost of infrastructure projects;

Providing a model for optimizing the components of the survival pyramid (time, cost,
quality, and risk) of a dam construction project;

Comparing the performance of novel and traditional meta-heuristic optimization
algorithms with each other.

2. Design Example

In this paper, time, cost, quality, and risk optimization were implemented on a dam
construction project with a case study on the Ghocham storage dam located in Kurdistan
province, Iran. Objective functions were analyzed both individually and in combination.
Meanwhile, all algorithms were performed in MATLAB on a Core i7-7700 HQ 2.80 processor
with 16 GB of RAM.

2.1. Case Study

Ghocham dam (Figure 1), an earth-fill embankment dam with a clay core, was con-
structed to store, regulate, and exploit the water needed to irrigate agricultural lands in the
Qorveh plain, Dehgolan. Ghocham dam is located in Kurdistan province, next to Qucham
village and 18 km northwest of Dehgolan city, located on Cham Mirki River. Its height
and tank volumes are 42 m and 64 million cubic meters, respectively. Furthermore, its
overflow is made of free concrete with a length of 135 m, and the water diversion struc-
ture is two metal pipes with a diameter of 2 m and a length of 328 m. The rock material
at the Ghocham dam site mainly comprises brown mud, marl, and light tuffs between
conglomerate sandstone and black basalts covered by silty clay soils [41].
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Figure 1. The Ghocham dam in Kurdistan province.

2.2. BIM-Based Modeling

In the current study, the time (4D) and cost (5D) of the 17 main activities of Ghocham
dam were obtained by BIM using Autodesk Revit® 2020, MS Project, and Navisworks. As
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a result, some clashes and changes were found. For this aim, the whole plan of the project
was divided into 14 sections of equal length. Each section was modelled in the family
environment of Revit with swept blend form, and then all of them moved to the project
environment. So, the volume of materials and other required information was extracted
from the material takeoff of Revit. Based on the information supplied, the project’s schedule
was created in MS Project, thereby providing the time and cost of the project based on
the BIM process. Finally, an animation of the construction process was developed by
Navisworks; as a result, some clashes with the integrated model were detected. Figure 2
shows the 11th section of the Ghocham dam modelled in Revit. In the following, the
algorithms used are briefly explained.
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Figure 2. The 11th section of Ghocham dam modelled in Autodesk Revit 2020.

2.3. Algorithms
2.3.1. Genetic Algorithms (GAs)

Genetic algorithms are a family of computational models that encode potential solu-
tions or possible hypotheses for a specific problem in a chromosome-like data structure.
They are inspired by Charles Darwin’s theory of natural evolution, which adopts the
survival of the fittest [42]. GA was introduced by Holland [43]; however, then GAs were de-
veloped by Jong [44] and Goldberg [45]. The main idea of this algorithm is the transmission
of inherited traits by genes that store information about all organisms in the genes. GAs are
a set of decisions (chromosome composition) and a potential solution to a problem. Each
string is evaluated following the fitness value of its objective function. Those who perform
better (fitness value) survive longer than those who perform worse. In other words, in GAs,
a population of practical solutions is trying to survive in assessing fitness in a search space.
Genetic information is then exchanged between chromosomes by producing offspring
(Crossover) or mutations. As a result, a new generation with a better survival ability is
produced. Hence, the five main stages in GAs are (i) generating initial (zero) population,
(ii) Fitness Function, (iii) Selection, (iv) Crossover, and (v) Mutation [46].

2.3.2. Simulated Annealing (SA) Algorithm

SA is one of the most preferred algorithms in optimization problems, which was
inspired by the annealing process of the metal behavior suggested by Kirkpatrick et al. [47].
The annealing process represents the arrangements of optimal molecular metal particles,
where the potential energy of the matter is minimized and seeks to cool the metals slowly
following exposure to high heat. Generally, the SA algorithm adopts a continual motion
due to the variable temperature parameter mimicking the metal annealing transaction [48].
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The energy level and moving to any new stage of design variables can affect the objective
function. Although this method was primarily developed for discrete problems, it can be
utilized in continuous problems, similarly to GA [49].

2.3.3. Black Widow Optimization (BWO) Algorithm

Being a population-based optimization algorithm, the BWO algorithm is nature-
inspired based on Latrodectus Hasselti’s lifestyle and bizarre behaviors. This algorithm
was suggested by Hayyolalam and Pourhaji Kazem [50]. Spiders are spread worldwide
and in all ecological environments, ranking 7th in total species diversity. The black widow
spiders are primarily nocturnal species, and females spin their webs at night. However,
when it comes to their sexuality, whenever a female black widow wants to mate, she puts
specific points on her web with pheromones to appeal to the man’s attention. During or
after mating, males are often cannibalized by females. However, these males appear to be
more successful in reproduction than males that can escape. A female black widow may
lay between 4 and 10 bags of eggs, each with an average of about 250 eggs. After hatching,
the offspring become involved in the eating of siblings [51].

Nonetheless, they remain on their mothers’ web for a moment, which may even
swallow the mother. This cycle leads to the survival of the fit and influential individuals,
the best of which is the global optimum of the objective function. The population size can
be controlled by density-dependent cannibalism and may be imperative in the population
of black widow spiders. The BWO algorithm consists of four main stages, namely (i) the
initial population of spiders that could be indispensable for creating a candidate widow
matrix of size Npop × Nvar, (ii) breeding to reproduce the novel generation, (iii) cannibalism,
and (iv) mutation [50,52].

2.3.4. Battle Royale Optimization (BRO) Algorithm

The BRO algorithm is one of the population-based algorithms inspired by the strategy
of the battle royale video games suggested by Rahkar Farshi [53]. The BRO utilizes a
population of possible solutions to reach the leading solution. Any solution is considered as
a soldier making an effort to conquer their closest soldiers. BRO commences with a random
population evenly distributed all over the problem space. Each person (soldier/player)
attempts to harm the nearest soldier by firing a gun in the following stage. Thus, soldiers
in better situations harm their nearest neighbors. Finally, the best soldier will win at the
end of the iteration.

2.3.5. Black Hole Mechanics Optimization (BHMO) Algorithm

BHMO algorithm is one of the physics-based algorithms developed by Kaveh et al. [54].
BHMO uses a vigorous mathematical kernel based on a covariance matrix between each
variable and its cost. This covariance matrix causes searching for the optimum orientation
for escalating or reducing the extent variable. Using this technique, any variable is quickly
guided to its best comparative value. In addition, each variable is assumed to be indepen-
dent of the others concerning the cost function. This feature escapes the local optimizations
that exist in the search space. In addition to the mathematical core, a physical simulation
assists in performing the variables in any step. Based on black hole mechanics, this physical
simulation updates the variables in the vicinity of the assumption global best in each stage.
Moreover, weak variables are eliminated due to the physical simulation after scrolling the
whole by the mathematical core. According to Albert Einstein’s general theory of relativity,
a black hole has a strong gravitational pull that swallows stars (the number of variables in
the problem) and other astronomical objects. BHMO consists of four primary procedures:
data generation (star positions), Kerr black hole creation, Schwarzschild black hole creation,
and data elimination.

All algorithms were determined and performed with specific parameters in this study,
as shown in Table 1.
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Table 1. Specific setting parameters of optimization algorithms.

Algorithms Number of
Population (npop)

Maximum
Iterations

Crossover
Probability (pc)

Mutation
Probability (pm)

Initial Tem-
perature

Temp.
Reduction Rate

Rate of
Cannibalism

Maximum
Fault

GA 50 1000 0.8 0.3 - - - -
SA 50 1000 - - 0.025 0.99 - -

BWO 50 1000 0.8 0.4 - - 0.5 -
BRO 50 1000 - - - - - 4

BHMO 50 1000 - - - - - -

2.4. Statement of the Optimization Problem

All 17 activities listed in Table 2 were imported into the BIM model and analyzed
in this research. A construction project’s activities and their interconnections are shown
on an activity-on-node (AON) diagram with M nodes. Each activity could be carried out
in many different ways, each with its range of possible outcomes in terms of time, cost,
quality, and risk. By determining the optimal course of action for each activity, the TCQR
tradeoff optimization strategy strives to reduce the project’s time, cost, and risk while
simultaneously increasing the quality. Consequently, in Equation (1), the first objective
function is to reduce the project’s length of time.

Tp = IF [min(max(STi + Di))]= IF[min(max(FTi))]; i = 1, . . . , M (1)

where Di is each activity’s duration in the project; STi and FTi show the start and finish times
of activity, respectively; and M elucidates the overall nodes in the project scheduling [55].
Additionally, direct costs (DC), indirect costs (IC), and tardiness costs (TC) make up a
project’s overall cost (TC). While there are various methods for determining a project’s total
cost, this analysis only considers direct, indirect, and tardiness costs for theory’s sake. Cost
minimization is the objective of the following objective function, as shown in Equation (2):

minC = Dj
Ci
+ I j

Ci
+ TC (2)

Dj
Ci

=
n

∑
i=1

Cj
i (3)

I j
Ci

= Cic × T (4)

TC =

 C1(T0 − T) i f T ≤ T0(
e

T−T0
T0 − 1

)(
Dj

Ci
+ I j

Ci

)
i f T > T0

(5)

where TCp shows the project’s overall cost; Dj
Ci

and I j
Ci

demonstrate the direct and indirect
cost associated with ith activity’s jth execution mode, respectively; Cic is the reward for
completing the ith activity which is zero in the current study; TC shows the tardiness
cost which is considered zero in the current study; T0 is the project’s contractual planned
duration; C1 shows the reward for completing the task early; and T is the total project
duration [56,57]. The overall project quality is the sum of the quality of each activity, which
might vary depending on the resources available for the project. The quality of the activities
improves as their duration is extended, but the quality begins to decline at a certain point.
Therefore, the quality performance index (QPIi) provided in Equation (6) represents the
quality of each activity [57].

QPIi = IF [ait2
i + biti + ci] (6)

where ti is the duration of activity ith; ai, bi, and ci are the coefficients decided by the
quadratic function regarding BD (Figure 3). The longest, best, and shortest durations are
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LD, BD, and SD, respectively. However, Equation (7) is used to determine BD. Finally,
Equation (8) formulates the objective function for quality as follows:

BD = SD + 0.613(LD − SD) (7)

maxQ =
M

∑
i=1

QPIi
M

(8)

Table 2. Technical data of Ghocham Storage Dam.

Number Activity IF Options Time (day) Cost ($) Total Quality Risk

1 Production and depot of materials 29.7

1 618 2,839,772.29 82.9 0.6

2 725 2,889,977.86 89.6 0.55

3 863 3,333,557 90.6 0.45

4 1180 3,410,322.08 92.2 0.4

5 1325 3,434,836.80 98.4 0.35

2 Excavation 5.74

1 370 4,423,56.13 70.4 0.5

2 396 471,813.80 81.6 0.45

3 405 498,030.90 89.2 0.3

4 625 614,238.83 90.4 0.25

5 776 677,675.64 95.8 0.2

3 Water diversion system 0.59

1 108 49,887.70 61.15 0.6

2 125 5,777,1.12 73.25 0.52

3 133 60,760.65 86.8 0.4

4 620 65,808.38 89.8 0.2

5 981 69,435.89 96.85 0.15

4 Installation of instrument 0.92

1 590 95,000.59 65.2 0.45

2 650 99,413.75 84.2 0.4

3 700 104,500.65 87.2 0.36

4 865 105,943.76 91.8 0.3

5 1100 108,341.907 99.2 0.25

5 Execution of watertight wall 0.29

1 76 23,294.62 63.7 0.6

2 92 28,168.29 71.3 0.55

3 100 30,437.25 81.5 0.45

4 129 32,310 87 0.3

5 148 34,482.99 96 0.2

6 Execution of Clay Core 3.49

1 547 280,737.01 63.6 0.55

2 680 340,196.06 79.4 0.48

3 745 370,893.38 80.5 0.35

4 890 402,953.34 86.5 0.3

5 937.5 412,170.10 99.3 0.25

7 Execution of upstream cofferdam 0.94

1 255 59,861.93 65.2 0.62

2 300 736,38.78 72.9 0.5

3 330 79,850.54 85.9 0.45

4 390 105,705.03 87.2 0.4

5 411 111,269.17 95.7 0.35

8 Execution of downstream slope 0.27

1 135 17,589.16 78.4 0.5

2 150 20,253.38 86.6 0.48

3 179 23,659.39 89.1 0.4

4 185 29,688.48 91.8 0.3

5 199 32,267.01 97.1 0.15
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Table 2. Cont.

Number Activity IF Options Time (day) Cost ($) Total Quality Risk

9 Execution of shell 28.04

1 584 2,479,199.62 62.5 0.65

2 700 3,011,527.29 82.7 0.6

3 749 3,191,887.04 84.4 0.52

4 995 3,249,155.25 89.6 0.48

5 1187 3,312,267.10 98.4 0.4

10 Filter 16.21

1 476 1,273,574.88 62 0.5

2 580 1,578,142.74 80.45 0.45

3 633 1,699,257.18 82.6 0.35

4 910 1,782,747.89 87.2 0.3

5 1131 1,914,451.23 99.1 0.2

11 Drainage 2.67

1 557 210,302.85 65.4 0.65

2 650 236,849.44 81.2 0.5

3 701 249,032.16 92.8 0.4

4 810 305,495.09 94.2 0.3

5 865.6 316,063.02 99.2 0.15

12 Riprap 1.75

1 402 148,457.60 61 0.45

2 475 173,985.10 75 0.4

3 525 191,141.19 84 0.3

4 605 199,074.95 89 0.25

5 640 207,777.73 97 0.1

13 Downstream Slope protection 2.51

1 431 183,128.60 61.8 0.6

2 470 204,852.49 78.45 0.5

3 533 234,328.72 87.7 0.3

4 590 245,872.53 91.1 0.25

5 719 297,138.96 98.05 0.15

14 Stabilized bromine 5.77

1 295 490,744.86 65.4 0.45

2 325 561,580.62 80.6 0.35

3 390 642,318.40 83 0.3

4 542 659,361.98 90.2 0.2

5 645 682,148.34 95.6 0.15

15 Overflow spillway 1.28

1 90 60,036.43 65.2 0.4

2 112 85,059.44 81.6 0.35

3 150 126,640.15 89.8 0.25

4 252 132,695.37 92.3 0.15

5 404 152,145.68 99 0.1

16 Crown of the dam 0.16

1 20 16,211.68 64.8 0.65

2 26 17,340.41 81.8 0.5

3 30 19,706.53 85.7 0.35

4 118 20,901.50 90.7 0.25

5 181 21,762.78 98.2 0.15

17
Installation of

hydromechanical equipment 0.22

1 196 100,626.41 65 0.65

2 210 94,197.85 80.1 0.58

3 240 80,005 85.3 0.52

4 736 51,719.71 89.6 0.45

5 1108.7 26,724.98 98.4 0.4
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The project’s conditions, delivery methods, and contract terms all significantly deter-
mine the real project risk. A function that combines the two elements—(i) the project’s
overall float; and (ii) resource volatility—is referred to as a “risk value.” The float utilization
may lead to higher project risk and schedule overruns when non-critical processes have a
high level of temporal uncertainty. Therefore, construction managers must make timetable
modifications to reduce unanticipated resource consumption changes during the project’s
execution. Floating non-critical processes might lead to more efficient resource consump-
tion [58–60]. Consequently, the fourth objective function for risk can be formulated as
Equation (9):

minR = IF [w1 ×
(

1 − TFc + 1
TFmax + 1

)
+ w2 ×

(
∑Pd

i=1
(

Rt − R
)2

Pd
(

R
)2

)
+ w3 ×

(
1 − R

max(Rt)

)
] (9)

where TFc and TFmax show the total current float and total flexible scheduling float of the
project; R elucidates uniform resource level; Rt shows the resource required on day t; and
wi demonstrates the weights.

Finally, to evaluate the capability of the mentioned algorithms to the time–cost–quality–
risk (All) tradeoff simultaneously, Equation (10) was used:

F(x) = IF [
T − Tmin

Tmax − Tmin
+

R − Rmin
Rmax − Rmin

+
Qmin − Q

Qmax − Qmin
] +

C − Cmin
Cmax − Cmin

(10)

The primary operations of the Ghocham Storage Dam each have five executive modes,
according to Table 2, the research’s foundation. This table was prepared using the expertise
and experiences of some brilliant people. Executive mode’s time and cost NO.1 represent
the contractor’s first proposals, NO.3 comes from BIM, and NO.5 represents the project’s
real-time and cost as determined by the construction’s current state. Based on the sugges-
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tions of industry experts, two more executive modes were also considered. Admittedly,
contractors’ first estimates are sometimes unreasonable and idealistic to catch employers’
attention, which is why most projects fail. Because most contractors do not consider rework,
conflicts, employer nonpayment, extreme weather, etc., each activity is arbitrarily stated
in three quality indicators with different percentages. The proportion of the combined
influence of the three quality modes yields the final quality in each line. Finally, a random
risk percentage was determined for each activity based on the opinions of top professors
and industry professionals.

3. Results and Discussion

Based on Table 3, the total project time based on the contractor’s offers, BIM, and
actual was 790, 906, and 1489 days, respectively. Additionally, the total costs of the project
based on offers, BIM, and actual were USD 35,825,939.56, USD 44,670,213.59, and USD
48,244,124.9 according to the project contracts in 2010, respectively. BIM could significantly
reduce the time and cost of the Ghocham dam since BIM can detect clashes and provide
beneficial communication and cooperation among stakeholders and the project team. Since
balancing time, cost, quality, and risk of the project within the project’s scope has become
an important criterion for evaluating a project’s success, seeking a time–cost–quality–risk
tradeoff is becoming the main concern of stakeholders and project teams.

Table 3. Results of different algorithms in optimization for the first scenario (time).

Algorithms Time (Days) Percentage Error

ga 521.4379 0
SA 546.7391 4.85

BHMO 526.1435 0.90
BRO 526.9079 1.04
BWO 530.7564 1.78

In this research, the lowest time (Tmin) and maximum time (Tmax) were equal to
521.4379 and 546.7391 days, respectively; the lowest cost (Cmin) and the highest cost (Cmax)
were equivalent to 35,524,075.6 and 36,266,567.6$, respectively. The lowest quality (Qmin)
and the highest quality (Qmax) were equivalent to 73 and 77.967035, respectively, and
the lowest risk (Rmin) and the highest risk (Rmax) were equal to 0.293685 and 0.31941,
respectively. The number of optimization variables in each scenario was 17, which cor-
responded to the 17 rows of the sample of the status of Ghocham dam. Table 3 presents
the optimization results for the first scenario (time) using different algorithms. So, the GA
had the 1st rank among other meta-heuristic algorithms; subsequently, BHMO achieved
the 2nd rank. So, the GA algorithm achieved good results, which means that the genetic
algorithm balances between exploration and exploitation processes. On the other hand,
SA algorithms gave the largest value for the time of the Ghocham dam, indicating their
weak capability in providing the optimum and least times in dam construction projects.
Hence, project managers should employ the GA for time optimization purposes in their
construction projects.

Figure 4a shows the convergence curves for the first scenario (time) using different
algorithms. It can be observed that the GA algorithm converged quickly to the optimal
value of 521.43 days in the first iterations, while the convergence speed of other algorithms
was slower. Therefore, in comparison to the results produced using other methods, the
convergence curves validated the GA’s quick convergence tendency. The GA method
starts with the initialization of search agents, evaluates them using the cost function, and
then updates the search agents in accordance with the function evaluation, which is how
the computational complexity of the GA is expressed using big-oh notation. Moreover,
the highest error percentage was related to the SA algorithm, with 4.62%, and the lowest
was connected to the BHMO algorithm, which had an error of 0.89%. Hence, the GA
and BHMO algorithms should be deemed appropriate in the time optimization of the
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Ghocham dam project. However, Figure 4b indicates the optimization variables’ status or
the genotype space during the optimization process for this scenario. As shown through
the mentioned figure, the selected algorithms of the stated scenario tended to mode number
1, representing the contractor’s offers. Furthermore, some algorithms selected mode 3 or
BIM as the optimum value in some activities.
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In contrast, the proportion of other executive modes, including the number 4 and the
number 5, included lower values. It is important to note that in some cases, algorithms also
leaned towards modes 2 and 3, requiring more attention to the interpolation process. It is
apparent from the data that the contractors proposed an ideal close to the optimum time
at the project’s initial phase regarding the algorithm’s results. Still, they did not consider
risks and uncertainties. The emergence of reworks in the project and lack of cooperation
and communication among contractors and owners could cause time overrun, considered
a project failure. However, in dam construction projects, utilizing BIM processes from the
whole life cycle could decrease the total executing time of the project, of which there was
an exponential decrease of 583 days from 1489 to 906 days in the Ghocham dam.
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The statistical results of the optimum time for different optimization algorithms based
on 30 independent runs are presented in Table 4. The value of Nfe (number of function
evaluation) was assumed to be a constant value for all algorithms to compare and analyze
the algorithms. Overall, it is notable that the GA optimization algorithm gave better results
than other algorithms in the time optimization of the Ghocham dam. It can be observed
that the computational time (CT) of the BWO optimization algorithms took significantly
longer than other optimization algorithms, registered at nearly 14 s. In contrast, the second-
lowest CT in any optimization algorithm was seen in the BHMO algorithm, accounting
for approximately 1.71 s. Turning to the Standard Deviation (Std.), the lowest value of Std.
was seen for the GA algorithms, which was nearly zero, while the SA algorithm gave the
highest weight of Std., which means the data were more spread out. The large difference
between the “best” and the “worst” values can influence the Std values. The greatest Std
number indicates that the algorithm was unable to provide an analytical result that was
consistent since the Std value measures how near the results from the 30 distinct trials
are to its average value (mean value). This occurred because the algorithms were always
trapped in the local results, especially for high-dimensional problems [61]. Regarding the
worst cost obtained from algorithms, the SA optimization algorithms calculated the highest
worst value, indicating the SA algorithm’s uncertainty in a single run.

Table 4. Statistical results for different algorithms based on 30 independent runs in the first scenario (time).

Algorithms Best Mean Worst Std. Nfe CT (s)

GA 521.43 521.50 521.74 0.08 50,000 2.78
SA 546.73 566.60 610.31 19.16 50,000 2.41

BHMO 526.14 529.67 533.67 1.68 50,000 1.80
BRO 526.90 529.35 532.67 1.53 50,000 4.86
BWO 530.75 532.01 535.42 1.08 50,000 13.85

Table 5 illustrates the optimization results for the second scenario (cost) using different
algorithms. The current table presents the percentage of changes or rate of the error to
the best answer reported by the best algorithms, which were GA and BWO algorithms
in this scenario. The BWO algorithm provides a proper balance between the exploration
and exploitation stages, one of the most critical features of meta-heuristic algorithms. The
mentioned algorithm could obtain outstanding results compared to other experimental al-
gorithms, especially compared to BRO. However, regarding the results, the SA optimization
algorithm was ineffective in optimizing the Ghocham dam’s cost, providing the highest
cost in the Ghocham dam. Consequently, project managers ought to utilize the GA for cost
optimization purposes in their construction projects.

Table 5. Results of different algorithms in optimization for the second scenario (cost).

Algorithms Cost (USD) Percentage Error

GA 35,524,075.6 0
SA 36,266,567.61 2.09

BHMO 36,119,823.65 1.67
BRO 35,999,010.06 1.33
BWO 35,670,839.86 0.41

Figure 5a shows the convergence curves for the second scenario (cost) using different
algorithms. It can be observed that the GA and BWO algorithms converged quickly to
the optimal value of 35,524,075.6 and 35,670,839.86$, respectively, in the first iterations,
while the convergence speed of other algorithms was slower. Moreover, the highest
error percentage of 2.09%, was related to the SA algorithm, and the lowest error of 0.41%
was related to the BWO algorithm. Figure 5b elucidates the genotype space during the
optimization process for this scenario. As can be seen, the selected algorithms of this
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scenario, in most cases, tended to mode number 1, which represents the contractor’s offers,
while the proportion of other executive modes, including mode number 3 (BIM) and mode
number 5, were lower values.
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In some cases, the algorithms also leaned to modes 2 and 4, which required more
attention to the interpolation process. Like the first scenario, the contractors had a nearly
optimum quantity surveying and estimating at the initial stage of the project; however,
increasing clashes and reworks, lack of effective cost and budget management, and squan-
dering materials could trigger a cost overrunning. BIM significantly reduced the project’s
cost from USD 48,244,124.9 to USD 44,670,213.59, a 7.40% reduction in cost.

Table 6 shows the statistical results of the optimum cost of the Ghocham dam for
different optimization algorithms based on 30 independent runs. Overall, GA and BWO
algorithms gave the best objective function value for the second scenario. Like the first
scenario, the BRO optimization algorithm took a longer computational time than the
other algorithms, followed by the BWO optimization algorithm with nearly 14.05 s. In
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comparison, the better and lower value of CT in any optimization algorithms was seen
in the BHMO algorithm, registered at nearly 1.81 s. Regarding the worst value obtained
from algorithms, the SA optimization algorithms calculated the highest worst value, which
means the SA algorithm is not an appropriate algorithm for a single run of cost optimization.
However, the lowest value of the Std of the BRO optimization algorithm indicates how close
the results obtained from the 30 different trials to its mean value, while the GA optimization
algorithm could not provide a consistent result in the analysis.

Table 6. Statistical results for different algorithms based on 30 independent runs in the second
scenario (cost).

Algorithms Best Mean Worst Std. Nfe CT (s)

GA 35,524,075.6 7.90 × 1010 3.67 × 1011 1.15 × 1011 50,000 3.10
SA 36,266,567.61 1.49 × 1011 4.05 × 1011 1.13 × 1011 50,000 2.45

BHMO 36,119,823.65 2.31 × 1011 3.75 × 1011 9.47 × 1010 50,000 1.81
BRO 35,999,010.06 1.95 × 1011 3.76 × 1011 9.01 × 1010 50,000 4.57
BWO 35,670,839.86 1.47 × 1011 3.74 × 1011 1.03 × 1011 50,000 14.05

Table 7 shows the optimization results for the third scenario (quality) using different
algorithms. This table presents the percentage of changes or errors to the best answer
reported by the best algorithms. However, only the GA algorithm provided high quality
rather than other meta-heuristic algorithms, registered at a mere 97.89, followed by the
BWO optimization algorithm. In stark contrast, the BHMO gave the least and improper
quality value in this project, elucidating its weak performance in providing the highest
quality in dam construction projects.

Table 7. Results of different algorithms in optimization for the third scenario (quality).

Algorithms Quality Percentage Error

GA 97.89 0
SA 79.03 23.86

BHMO 78.29 25.03
BRO 79.23 23.55
BWO 79.24 23.53

Figure 6a shows the convergence curves for the third scenario (quality) using different
algorithms. It can be observed that the GA algorithm converged quickly to the optimal
value of approximately 97.89 in the first iterations, while the convergence speed of other
algorithms was slower. Moreover, the highest error, with 25.03%, was related to the BHMO
algorithm, and the lowest error, with 23.53%, was related to the BWO algorithm. However,
the values of quality obtained by the SA and BHMO algorithms were nearly close. Figure 6b
demonstrates the genotype space during the third scenario’s optimization process.

In most cases, the selected algorithms of this scenario tended to mode number 3, which
BIM obtained, while the proportion of other executive modes, including modes number 1
and number 5, were lower values. It is important to emphasize that the algorithms also
tended to modes 2 and 4, requiring more attention to the interpolation process. It can be
understood that utilizing BIM in dam construction management can provide an optimum
quality value for organizations.

Table 8 elucidates the statistical results of the optimum quality of the Ghocham dam for
different optimization algorithms based on 30 independent runs. Overall, the GA optimiza-
tion algorithm gave the best objective function value for the third scenario in the Ghocham
dam. The worst value was given by the BHMO algorithm, indicating its insufficiency for a
single run of quality optimization. Although the BWO optimization algorithm had a longer
computational time than the other algorithms and lasted roughly 14.35 s, it provided the
highest quality value compared to all optimization algorithms, not considering the GA.
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Furthermore, the lowest value of the Std of the BHMO algorithm indicates how close the
results obtained from the 30 different trials were to their mean value. The GA optimization
algorithm could not provide a consistent result in the analysis. Nonetheless, based on the
results obtained, the BHMO algorithm demonstrated an unsatisfactory role in the quality
optimization of the Ghocham dam.
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Table 8. Statistical results for different algorithms based on 30 independent runs in the third
scenario (quality).

Algorithms Best Mean Worst Std. Nfe CT (s)

GA 97.89 93.19 73 6.88 50,000 3.47
SA 79.03 77.10 76.10 0.78 50,000 2.46

BHMO 78.29 77.60 76.65 0.35 50,000 1.97
BRO 79.23 76.01 73.49 1.40 50,000 4.69
BWO 79.24 75.39 73.78 1.24 50,000 14.35
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Table 9 shows the optimization results for the fourth scenario (risk) utilizing different
algorithms. In this table, the percentage of changes or the error to the best answer reported
by the best algorithms, GA and BRO algorithms, was also presented. On the other hand,
the highest risk value was obtained by the SA algorithm, which could be deemed as an
unacceptable algorithm in giving the least risk in dam construction projects.

Table 9. Results of different algorithms in optimization for the fourth scenario (risk).

Algorithms Risk Percentage Error

GA 0.293 0
SA 0.319 8.75

BHMO 0.302 2.96
BRO 0.300 2.33
BWO 0.307 4.58

Figure 7a shows the convergence curves for the fourth scenario (risk) using different
algorithms. It can be observed that the GA and BRO algorithms converged quickly to
the optimal value of 0.293 and 0.300, respectively, in the first iterations. In contrast, the
convergence speed of the other algorithms was slower. Moreover, the highest error, with
an 8.75 percent error, was related to the SA algorithm, and the lowest error, with 2.33,
was related to the BRO algorithm. Figure 7b shows the risk scenario’s genotype space
during the optimization process. As can be seen, the selected algorithms of this scenario,
in most cases, tended to mode number 5, which was obtained by the contractor’s offers,
whereas the proportion of other executive modes, including mode number 1 and number 3
(obtained from BIM), which were lower values. It is worth noting that the algorithms also
tended to modes 2 and 4, which require more attention to the interpolation process.
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Table 10 demonstrates the statistical results of the optimum risk of the Ghocham dam
for different optimization algorithms based on 30 independent runs. The GA optimization
algorithm gave the best objective function value for the fourth Ghocham dam scenario.
While the worst value was given by the SA optimization algorithms, signifying its poor
reliability for a single trial run of risk optimization. Although the BWO optimization
algorithm took a longer computational time than the other algorithms and lasted nearly
13.04 s, it provided the lowest risk value compared to the SA optimization algorithm.
However, the CT for the GA algorithm was 1.81, greater than that of SA.

Table 10. Statistical results for different algorithms based on 30 independent runs in the fourth
scenario (risk).

Algorithms Best Mean Worst Std. Nfe CT (s)

GA 0.293 0.294 0.295 0.0005 50,000 2.88
SA 0.319 0.343 0.399 0.0221 50,000 2.46

BHMO 0.302 0.305 0.310 0.0019 50,000 1.92
BRO 0.300 0.306 0.311 0.0027 50,000 4.33
BWO 0.307 0.308 0.310 0.0008 50,000 13.04

Furthermore, the BWO optimization algorithm obtained the lowest value of the Std,
which shows how close the results obtained from the 30 different trials were to their mean
value. In stark contrast, due to the higher value of Std rather than other algorithms, the SA
optimization algorithm could not provide a consistent result in the analysis. Nonetheless,
based on the results obtained, the GA and BRO optimization algorithms demonstrated an
unsatisfactory role in the risk optimization of the Ghocham dam.

Table 11 shows the optimization results for the fifth scenario (total) using different
algorithms. The percentage of changes or rate of the error to the best answer reported by the
best algorithms, which in this scenario was the GA algorithm, are presented. Consequently,
the GA algorithm can be considered an ideal algorithm for TCQRT problems in hydropower
construction projects with a higher level of complexity.



Smart Cities 2022, 5 1459

Table 11. Results of different algorithms in optimization for the fifth scenario (all).

Algorithms Total Percentage Error

GA 1.92 0
SA 3.52 83.14

BHMO 3.08 60.03
BRO 3.12 62.48
BWO 2.53 31.77

Figure 8a shows the convergence curves for the fifth scenario (total) using different
algorithms. It can be observed that the GA and BWO algorithms converged quickly to the
optimal value of 1.92 in the first iterations. On the other hand, the convergence speed of
other algorithms was slower. Moreover, the highest error percentage was related to the SA
algorithm, with an 83.14 percentage error, and the lowest error was connected to the BWO
algorithm, which had an error of 31.77. Figure 8b shows the status of the optimization
variables or the genotype space during the optimization process for this scenario. As can
be seen, the selected algorithms of this scenario, in most cases, tended to mode number 1,
which represents the contractor’s offers, while the proportion of other executive modes,
including mode number 3 (obtained from BIM) and mode number 5, which were lower
values. In some cases, the algorithms also leaned to modes 2 and 4, which required more
attention to the interpolation process.
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Table 12 demonstrates the statistical results of the Time–Cost–Quality–Risk Trade-off
of the Ghocham dam for different optimization algorithms based on 30 independent runs.
Overall, the GA optimization algorithm gave the best value of the objective function for
the fifth scenario in the Ghocham dam, which means the GA algorithm provided relevant
results for the Time–Cost–Quality–Risk Trade-off of the Ghocham dam, while the worst
value was given by the SA optimization algorithms, signifying its poor reliability for a
single trial run of risk optimization. Like all previous scenarios, the BWO optimization
algorithm took a longer computational time than the other algorithms; its CT lasted nearly
12.57 s. However, the CT for the GA algorithm was 1.88, greater than that of SA.

Table 12. Statistical results for different algorithms based on 30 independent runs in the fifth scenario (all).

Algorithms Best Mean Worst Std. Nfe CT (s)

GA 1.92 1.94 2.09 0.0408 50,000 2.96
SA 3.52 4.03 4.48 0.2517 50,000 2.43

BHMO 3.08 3.20 3.27 0.0406 50,000 2.08
BRO 3.12 3.25 3.38 0.0581 50,000 4.56
BWO 2.53 2.64 3.03 0.0910 50,000 12.56

Furthermore, the BHMO algorithm obtained the lowest value of the Std, which shows
how close the results obtained from the 30 different trials were to their mean value. On
the other hand, because of the higher value of Std rather than other algorithms, the SA
optimization algorithm could not provide a consistent result in the analysis. Nonetheless,
based on the results obtained, only the GA optimization algorithm played a satisfactory
role in the Time–Cost–Quality–Risk Trade-off in the Ghocham dam.

4. Conclusions

According to the acquired findings, it is feasible to operate on project management by
planning, directing, and managing resources to accomplish particular objectives in other
development projects while considering time, cost, quality, and risk indicators. This study
focused on the role of BIM and miscellaneous meta-heuristic algorithms in dam construc-
tion management. Hence, five different meta-heuristic algorithms were implemented in
MATLAB to optimize a dam construction project’s time, cost, quality, and risk; for this
purpose, the Ghocham dam in Iran was selected as a case study. Finally, a TCQR tradeoff
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was analyzed. According to the results, it is evident that the implementation BIM process
can decrease the time and cost of dam construction projects while not providing optimal
time and cost.

Additionally, the project team and contractors can use the BIM process to achieve the
desired optimum quality in their dam projects. According to the findings, the suggested
objective function and genetic algorithms (GAs) and Black Hole Mechanics Optimization
(BHMO) algorithm could be suitable models for other organizations to improve the con-
struction sector’s quantitative and qualitative indicators of other hydropower projects
of this research. According to these results, the GA and BHMO optimization algorithms
provided better and more appropriate optimal results, and the general results are as follows:

• In the implementation BIM process in the Ghocham dam’s construction management,
there was a reduction of 7.4% in cost and 39.1% in time;

• Using the GA optimization algorithm reduces approximately 42.5% and 65% of the
project execution time compared to the BIM process and the actual execution time
of the Ghocham dam project, respectively. Furthermore, the SA and BHMO algo-
rithms provided the lowest computational time in time optimization compared to
other algorithms;

• The best performance in reducing project costs was for the GA and BWO algorithms,
while other algorithms charged higher costs, which is not cost-effective. The BHMO
optimization algorithm gave the best and lowest computational time (CT), accounting
for nearly 1.81 s;

• The GA algorithm was the only algorithm that performed best in the third scenario
(quality) by calculating the 97.89% quality index. In contrast, other algorithms did not
perform well, while the BHMO algorithm calculated the worst quality;

• Only the GA and BRO optimization algorithms provided the lowest risk index, indi-
cating their appropriate performance in risk optimization in the Ghocham dam;

• The BWO optimization algorithm gave all scenarios the longest computational time (CT);
• In the time–cost–quality–risk tradeoff, only the GA algorithm converged rapidly to

the optimal value in the first iterations, while the convergence speed of the other
algorithms was slower.

The limitation of this research work is that only a limited number of metaheuristic
algorithms were considered for tradeoff problems. Future works should focus on assessing
and comparing the efficiency of different novel metaheuristic optimization algorithms with
classic algorithms such as GAs. They should also consider other modes in their resource
tradeoff problems, such as carbon dioxide (CO2) emissions by each resource option in
their life cycle. Furthermore, they should analyze the efficiency of the metaheuristic
algorithms used in this study in other infrastructure projects regarding optimizing the
survival pyramid’s components, and they could propose a novel multi-objective version
of one of the newly proposed metaheuristics to tradeoff the mentioned modes in two-by-
two manners.
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