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Abstract: Over the last few years, several works have been conducted on the design and development
of wireless acoustic sensor networks (WASNs) to monitor acoustic noise levels and create noise
maps. The information provided by these WASNs is based on the equivalent noise pressure level
over time T (Leq,T), which is used to assess the objective noise level. According to some authors,
noise annoyance is an inherently vague and uncertain concept, and Leq,T does not provide any
information about subjective annoyance to humans. Some fuzzy models have been proposed to
model subjective annoyance. However, the use of fuzzy rule-based systems (FRBS) that have been
adapted to acoustic sensor node resource limitations in real WASN to provide the degree of subjective
noise annoyance in real-time remains a largely unexplored region. In this paper, we present the design
and implementation of an FRBS that enables the sensor nodes of a real WASN deployed in the city of
Linares (Jaen), Spain to infer the degree of subjective noise annoyance in real-time. The hardware
used for the sensor nodes is a commercial model, Arduino Due. The results demonstrate that the
sensor nodes have sufficient processing capacity and memory to infer the subjective annoyance in
real-time, and the system can correctly detect situations that can be considered more annoying by humans.

Keywords: wireless acoustic sensor networks; subjective noise annoyance; fuzzy rule-based system;
real deployments

1. Introduction

Noise pollution is one of the main environmental problems in urban areas and affects
millions of people worldwide. Different studies [1,2] have demonstrated that long-term
exposure to environmental noise affects human social behavior, health (ischemic heart
disease, hearing loss, risk of hypertension, etc.), sleep disturbance, and children’s cognition.
In Europe, more than 100 million people are exposed to damaging levels of environmental
noise pollution. Since noise pollution is a serious health issue, the European Commission
(EC) adopted an Environmental Noise Directive [3] and the subsequent Common Noise As-
sessment Methods methodological framework (CNOSSOS-EU) in 2002, requiring member
states to obtain real and accurate data on noise sources to provide and publish an accurate
mapping of noise levels throughout all urban centers with more than 250,000 citizens and
to produce local action plans every five years. Some examples of cities that provide these
noise maps are Madrid, Munich, London, Rome, and Helsinki.

The traditional method for obtaining accurate and real data on noise levels is by
collecting noise samples by professionals using instruments called sound level meters
placed in the area to be mapped. This procedure has some drawbacks, such as the lack
of real-time data, the expensive costs of instruments and personnel, the fact that the
measurements are carried out only locally and sparsely, and the inability to scale with the
demand for higher data granularity in time and space, as recommended by the EC [4].
In this scenario, wireless sensor networks (WSNs) and wireless acoustic sensor networks
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(WASNs) [5] play a key role, and currently, they are becoming a reality in smart cities as an
alternative that can address these drawbacks and inconveniences. WSNs are the base of
the Internet of Things (IoT) that all together give rise to the smart city, which includes the
application of “Noise Urban Maps: Sound monitoring in bar areas and centric zones in real
time”. The range of applications of WSNs is very wide and includes intelligent agriculture,
environmental monitoring, public security, public health, transport, etc. [6,7]. WASNs are
defined as networks composed of a large number of acoustic sensor nodes. Each node is a
resource-constrained device that consists of a processing unit with limited computability
and memory, sensing devices (one or more microphones), a communication device, and
a limited power source, usually in the form of a battery. Over the last few years, several
studies and projects have been proposed to design and develop WASNs for monitoring
noise pollution and creating maps of noise levels, as shown in Section 2.

The current noise indicators used to provide information about the objective noise
levels are based on the sound pressure level (SPL) and on the equivalent sound pressure
level over time T, Leq,T [8]; therefore, noise exposure assessment depends solely on these
measurement results (measured in dB). The SPL determines the intensity of the sound that
generates a sound pressure (i.e., the sound that reaches a person at a given moment). It is
measured in dB, and it ranges from the 0 dB threshold of hearing to the 120 dB threshold of
pain. Leq,T is defined as follows:

Leq,T = 10 log10

(
1
T

∫ T

0

p(t)2

p2
0

dt

)
(1)

where p(t) represents the root mean square instantaneous sound pressure level produced
by an acoustic wave, po = 2 × 10−5 Pa is the reference value corresponding to the minimal
audible acoustic signal for a human at 1 kHz, and T is the temporal interval.

Leq,T can be calculated using the sensor nodes of a WASN, and it provides adequate
information about the objective noise level. However, it does not provide any information
about subjective annoyance [9,10]. There is no direct correlation between the current
indicators and the subjective noise annoyance.

Therefore, new indicators, which provide information related to the subjective impact
of noise annoyance, are needed. These indicators can express people’s feelings through
subjective measures [11]. In addition, “annoyance maps could be generated to provide
information not only about the objective noise level but also about the subjective impact of
the noise pollution” [12].

According to [13,14], noise annoyance is inherently a vague, imprecise, and uncertain
concept. These authors argue that noise annoyance models should identify a fuzzy set [15]
of possible effects rather than seek a very accurate crisp prediction and that fuzzy rule-based
models are considered the most appropriate candidates for this task.

Although some fuzzy models have been proposed to model noise annoyance [13,14,16,17],
all of the models need a large number of computer resources to be executed. Therefore, they
have not been directly implemented into WASN acoustic sensor nodes due to their resource
constraints, and it is necessary to design a fuzzy approach adapted to them, reducing the
number of necessary resources. An approach could focus on sending the raw acoustic
sensor data to a web server or a cloud platform, executing a fuzzy model and processing
with almost unlimited resources. However, the amount of raw measurement data and data
rate needed is too large for Low Power Wide Area Networks (LPWANs), such as Sigfox or
LoRaWAN, and therefore, data processing must be performed in the acoustic sensor nodes
to reduce the data rate.

In this work, we present the design and implementation of an adapted fuzzy ruled-
based system (FRBS) [18] that allows the acoustic sensor nodes of a real WASN to infer the
degree of subjective noise annoyance in real-time. Each sensor node of the WASN, deployed
in the city of Linares (Jaén), Spain, executes an FRBS, which consists of a fuzzification
interface, a knowledge base (KB), an inference engine, and a defuzzification interface.
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The rest of the paper is structured as follows: Section 2 discusses the related work and
motivation and Section 3 describes the FRBS designed and implemented. The experimental
results are provided in Section 4, and some conclusions and future works are presented in
Section 5.

2. Related Work and Motivation

Over the last few years, several works have devoted their attention to the design and
use of WASNs to monitor noise levels and create noise maps [19–24]. In [12], the authors
presented a review of the main approaches to date, which focused on the design and
development of a WASN for environmental noise monitoring in smart cities. The authors
argue that “although WASN are becoming an incipient reality, very few projects have been
deployed in some smart cities around the world (most of them as pilots)”. Examples of
real projects based on WASN have been described by [21,25–28]. In a previous work [29],
we presented the design and implementation of a complete low-cost system for a WASN
deployed in the city of Linares (Jaén), Spain. The complete system covered the network
topology design, hardware, and software of the sensor nodes, protocols, and a cloud server
platform.

However, in our previous work [29], and all these previous works and real projects,
the measurements and the information provided by the WASN were based on Leq,T [8]
or LAeq,T (applying the A-weighting filter, which is a frequency filter that picks up the
frequencies where the human ear is most sensitive). These parameters do not provide
any information about subjective annoyance in humans [9,10]. According to [11], “even
with similar values of Leq,T, people can feel the noise differently according to its frequency
characteristics”. In this sense, subjective annoyance and road traffic noise have been studied
in [30].

Since noise annoyance is inherently a vague, imprecise, and uncertain concept [13,14,31],
fuzzy models have been proposed to model noise annoyance. In [16], the authors describe
the noise-human response, and a fuzzy logic (FL) model is developed by comprehen-
sive field studies on noise measurements. The model has two subsystems: the first has
549 linguistic rules and the second has 52 linguistic rules. In [13], a framework is proposed
to model noise annoyance based on the mathematical theory of fuzzy sets and FRBS,
providing the theoretical background for building these models. The resulting model is
tested on two large-scale social surveys augmented with exposure simulations. In [17],
the authors describe an exposure assessment method of occupational noise based on FL.
They conclude that the fuzzy method assists in obtaining a clear approach to the risk
assessment of noise exposure, and FL assessment results are more useful for analysis than a
conventional assessment. However, in [14,31], the authors proposed an expert system using
a fuzzy approach to determine the effects of the noise environment on annoyance. The
rules were proposed by a human expert and are based on linguistic variables. Annoyance
is considered to be a function of noise levels, exposure duration, noise level in habitat, and
age. The model was implemented using Maple 12 software.

One of the main characteristics of these systems is the capacity to incorporate human
knowledge in the presence of a lack of accuracy and uncertainty or imprecision. Therefore,
these models represent an alternative to express people’s feelings by subjective measures
instead of objective measures based on Leq,T (measured in dB) or LAeq,T (measured in
dBA). All the previous fuzzy models referenced have been implemented using simulation
software, which requires a large number of computer resources, and none of them have
been implemented in a real-life scenario.

Although considerable research has been devoted to modeling subjective annoyance
using fuzzy models, FRBS adapted to sensor node limitations in a real WASN to provide
the degree of subjective noise annoyance in real-time remains a largely unexplored region.
In [32], we presented a preliminary approach and basic results about how to integrate
an FRBS into a resource-constrained device to calculate a fuzzy noise indicator. The
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experiments were carried out in a laboratory using a Sun SPOT device, which is obsolete at
present.

In this work, we improve the previous approach by (a) optimizing the design of
the FRBS to be executed in the current sensor node hardware; (b) introducing new input
variables; (c) improving the algorithm to calculate the SPL and LAeq,T; and (d) determining
the frequency characteristics of the noise. In addition, the experiments were performed in a
real scenario by giving real measurement inputs to the FRBS in a real WASN deployed in
the city of Linares (Jaén), Spain, which has been running continuously for three months.
In this way, we compare the evolution of the sound pressure level (used as the objective
noise level) with the progress of the subjective noise annoyance on different days and in
real situations.

3. The Proposed Fuzzy Rule Based-System

A FRBS is a rule-based system in which FL is used as a tool for representing different
forms of knowledge about the problem at hand [18]. These systems are an extension to
classical rule-based systems because they deal with “IF-THEN” rules whose antecedents
and consequents are composed of FL statements (fuzzy rules) instead of the classical logic
ones. FRBS incorporates the human knowledge of an expert using FL. Two different
kinds of approaches have been proposed within the FRBS: Mamdani FRBS [33,34] and
Takagi–Sugeno–Kang FRBS [35]. The main difference between them lies in the consequent
knowledge rules. The Mandani approach is composed of a linguistic variable, and in
the Takagi–Sugeno–Kang approach, it is expressed as an analytical function of the input
variables.

The FRBS proposed in this paper to calculate the degree of subjective noise annoyance
is based on the structure of the Mandani FRBS [33,34]. It consists of the following compo-
nents: a fuzzification authentication interface, a knowledge base (KB), an inference engine,
and a defuzzification interface. The fuzzification interface adapts the actual input values
to the fuzzy system. The knowledge is stored in a KB that is composed of three elements:
membership functions, a set of “IF-THEN” rules, and linguistic variables. These rules are
defined through consequences and antecedents. The rules have the following form:

IF X1 is A1 and ... and Xn is An THEN Y is B

where Xi are the input variables, Ai is a fuzzy set associated with the input variables, Y is
the output variable, and B is a fuzzy set related to the output variable.

The inference engine infers the fuzzy output using the input variables and the KB.
Finally, the defuzzification interface adapts the value of the fuzzy output to a real output value.

To design the FRBS to be executed in the sensor nodes of the WASN, some simplifi-
cations are needed to minimize the computational requirements. We propose the use of
the following modifications to the structure of the Mandani FRBS: (a) a reduced number of
fuzzy sets is defined in each variable; (b) the input and output interfaces only admit linear
conversions; (c) a First Infer Then, Aggregate (FITA) inference engine is needed, and (d) the
inference engine works with numerical values of variables, fuzzy sets, and rules instead of
linguistic labels.

Figure 1 shows the structure of the FRBS proposed, which is implemented into the
acoustic sensor nodes of the real WASN to provide in real-time the degree of subjective
noise annoyance in the area where each acoustic sensor node is placed.
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Figure 1. Structure of the FRBS proposed which is executed in the sensor nodes.

The output variable of the system is the subjective annoyance. As input variables, we
considered four variables as the most representative ones described in the literature that
affect people’s perception of subjective noise. There are other variables that have been used
in the literature, such as age. This variable can be used for a theoretical model or even if
the exact age range is known (in the place where a sensor node is going to be located), for
example, a nursery or a home for elderly individuals. However, it is not valid for our real
system, where the sensor nodes are placed in different streets of the city, as it is impossible
to know the age of the people passing through each location.

The proposed FRBS has the following input variables:

(1) SPL, sound pressure level value. In a previous work [29], we presented the architecture
of an algorithm to calculate SPL (dB), Leq,T (dB), and LAeq,T (dBA) in real-time adapted
to the sensor nodes of a WASN. These parameters do not provide any information
about subjective annoyance in humans. Implementation details of the algorithm can
be found in that reference.

(2) Noise exposure duration, i.e., its persistence over time.
(3) Frequency. According to some studies [36,37], noise frequency components directly

impact subjective noise perception in humans. The algorithm we implemented,
which is executed in the sensor nodes, determines the critical spectral band, i.e., the
frequencies with a higher energy and their degree of importance with respect to
background noise or less crucial frequencies.

(4) Time of day when the noise occurs. The END regulation [3] distinguishes three hourly
time slots for noise measurements, establishing three indicators: (a) Lday, A-weighted
average sound level over the daytime period 07:00–19:00; (b) Levening, A-weighted
average sound level over the evening period 19:00–23:00; and (c) Lnight, A-weighted
average sound level over the night period 23:00–07:00.

Figure 2 shows the fuzzy sets defined for all input variables and the output variable.
Table 1 presents the KB set of rules used. This knowledge is based on an expert and peoples’
opinions aggregated from different experiments. Different sound pressure levels were
generated in the lab (50 dBA, 60 dBA, 70 dBA, 80 dBA, 90 dBA, and 100 dBA), and from
these and the other variables, persistence over time (5 s, 10 s, 15 s, 20 s, 25 s, and 30 s),
the fundamental frequency of the noise (different tones from 20 Hz to 8 kHz), and the
time of day, the subjective noise annoyance level was determined, indicating whether the
annoyance was very low, low, medium, high, or very high.
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Table 1. Set of IF-THEN rules.

SPL Persistence Frequency Time of Day Subjective Noise
Annoyance

L L L D L
L L M D VL
L L E L
L L H D VL
L L L N H
L M L D VL
L M L N H
L M E L
L M M D L
L M H D VL
L L E M



Smart Cities 2022, 5 1580

Table 1. Cont.

SPL Persistence Frequency Time of Day Subjective Noise
Annoyance

L H D L
L H L N H
L H E L
M L E M
M L D L
M L L N VH
M L M N H
M L H N H
M M L E M
M M D M
M M L N VH
M M M E M
M M M N VH
M M H E M
M M H N H
M H L E L
M H L D M
M H L N H
M H M E M
M H M D H
M H M N VH
M H H E H
M H H D H
M H H N VH
H L D M
H L E H
H L N VH
H M E H
H M M D M
H M M N VH
H M H D M
H M H N VH
H H E H
H H L D H
H H M D H
H H N VH
H H H D VH

VL: very low; L: low; M: medium; H: high; VH: very high; D: day; E: evening; and N: night.

4. Results

As the main result, we can say that an FRBS has been designed and implemented in
the acoustic sensor nodes of a real WASN deployed in the city of Linares (Jaén), Spain,
which has been running continuously for three months, to provide the degree of subjective
noise annoyance in real-time.

The FRBS software was developed in the C programming language and implemented
in a standard hardware model (i.e., commercial sensor node) of the Arduino platform. In
particular, the acoustic sensor node is the Arduino Due device [38], which is based on a
32-bit ARM core microcontroller and is designed to develop solutions related to sensor
networks. The microphone used is based on a commercial design [39], and it is integrated
with an operational Maxim MAX4466 specifically designed for acoustic solutions. The
choice of this device is mainly due to its technical specifications, in terms of the processor
and memory, which allow for the execution of the FRBS and the algorithm to calculate
SPL, Leq,T (dB), or LAeq,T (dBA) in real-time. These technical specifications are as follows:
Atmel SAM3X8E ARM Cortex-M3 processor 32-bit, clock speed of 82 MHz, 96 Kb of SRAM,
and 512 Kb of flash memory. Figure 3 shows the acoustic sensor nodes. For sensor nodes
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one and three through seven, we used the Arduino Due and the Ethernet shield, and the
power consumption was approximately 180 mA. For sensor node two, the Arduino Due
and the 3G module, the consumption was approximately 320 mA. Finally, for sensor node
nine, using the Arduino Due and the Sigfox module, the consumption was approximately
125 mA. All of the nodes were powered through passive Power over Ethernet (PoE), using
12-V 1-A power adapters and PoE injectors. The electrical plugs were at a maximum
distance of 20 m. To prevent problems derived from occasional power outages, the 3G
acoustic sensor node was equipped with a battery of 50,250 mAh (3350 mAh × 15 modules),
so it has an autonomy of approximately 157 h.
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Figure 3. (a–d) The acoustic sensor nodes. (a) Enclosure box; (b) Wi-Fi acoustic sensor node;
(c) 3G acoustic sensor node; and (d) Electret microphone.

It is not possible to execute the FRBS and the algorithm to calculate the SPL on other
devices of the Arduino platform, i.e., MKR Family or MEGA. However, any other device
with similar or better characteristics to Arduino Due can be used.

The computation time to infer the degree of subjective noise annoyance based on the
FRBS has been calculated. Using the KB composed of the inputs and output variables and
rules defined in Figure 2 and Table 1, the device computes approximately 150 inferences
per second, which is equivalent to a reaction time of 6.5 ms. Therefore, the device has
enough processing capacity to infer the output value using this KB, and both the number
of input variables and the number of rules can be increased for more accuracy.

On the other hand, a WASN was deployed in the city of Linares (Jaén), Spain. This
WASN is composed of nine acoustic sensor nodes, each executing the proposed FRBS and
obtaining subjective noise annoyance every second. The acoustic sensor nodes were located
in those streets of the city that were considered the most critical from the perspective of
noise pollution. Figure 4 shows the exact locations of the measurement points in the streets,
and Figure 5 shows some locations where the acoustic sensor nodes were installed.



Smart Cities 2022, 5 1582Smart Cities 2022, 5, FOR PEER REVIEW  9 
 

 
Figure 4. Locations of the measurement points in the streets of the city of Linares (Jaén). 

  
(a) (b) 

  
(c) (d) 

Figure 5. (a–d) Acoustic sensor nodes deployed in the city. 

Figure 6 presents the network topology for the deployed WASN. The City Council of 
Linares, through the area of urban planning, established those locations of the city that 
were considered the most critical from the point of view of noise pollution. 

 
Figure 6. The network topology for the WASN deployed in the city of Linares (Jaén). 

Figure 4. Locations of the measurement points in the streets of the city of Linares (Jaén).

Smart Cities 2022, 5, FOR PEER REVIEW  9 
 

 
Figure 4. Locations of the measurement points in the streets of the city of Linares (Jaén). 

  
(a) (b) 

  
(c) (d) 

Figure 5. (a–d) Acoustic sensor nodes deployed in the city. 

Figure 6 presents the network topology for the deployed WASN. The City Council of 
Linares, through the area of urban planning, established those locations of the city that 
were considered the most critical from the point of view of noise pollution. 

 
Figure 6. The network topology for the WASN deployed in the city of Linares (Jaén). 

Figure 5. (a–d) Acoustic sensor nodes deployed in the city.

Figure 6 presents the network topology for the deployed WASN. The City Council
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Due to the existence of the corporate Wi-Fi network that the City Council of Linares
deployed in the city, as well as the absence of power supply restrictions, we proposed
using this Wi-Fi network. After analyzing the coverage, it was detected that, in seven of the
nine locations, it was possible to use this Wi-Fi network. However, in two locations (nodes
two and nine), there was no coverage. For these two locations, we decided to use 3G and
Sigfox technologies, respectively.

In addition to the FRBS software and the algorithm to calculate SPL and LAeq,T, all the
acoustic sensor nodes include communication software, which is implemented to send data
to a Web Server. The sensor nodes with Wi-Fi and 3G connectivity calculate the subjective
noise annoyance every second, and every 30 s, send the average value to the webserver.
In the case of Sigfox connectivity, the acoustic sensor node calculates the subjective noise
annoyance every second, but in this case, the average value is sent every 10 min to the
webserver. This is because the Sigfox network only permits sending 140 messages per day.
More details about the protocols, network topology, and technologies used in the WASN
can be found in our previous work [29].

As the experiments were performed by giving real measurement inputs to the FRBS,
we can compare the evolution of the SPL (used as the objective noise level) with the progress
of the subjective noise annoyance on different days or situations. Each acoustic sensor node
provides the temporal evolution of the SPL (in dBA) during a selected time interval, the
degree of subjective noise annoyance, and the LAeq,T (in dBA). Figure 7 shows the temporal
evolution of the SPL throughout the day from 00:00 to 23:59 h at Isaac Peral Street. The
LAeq,T for that day was 70.9 dBA.
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Figure 8 shows the progress of the subjective noise annoyance as the output of the
FRBS during the same day. The noise annoyance values are in the range {0, 1}, where
value 0 means no annoyance and value 1 means maximum annoyance.

As can be observed, the system can correctly detect situations that can be considered
more annoying by humans. For example, the subjective noise level increases during the
night with respect to SPL, and during the day, the differences are smaller. Nevertheless, we
can observe that from 6:00 h onwards, although the SPL starts to increase slowly as the city
starts to wake up, the subjective noise level slowly decreases.

Figures 9 and 10 show the temporal evolution of the SPL and the subjective noise
annoyance of another whole day in a different location. In this case, we can see that the
subjective noise is the greatest at night. During the day, noise peaks are detected, however,
their impact is less on annoyance, and during the transition from evening to night, although
the SPL starts to decrease, the annoyance starts to increase slowly.
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5. Conclusions and Future Works

We present the design and implementation of an FRBS, which has been executed into
the acoustic sensor nodes of a real WASN deployed in the city of Linares (Jaén), Spain, to
provide the degree of subjective noise annoyance in humans in real-time. The FRBS has
four input variables as the most representative described in the literature: SPL, frequency,
persistence, and time of the day; and one output variable: the grade of subjective noise
annoyance. The hardware used for the acoustic sensor nodes was a commercial model,
Arduino Due. The system can correctly detect situations that can be considered more
annoying by humans. Results show that the subjective noise level increases during the
night with respect to SPL, and during the day, the differences are smaller. During the day,
noise peaks are detected but their impact is less on annoyance. In most of the locations,
from 6:00–7:00 h onwards, although the SPL starts to increase as the city starts to wake
up, the subjective noise level slowly decreases. During the transition from evening to
night, although the SPL starts to decrease, the annoyance starts to increase slowly. In
non-noisy locations, where the values of SPL do not exceed 55–60 dB, noise annoyance is
observed to be lower and its temporal evolution is practically flat, with a slight increase in
the evening hours.

The results demonstrate that the performance of the Arduino Due is very good. It has
sufficient processing capacity and memory to infer the output values using a KB composed
of 5 variables and 48 fuzzy rules. The device computes approximately 150 inferences
per second, which is equivalent to a reaction time of 6.5 ms. Therefore, both the number
of input variables and the number of rules can be increased, as the reaction time is very
small for this use case. In addition, the device is able to calculate the SPL (in dBA, applying
the A-weighting filter) every 1 s, which allows us to know the variability of the noise in a
specific place. It was not possible to execute the FRBS and the algorithm to calculate the
SPL on other devices of the Arduino platform, i.e., MKR Family or MEGA. However, any
other device with similar or better characteristics to Arduino Due can be used.

In addition, a real WASN was deployed in the city of Linares (Jaén), Spain, in which
each acoustic sensor node of the network executed the FRBS to obtain the subjective noise
annoyance every 1 s. The system has been working continuously for three months without
any problems except for occasional power outages and the consequent restart of the devices.
Therefore, we consider that FRBS integrated into the acoustic sensor nodes of a WASN is a
valid approach to providing information about the subjective impact of noise pollution and
generating annoyance maps.

The system can be integrated into the authority’s decision processes and help to reduce
noise impact. The system proposed allows continuous measurements over long periods
of time (weeks/months), providing information based on the objective noise indicators
included in the END regulation [3] as well as on the subjective noise annoyance. This
allows preventive and corrective actions to be taken, for example, installation of noise
barriers, the establishment of hourly traffic restrictions, setting speed limits, transport
infrastructure planning, new urban area planning where people are going to live, changing
the noisiest street pavements to more porous and quieter ones, etc. In addition, as the
system provides information in real-time, corrective actions can be taken in real-time, for
example, reorganization of vehicular traffic on the streets or the detection of situations
where the noise derived from a leisure activity (i.e., a bar) is too high.

Regarding future research, as we demonstrate that the acoustic sensor node has enough
processing capacity and memory, it should aim to improve the KB, increasing the number
of input variables and the number of fuzzy rules. In addition, due to the occasional loss of
connection from the Wi-Fi and 3G network to the internet, some data were lost. To solve
this problem, we are currently working on the implementation of a fog-computing platform
between the sensor nodes and the webserver. The fog server will only be in charge of data
storage and retransmission to the webserver.
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This Appendix A, Figures A1–A7, contains the measurements for a whole day for each
node of the implemented system.
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Figure A1. Ubeda Street: (a) The temporal evolution of the SPL over a whole day; (b) subjective noise
annoyance as an output of the FRBS.
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Figure A4. Cervantes Street: (a) The temporal evolution of the SPL over a whole day; (b) subjective 
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Figure A2. San Francisco Square: (a) The temporal evolution of the SPL over a whole day;
(b) subjective noise annoyance as an output of the FRBS.
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Figure A5. Andalucia Avenue: (a) The temporal evolution of the SPL over a whole day; (b) subjec-
tive noise annoyance as an output of the FRBS. 
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Figure A6. Ayuntamiento Square: (a) The temporal evolution of the SPL over a whole day; (b) sub-
jective noise annoyance as an output of the FRBS. 
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Figure A7. Noruega Street-Sigfox network: (a) The temporal evolution of the SPL over a whole day; 
(b) subjective noise annoyance as an output of the FRBS. 
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Figure A5. Andalucia Avenue: (a) The temporal evolution of the SPL over a whole day; (b) subjective
noise annoyance as an output of the FRBS.
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