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Abstract: The continuous growth of urban populations has led to the persistent problem of traffic
congestion, which imposes adverse effects on quality of life, such as commute times, road safety, and
the local air quality. Advancements in Internet of Things (IoT) sensor technology have contributed to
a plethora of new data streams regarding traffic conditions. Therefore, the recognition and prediction
of traffic congestion patterns utilizing such data have become crucial. To that end, the integration
of Machine Learning (ML) algorithms can further enhance Intelligent Transportation Systems (ITS),
contributing to the smart management of transportation systems and effectively tackling traffic
congestion in cities. This study seeks to assess a wide range of models as potential solutions for
an ML-based multi-step forecasting approach intended to improve traffic congestion prediction,
particularly in areas with limited historical data. Various interpretable predictive algorithms, suitable
for handling the complexity and spatiotemporal characteristics of urban traffic flow, were tested and
eventually shortlisted based on their predictive performance. The forecasting approach selects the
optimal model in each step to maximize the accuracy. The findings demonstrate that, in a 24 h step
prediction, variating Ensemble Tree-Based (ETB) regressors like the Light Gradient Boosting Machine
(LGBM) exhibit superior performances compared to traditional Deep Learning (DL) methods. Our
work provides a valuable contribution to short-term traffic congestion predictions and can enable
more efficient scheduling of daily urban transportation.

Keywords: traffic congestion prediction; time series forecasting; road traffic; Machine Learning; Deep
Learning, smart cities; weather information

1. Introduction

In recent years, a significant upsurge in urbanization rates has been recorded across
the globe. According to UN estimations, by 2030, the world’s urban population will reach
about 4.9 billion, and by 2050, around 70% of the world’s population will live in cities [1].
This ongoing urbanization has led to a significant escalation of traffic congestion, which, in
turn, has had far-reaching impacts on the local air quality, noise pollution, road fatalities,
and commute times [2].

To enhance the operational efficiency of transportation systems and optimize traffic
flow, Intelligent Transportation Systems (ITS) represent an established technological ad-
vancement in the realm of intelligent transportation, serving as a fundamental element
within the Internet of Things (IoT) framework. The primary objective of ITS is to enhance
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the efficiency of traffic movement and ensure safety while minimizing travel duration and
fuel consumption [3]. Especially regarding the local air quality, ITS may have a positive
impact by reducing the amount of time that vehicles, particularly private cars, spend idling
at red lights or intersections [4]. This is because vehicles tend to emit higher levels of
air pollutants in urban areas [5], particularly diesel-fueled vehicles when they come to
a stop while their engines remain operational [6]. By accurately monitoring the vehicle
count, ITS can predict the intersection density to regulate traffic signal systems and reduce
traffic congestion [7]. Therefore, considering the technological advances in IoT sensors
and wireless networks, the broad utilization of such infrastructures can effectively incor-
porate information and communication technologies (ICT) to establish a sustainable and
intelligent transportation system.

Such technologies also significantly affect the availability of transport services and
have resulted in an increasing flow of traffic-related data. This has sparked interest in
the analysis of everyday road traffic patterns for both passengers and cargo transport [8].
Furthermore, this enables the utilization of ML and Deep Learning (DL) techniques, which
represent state-of-the-art methodologies that offer enhanced reliability in the production
and generation of traffic flow predictions [9,10]. In general, there are various prediction
methods for traffic congestion time series, utilizing, in most cases, either an ML model (e.g.,
a tree-based algorithm) or a DL model like a Recurrent Neural Network (RNN) to achieve
the best possible forecasting accuracy. Our work aims to provide answers to a particular
research question: In cases where both types of models could be used (i.e., in a multi-step
problem), what type of model would be more accurate for a step-by-step methodology?

Utilizing on-road traffic flow sensor data and meteorological data, this paper inves-
tigates and develops a strategy for predicting traffic congestion in multiple locations by
utilizing and comparing varying forecasting models. The case study is the city of Trondheim
in Norway, which has an established on-road sensor infrastructure network to measure
traffic flow. In our multi-step problem case, we review key types of up-to-date models and
explore which type of model would be more accurate for a step-by-step methodology. We
selected algorithms that are frequently used in the literature due to their efficiency and are
considered to be capable of handling the complex dynamics and temporal dependencies
inherent in time series data, such as traffic congestion. We initially tested 17 different
multi-variable regression models and selected the ones that showed an improved fore-
casting ability. In particular, this included Decision Tree Ensemble-based models such
as the Light Gradient-Boosting Machine (LGBM), Random Forest (RF), Histogram-Based
Gradient-Boosted Regressor (HGBR), and eXtreme Gradient Boosting (XGB), as well as DL
algorithms such as LSTM and GRU, to predict traffic flow at multiple on-road locations. In
addition, we incorporated temporal features and weather information features to enhance
the forecasting performance of the developed models. We implemented hyperparameter
tuning, feature synthesis, selection, and transformation to maximize the models’ perfor-
mances. We evaluated the predictive performance based on the statistical performance
metrics of each model from one step to the next.

The findings of this study suggest that that different models excel at different forecast-
ing steps and selected traffic locations, achieving good accuracy, even in the later steps of a
24 h prediction cycle. Overall, the DL implementations fall behind compared to traditional
shallow learning models, such as Decision Tree Ensemble regressors. ET and RF have the
best predictive performances in almost all locations, especially for longer forecasting hori-
zons. When assessing the overall performance across these locations, on average, HGBR
and LGBM emerge as the most consistently reliable models with low execution times.

In the remaining sections of this paper, Section 2 reviews related literature, Section 3
explains the utilized methodology, and Section 4 illustrates the results and evaluation.
Finally, Section 5 concludes with identified limitations and directions for future work.
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2. Background
2.1. Smart City Context

The objective of the Smart City (SC) is to maximize the efficient use of limited resources
while improving the quality of life. ML and DL approaches show great promise for optimiz-
ing automated activities in a SC, such as energy usage, production, and traffic management.
Numerous recent studies have investigated the interaction of the IoT infrastructure and
ML to realize a data-driven intelligent environment. Aspects such as smart healthcare [11],
energy generation [12] or energy consumption predictions [13], and the energy grid [14]
are examples of SCs that enable data mining tasks. Major considerations include intelligent
traffic signals [15], traffic jam predictions, and management [16].

The SC of the future is anticipated to comprise interconnected IoT sensors that re-
ceive, analyze, and communicate data to provide dependable and effective digital services.
ML methods are becoming essential for accurate monitoring and estimating real-time
traffic flow data in an urban setting [17,18]. Effective traffic flow management is a fun-
damental component of SCs, enhancing the flow of transportation networks and traffic
conditions [15].

2.2. ML-Based Time Series Forecasting

To convert a time series forecasting problem into a supervised ML problem, the data
must be reorganized from sequential to tabular format by creating time-lagged values. This
allows the use of supervised ML algorithms based on historical observations. The Sliding
Window (SW) technique [19] is an established method that is used to restructure a time
series dataset as a supervised learning problem. It involves iteratively traversing the time
series data and using a fixed window of ‘n’ previous items as the input, with the subsequent
data point serving as the output or target variable. Given that time series data often display
trends and seasonal patterns, it is imperative to acknowledge that the relationship between
independent variables (input) and the predicted value (output) evolves. To pinpoint the
specific time instances where the values of independent variables are significantly related,
the selection of an appropriate time-lag value (i.e., how many previous observations to take
into account) demands careful consideration [13].

While one-step-ahead forecasting predicts a single future value, the objective of multi-
step ahead prediction is to predict a sequence of future values in a time series. Three main
strategies are frequently implemented for multi-step forecasting (Figure 1):

• Direct Forecasting: In this method, target values are anticipated for each subsequent
step without reference to previously projected values. It is a simple strategy; however,
it may suffer from the accumulation of errors [20].

• Recursive Forecasting: In this technique, the predicted values from previous steps are
used as inputs to predict the values for the next step. Each predicted value serves as
an input for the succeeding prediction in an iterative process. This method has the
potential to better identify intertemporal dependencies [21].

• Sequence-to-Sequence Forecasting: In sequence-to-sequence (seq2seq) forecasting, a
model consists of two main components: an encoder and a decoder. The decoder is
trained to transform an input sequence of historical values into it into a fixed-size
vector. This vector is fed into the decoder as an initial state, which focuses on different
portions of the input sequence to generate the output sequence by predicting one value
at a time. Transformers or RNNs are used for processing sequential data. Long-term
forecasting can benefit from the use of sequence-to-sequence models since they can
effectively capture complicated temporal trends [22].

ML Algorithms

In recent years, ML techniques have gained increasing popularity, with numerous
studies and research papers demonstrating their superior performance compared to statis-
tically based forecasting algorithms for time series problems [13]. The prediction methods
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and algorithms that we experimented with in our work can be categorized into two groups:
Ensemble Decision-Tree-based models and RNNs.

Figure 1. Three main strategies of multi-step forecasting.

Ensemble Tree-Based (ETB) models: Decision-Tree-based algorithms are non-parametric
supervised learning algorithms that are used for classification and regression tasks. They
feature a hierarchical, tree-like structure that represents how different input variables can
be leveraged to predict a target value. This structure encompasses a root node, branches,
internal nodes, and leaf nodes [23,24]. The input variables are recurrently partitioned
into subsets to construct the Decision Tree, and each branch is evaluated for its prediction
accuracy using conditional control statements (e.g., if–then rules) [24]. Ensemble learning
techniques combine multiple simpler base algorithms to generate a predictive model
with optimal performance. By combining predictions, ensemble techniques can provide
more reliable and robust forecasts than single-prediction methods [25,26]. In the case of
tree-based algorithms, instead of a single Decision Tree making all of the predictions, an
ensemble approach is employed by creating a complete “forest” of Decision Trees. Each
tree provides its prediction or “opinion” based on the data it has been trained on. The final
output is determined by aggregating and considering the outputs of all trees within the
forest. ETB models are known for their interpretability, versatility, prevention of overfitting,
and high computational efficiency [27]. They tend to perform equally well on small and
large datasets and necessitate less data preparation compared to other techniques.

Two prominent ensemble approaches are bagging (also known as Bootstrap Aggre-
gation) and boosting (also known as Gradient Boosting). Bagging reduces the variance
by averaging or combining predictions from independently trained models with equal
weighting, whereas boosting reduces both the bias and variance by iteratively training
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models and adjusting weights, focusing on training examples that are more challenging to
predict [27].

• The Random Forest (RF) algorithm is a prime example of bagging. It creates bootstrap
samples that are randomly selected from the dataset and then utilizes them to grow
a Decision Tree. A random subsample of the features is used in each node-splitting
process. Each tree’s prediction is examined, and the choice made is recorded by the
RF model. The total number of vote predictions is used to make the ultimate choice
(i.e., bagging) [28]. Other examples of the bagging technique are Extra Trees (ETs) [29]
and the Bagging Regressor (BR).

• The Light Gradient Boosting Machine (LGBM) is a popular Gradient Boosting method.
It employs a unique approach where, before constructing a new tree, all attributes
are sorted, and a fraction of the splits are examined in each iteration. These splits are
conducted leaf-wise, instead of using level-wise or tree-wise splitting. The LGBM
is considered a lightweight histogram-based algorithm, resulting in faster training
times [30], and it is highly effective when dealing with time series data [31]. Other
notable examples of boosting include the XGB [32] and Histogram-Based Gradient-
Boosted Reggresor (HGBR) [33] algorithms.

Recurrent Neural Networks: RNNs are designed to retain certain elements of past
observations by using a technique known as feedback. This approach allows for training
to occur not just from input to output, but it also incorporates a loop inside the network
to retain certain information, thereby imitating a short memory function [34]. They are
proven to perform well with sequential types of data and dynamical systems modeling
when compared to traditional feed-forward neural networks [34,35]. Primary examples of
RNNs are Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRUs).

• In contrast to conventional feed-forward neural networks, the LSTM network core
components include gate and memory cells in each hidden layer and feedback connec-
tions. This structure resembles a pipeline, linking all inputs together, and highlighting
those of the previous inputs that relate the most to the current inputs while diminish-
ing the importance of those connections that are less pertinent. It is capable of handling
complete data sequences (like time series, voice, or video) in addition to individual
data points (i.e., image). The LSTM architecture was developed to address the issue of
the vanishing gradient problem encountered by conventional RNNs when attempting
to model long-term dependencies in temporal sequences. A notable variant of the
LSTM is the bidirectional LSTM (biLSTM). Unlike traditional LSTMs that process
sequences from past to future, biLSTMs incorporate the ability to process information
in both directions [36].

• First introduced in 2014, GRUs are used as a gating technique in a RNN. Lacking an
output gate, each GRU operates like an LSTM with a forget gate [37,38] but with fewer
parameters. For example, in polyphonic music modeling, voice signal modeling, and
natural language processing, GRUs performed better than the LSTM. Also, on smaller
datasets, GRUs have been shown, on some occasions, to outperform LSTMs [39].

2.3. Related Work on Traffic Flow Predictions

Traffic management systems, empowered by advanced technologies and data-driven
approaches, play a pivotal role in optimizing traffic control. The ITS infrastructure can
integrate ML methods and predictive analytics to analyze real-time and historical traffic
data, enabling accurate forecasting of future traffic patterns. As a result, data-driven
approaches utilizing advanced forecasting models have received a lot of research attention
in recent years.

To deal with a typical ITS case study, the usage of dynamic traffic statistics to accurately
estimate traffic flow due to the exponential growth of traffic data, the study presented
in [40] proposed a multi-step prediction model based on a Convolutional Neural Network
(CNN) and bidirectional LSTM (biLSTM) model to address this problem. To extract the
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traffic’s time series characteristics, the biLSTM model considered the geographic features
of the traffic data as the input. The experimental findings confirmed that, when compared
to support vector regression and gated repeating unit models, the biLSTM model increased
the prediction accuracy.

A prediction method based on the combination of Multiple Linear Regression and
LSTM (MLR-LSTM) was proposed [41]. It uses both continuous and complete traffic flow
data from each adjacent section’s past period, as well as incomplete traffic flow data from
the target prediction section’s past period. The goal is to jointly predict changes in the
target section’s traffic flow in a short amount of time.

Furthermore, to forecast the short-term traffic flow, a traffic flow prediction model that
combines the XGB algorithm with wavelet decomposition and reconstruction was presented
by the authors of [42]. The wavelet de-noising algorithm is first used in the training phase
to gather high- and low-frequency data about the target traffic flow. Second, the threshold
method is used to process the high-frequency traffic flow data. The training label is then
created by reconstituting the high- and low-frequency data. Lastly, the XGB algorithm
receives the de-noised target flow and uses it to train its traffic flow prediction model.

A different ML method, employed by the authors in [16], produced an accuracy of 91%
and was more suited to the data format. In addition to Cell Dwell Time (CDT) data, Global
Positioning System (GPS) readings could provide more accurate information regarding
traffic. The goal of this work was to extract road traffic congestion levels from GPS data and
traffic-related images using mobile sensors and a Decision Tree (DT) (J48/C4.5) classifier.
Data from mobile sensors may be used to monitor larger traffic sectors. In actuality, the
model would detect patterns in the movement of the vehicles employing SW techniques.

In another study, the authors used several RNN-LSTM architectures to forecast the taxi
traffic caused by the number of tourists visiting Beijing Capital International Airport [43].
The findings of the study used three models to build an LSTM-RNN prediction model for
tourist visits. LSTM regression, LSTM with SW, and sequence-to-sequence LSTM with time
steps are the three LSTM models that were used. Their outcome was that, depending on
the case, a different model would offer the best outcomes for both testing and training
simultaneously. Regression models with the Root Mean Square Error (RMSE) produced
the best training results for the prediction of tourist visits. In the meantime, the SW model
yielded the best RMSE value during the testing process.

Traffic flow prediction was implemented by integrating both pollution and traffic
datasets in [44]. Various ML methods were applied, revealing that the KNN exhibited
the highest accuracy. To further improve the accuracy, a bagging and stacking ensemble
approach was employed. The KNN bagging ensemble model outperformed other combi-
nations, particularly excelling in handling the dataset’s nonlinear nature. The proposed
ensemble approach significantly reduced error rates by 30% compared to prior studies,
effectively mitigating potential overfitting caused by outliers.

Other researchers implemented a hybrid approach combining a Kernel Extreme Learn-
ing Machine (KELM) model with a Genetic Algorithm (GA) optimization to make one-step
traffic flow forecasts [45]. Their model showed an improved performance over the tradi-
tional Extreme Learning Machine (ELM) and other baseline models when tested on multiple
benchmark datasets. Although the size of the tested datasets was somewhat limited, their
approach was able to sufficiently capture diurnal traffic flow patterns.

Given the close correlation between traffic speeds and traffic congestion, in the work
of [20], an ensembling prediction model was developed to address the complexities of
multi-step traffic speed predictions. The model combines two key strategies: de-trending,
which separates the dataset into mean trends and residuals, and direct forecasting, which
minimizes cumulative prediction errors. The study benchmarked the ensemble-based
model to other models such as Support Vector Machines (SVMs), and CatBoost, and it
showed a superior performance.

Additionally, alternative approaches, such as statistical and other parametric mod-
els, are often implemented to predict traffic congestion. Statistical models typically in-
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clude ARIMA and its variants [46–48]. Other parametric methods such as fuzzy logic
models [49,50]), predictive frameworks utilizing Kalman filters [51,52], and Bayesian net-
works [53]. In the realm of time series forecasting, such methods have been widely utilized
due to their mathematical simplicity and versatility in previous years. However, their inter-
pretability and straightforward nature often fall short of capturing the complexities of data
patterns, particularly when dealing with nonlinear and long-term dependencies [54,55]. As
ML techniques gain prominence, numerous studies and research papers are highlighting the
limitations of statistical methods compared to state-of-the-art ML and DL algorithms across
a variety of applications [34,56,57] and particularly regarding traffic prediction [58,59]. This
has led to a noticeable shift towards such methods and often a hybridization approach of
parametric methods and ML/DL algorithms [60,61]. Consequently, we considered experi-
menting with such methods by testing well-established and efficient algorithms which are
currently regarded as state-of-the-art in the field.

Concerning the selected forecasting strategy, compared with the single-step method,
multi-step predictions can provide future traffic conditions to allow road traffic participants
to plan their routes and make decisions over a more extended time horizon. This enables
adaptive decision-making as road conditions evolve. Hence, participants can adjust their
plans based on changing predictions, optimizing their routes dynamically to account for
real-time developments.

3. Methodology

The focus of this research was to develop an ML-based methodology for traffic conges-
tion prediction utilizing local weather data. Our case study is based on various locations
within a city environment with continuous recording of the traffic flow. Such forecasts
could assist drivers with avoiding congested areas and selecting routes with better flow.

Our approach was to collect data from different sources, such as online web portals
and APIs, by utilizing varying algorithms and techniques, including feature engineering
and preprocessing, to predict traffic flow.

3.1. Dataset Description

Two main sources of raw data were utilized:

1. Traffic flow data: Traffic data were collected from [62]. This web portal provides
local hourly traffic flow sensor data for six traffic locations in the city of Trondheim
(Figure 2). The time series data include an hourly count of vehicles shorter than 5.6 m
(i.e., passenger cars) collected from December 2018 to January 2020.

2. Weather condition data: Weather condition data were extracted from [63]. The data
were gathered during the same period as for traffic flow data for the Trondheim area
and included variables such as the relative humidity, temperature, wind speed, cloud
coverage, snow depth, precipitation, and timestamp for each one hour gap.

Figure 3 presents a comprehensive summary of the descriptive statistics for traffic data
collected hourly across all six locations. Location 1 stands out with the highest mean count,
registering approximately 1850 vehicles passing through. A significant volume of vehicles
pass through this point, as it is located before a highway bridge, essentially acting as an
entry point to Trondheim. The data for Location 1 show the highest variability compared
to the other locations (std. deviation of around 1400), indicating temporal reasons due to
commute patterns from/to the outskirts of the city. Location 2 exhibits a lower mean vehicle
count (around 830), as this location serves as a road leading to the highway. Location 4 is
located on a ramp that leads vehicles to and from the same highway, thus also exhibiting
lower counts. In general, Locations 3, 4, and 5 are not part of the primary route towards the
city center, which may explain the lower overall count of cars.
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Figure 2. Locations of measured traffic flow data in the city of Trondheim.

Figure 3. Descriptive statistics for hourly measured traffic data.

Figure 4 depicts the daily pattern for all locations, which is characterized by a surge
in the number of vehicles during the morning rush hour, with a peak typically observed
at around 8:00 a.m. This peak corresponds to the typical hours when individuals are
heading to work. In the evening, there is another peak at around 4:00 p.m., coinciding
with the end of the workday, as people are returning to their residences. That said, it
should be acknowledged that there is significant variation in the traffic flow distribution
on different days of the week. Especially on weekends and holidays, there is reduced
commuting towards the city center, but there can be potential spikes in recreational travel,
particularly on highways leading out of the city or to recreational venues (e.g., shopping
centers, stadiums, etc.).
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Figure 4. Two day vehicle count pattern for all traffic locations.

3.2. Data Preprocessing

The first step was to merge the two datasets (traffic and weather) with the hourly
timestamp parameter. The data preprocessing involved filling in any missing values. A
forward/backward linear interpolation technique was employed to fill in the missing
values for parameters with less than four continuous missing timestamps (four hours) and
a low percentage of missing entries (less than 5%).

Normalization methods were used for the ETB and non-ETB models after accounting
for the missing data. The primary method used involved scaling the data into the range of
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[−1, 1], based on the min/max values. This method is frequently employed in time series
regression-based models.

3.3. Feature Selection and Engineering

Initially, we implemented an automated feature selection process for the weather
data. We combined two well-known methods: Recursive Feature Elimination with Cross
Validation (RFECV) and Sequential Forward Selection (SFS).

RFECV [64]: This is a feature selection method that fits a model (in this instance, LGBM)
and eliminates the weakest feature (or features) until the desired number of features is
reached. RFECV necessitates a certain number of features to be retained, but it is frequently
unknown beforehand how many features are legitimate. Cross validation (CV) is used
with Recursive Feature Elimination (RFE) to score various feature subsets and select the
highest-scoring collection of features to determine the optimal number of features.

SFS [65,66]: Sequential feature selection is a type of greedy search algorithm that
reduces an initial d-dimensional feature space to a k-dimensional feature subspace where
k < d. The goal is to automatically select a subset of features that are most pertinent to
the predicted target variable. In SFS, the algorithm initializes with just one of the features
and tries to model the data using the given model (LGBM). Then, it selects the feature that
provides the highest forecasting accuracy for the target variable.

This combined approach allowed us to identify a set of features that were particularly
relevant to our analysis. Our initial list of features included a wide range of meteorological
and environmental parameters. After combining the RFECV and SFS outcomes, a subset of
the above features was selected for model training (“Selected” column, Table 1), which was
consistently informative and exhibited the strongest relationship with our target variables.

Feature engineering refers to the transformation of raw data into features to better
capture relevant patterns and relationships within the data. When training a supervised
ML algorithm, the creation or modification of features aims to enable better generalization
of new data and increase the model’s forecasting accuracy. In our case, as we are dealing
with a time series, the timestamp was divided into categorical values to generate additional
seasonality features. In addition to the commonly employed temporal features such as
the hour of the day, the day of the week, and the month of each load data point, certain
features were synthesized based on the characteristics of our dataset, such as a feature
distinguishing 3 h time intervals within the day, as commuting intensifies in the early
morning hours (i.e., 06:00 to 09:00) and in the afternoon (i.e., 15:00 to 18:00), as depicted in
Table 2.

Table 1. Weather data description.

Feature Description Unit Selected

temp Ambient temperature ◦C ✓
feelslike Human perceived temperature ◦C ✓

dew Dew point ◦C
humidity Relative humidity % ✓

precip Precipitation mm ✓
precipprob Precipitation chance %
snowdepth Depth of snow % ✓

winddir Direction of winds degrees
windspeed Speed of wind kph ✓

sealevelpressure Sea level pressure mb ✓
cloudcover Cloud coverage %

visibility Visibility km ✓
solarradiation Solar radiation W/m2 ✓

solarenergy Solar energy MJ/m2

UVindex Intensity of ultraviolet radiation -
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Table 2. Seasonality features.

Feature Description

quarter Corresponding to the 3 month quarter
month Corresponding to the month of the year
hour24 Corresponding to the hour of the day

Week_day Corresponding to the day of the week
is_weekend Corresponding to Saturday, Sunday
off_hours Distinguishing off-peak hours (i.e., after 17:00)

working_hours Distinguishing peak hours (i.e., 8:00–17:00)

00 to 03, 03 to 06, . . . 21 to 00 Distinguishing 3 h time intervals within
the day

Overall, after combining the weather-related and seasonality features, the final features
space consisted of 24 exogenous parameters to be used for training. Furthermore, the SW
method was utilized to extract the previous 24 h lagged values for all selected features, as
described in Section 2.2.

3.4. Forecasting Approach

We selected the direct multi-step forecasting approach with a forecasting horizon of
24 steps overall (i.e., 24 h ahead). The dataset was then divided, using a train-test split,
into training and testing segments (80–20%), having nearly ten months for training and
two months for testing. Overall, in our modeling approach, we sought a two-fold goal:

• To investigate the utilization of ensemble techniques such as bootstrap aggregating
(bagging) and boosting, which have been extensively employed in the existing litera-
ture for road traffic flow forecasting;

• To explore the deployment of more potent Deep Learning algorithms, allowing us to
conduct a comprehensive comparative analysis of their predictive performances in
contrast to traditional ensemble methods.

Initially, we trained various ETB models, only for the first step ahead forecast. In total,
17 algorithms were tested. These included RF, LBGM, XGB, HGBR, ET, BR, Multilayer Per-
ceptron (MLP) [67], Least Angle Regression CV (LarsCV) [68], Gradient-Boosted Decision
Trees (GBDT) [33], LassoCV [69], LassoLarsCV, Elastic Net Regression (ENR) [70], Bayesian
Ridge Regression (BRR) [71], Ridge Regression (RR) [72], Linear Regressor (LR) [73], and
Huber Regressor (HR) [74]. The overall forecasting approach is illustrated in Figure 5.

Based on the evaluation metrics of the first step ahead forecast, we selected the top
seven best-performing algorithms to use for the next steps. The selected algorithms were all
ETB models incorporating ensembling methods: RF, LBGM, XGB, GBDT, HGBR, ET, and BR.
These top-performing models were selected for further forecasting accuracy improvement
through hyperparameter tuning. By utilizing the Grid Search Cross Validation (GSCV)
method, which explores a predefined set of hyperparameter combinations to identify the
optimal configuration that maximizes the model’s performance, we identified the optimal
combination of hyperparameters for each model.

In parallel, we selected three established RNNs for time series forecasting: LSTM,
biLSTM, and the GRU. To train the selected RNNs, a three-dimensional SW framework
was adopted. The data were grouped into a tensor with dimensions indicating rows, time
steps, and features. For the TB models, on the other hand, the traditional two-dimensional
SW structure was implemented. Overall, the architecture and parameters of the RNNs are
depicted in Table 3.
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Figure 5. Overview of the forecasting approach.
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Table 3. RNN architectural parameters.

Parameter LSTM biLSTM GRU

Hidden layers 1 1 1
Units (in each hidden layer) 24 24 24

Activ. function ReLU ReLU ReLU
Batch size 16 16 16

Epochs 35 35 35
Optimizer adam adam adam
Dropout 0.2 0.2 0.2

SW length 24 24 24
Loss function MAE MAE MAE

Early stopping (consecutive epochs) 10 10 10

4. Results and Evaluation

In this section, we present the findings of the experimental modeling. The statis-
tical metrics used to evaluate models’ performances included the Mean Absolute Error
(MAE), RMSE, R-squared (R2), and Coefficient of the Variation of the RMSE (CVRMSE).
In particular, for the first step ahead of prediction (Table 4), the ETB models consistently
demonstrated strong performances across the board. They exhibited low MAE and RMSE
values, as well as high R2 scores, indicating their ability to accurately predict traffic flow in
all locations.

Table 4. First step ahead traffic flow forecasting metrics.

Location 1 Location 2 Location 3

Model MAE RMSE R2 (%)
CV-

RMSE MAE RMSE R2 (%)
CV-

RMSE MAE RMSE R2 (%)
CV-

RMSE

ET 107.89 190.68 98.16 0.105 64.74 115.00 97.64 0.130 24.69 39.45 94.76 0.134
LBGM 115.54 208.42 97.80 0.114 71.24 124.20 97.25 0.140 26.27 42.56 94.95 0.145
HGBR 117.76 211.43 97.74 0.116 70.18 122.59 97.32 0.138 26.26 42.29 94.79 0.144
GBDT 139.99 232.83 97.26 0.128 82.03 133.99 96.80 0.151 29.43 44.66 93.90 0.152
XGB 125.65 227.31 97.39 0.125 75.95 131.66 96.91 0.148 27.06 43.56 94.54 0.148
RF 112.54 208.25 97.81 0.114 68.47 123.64 97.27 0.139 25.28 41.38 94.69 0.141
BR 119.92 218.60 97.58 0.120 73.56 129.42 97.01 0.146 26.79 43.53 94.41 0.148

LSTM 210.01 354.80 93.66 0.194 184.56 315.08 92.58 0.212 38.11 62.75 93.20 0.203
biLSTM 227.91 356.84 93.59 0.195 196.22 314.99 92.59 0.212 38.99 60.25 93.73 0.195
GRU 234.79 381.81 92.66 0.208 172.40 296.89 93.41 0.200 39.68 64.99 92.71 0.210

Location 4 Location 5 Location 6

ET 11.89 19.92 95.12 0.191 34.44 56.59 97.31 0.131 68.71 101.57 96.22 0.138
LBGM 12.39 20.24 94.96 0.194 37.51 59.43 97.04 0.137 66.75 102.95 96.12 0.140
HGBR 12.45 20.72 94.72 0.198 37.34 37.34 97.04 0.137 66.11 100.59 96.3 0.137
GBDT 13.22 21.63 94.25 0.207 40.77 63.26 96.64 0.146 79.94 114.45 95.2 0.156
XGB 13.13 21.25 94.45 0.204 38.03 59.97 96.98 0.139 66.91 100.09 96.33 0.136
RF 12.57 21.55 94.29 0.206 34.52 57.40 97.24 0.133 69.12 106.73 95.83 0.145
BR 13.60 23.09 93.44 0.221 37.50 61.33 96.84 0.142 75.03 115.20 95.14 0.157

LSTM 17.19 29.09 93.97 0.193 57.91 89.57 93.62 0.197 81.98 134.86 92.68 0.205
biLSTM 18.87 31.81 92.80 0.211 49.98 81.29 94.74 0.179 69.75 108.54 95.26 0.165
GRU 16.50 28.61 94.17 0.190 54.59 85.85 94.14 0.189 71.87 119.71 94.23 0.182

ET appears to be the top performer for step 1, across all locations, with LBGM and
HGBR following closely. In the case of the RNNs, the performance of all tested models
appears to be closely aligned, with distinctions emerging based on the location. However,
they both fall behind in terms of their predictive performance compared with the ETB
models, as suggested by the evaluation metrics.

Figures 6 and 7 illustrate the R2 and CVRMSE values of the top performing algorithms
utilized in the direct multi-step ahead prediction. Regarding the direct multi-step models’
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performances, we first noticed that the prediction accuracy of each model decreased with
an increase in the prediction step. This result was expected as the literature indicates
that multi-step prediction tends to suffer from error accumulation problems over longer
prediction horizons [75]. Despite that, for all locations, the ETB models showed improved
predictions for all time steps ahead, in contrast with the RNNs, which fell behind with very
few exceptions.

Figure 6. Direct multi-step forecasting R2 comparison.

Focusing on the RNNs, they generally demonstrated higher variability between steps.
Considering all future steps, LSTM and GRU slightly outperformed biLSTM, on average;
hence, we focus on them. In most traffic locations, during the first steps (i.e., 1–8), they had
similar performances, while toward the last steps (i.e., 20–24), GRU seemed to improve
its performance over the LSTM. The developed RNNs failed to achieve an improved
performance over the ETB models in terms of reflecting the periodicity of the traffic flow.
Also, they required longer training times since they involved more expensive computations.
As the literature suggests, RNNs typically require large amounts of data with added
complexities in their pattern to maximize their prediction accuracy. This may explain the
deterioration in their forecasting performance, as our dataset is limited to only a year in an
hourly resolution.
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Figure 7. Direct multi-step forecasting CVRMSE comparison.

Focusing on the performance of the ETB models, we aim to present a more detailed
description of their performances, as further described in Table 5. For each time step ahead,
we determined the top seven performing models based on their R2 performances. First,
we assessed the first four steps, as the performances of the models were very similar in
terms of metrics, as depicted by Figures 6 and 7. Then, we assessed all 24 steps. Specifically,
the values represent how many times a model was present in the top seven performing
algorithms for each forecasting step. As an example, for Location 1, RF, ET, HGBR, LGBM,
XGB, GBDT, and BR were present 24, 23, 22, 21, 17, 8, and 5 times, respectively, in the
top seven performing algorithms. Notably, RF consistently demonstrated a high level of
accuracy for all 24 forecasting steps for Location 1 (particularly steps 8–14), Location 3, and
Location 6 (particularly steps 10–24). Considering the performance across all locations,
HGBR and LGBM stand out as the models with the best overall performances. They
consistently demonstrated high accuracy throughout the entire 24 h forecasting period,
making them the primary choices. ET and RF showed high levels of accuracy, but not
across all locations. ET was the best-performing algorithm for Location 2 (especially after
the first seven steps) and Location 4 (across all steps). RF prevailed over other algorithms
in Location 3 after the first few steps. XGB fell slightly behind, as apart from the last steps
for Location 1 (18–24), its performance fell significantly, especially in Locations 3, 4, and 5.
GBDT and BR emerged as the worst-performing algorithms overall.
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Table 5. Frequency count for the top seven performing models in each of the first four steps and in all
24 steps.

RF ET HGBR LGBM XGB GBDT BR

First 4 Steps

Location 1 4 4 4 3 3 2 0
Location 2 4 4 4 4 3 1 0
Location 3 4 4 4 4 3 1 0
Location 4 3 4 4 4 3 0 2
Location 5 4 4 4 4 2 0 2
Location 6 4 4 4 4 4 0 0

All 24 Steps

Location 1 24 23 22 21 17 8 5
Location 2 22 24 24 24 20 5 1
Location 3 24 12 24 24 15 8 13
Location 4 19 24 24 24 16 12 1
Location 5 19 24 24 24 13 10 6
Location 6 24 19 23 23 22 0 9

Compared to the highly relevant work by [45], their approach employed a more auto-
mated hyperparameter tuning method (GA) that required fewer computational resources,
particularly when applied to diverse datasets. It is worth noting, however, that their approach
is limited to a one-step-ahead forecasting strategy, whereas our model predicts 24 steps into
the future. Hence, when focusing on the one-step-ahead evaluation of the performance metrics
of our approach, the top-performing models of our approach for each location had similar
performance levels. However, it is essential to consider that our model was trained and
tested on more chronically extensive datasets (spanning one year) compared to the few weeks
utilized by the GA-KELM model. This extended dataset encompasses variations attributed to
seasonality effects, including weather changes, vacation periods, and annual events. Such fac-
tors may potentially contribute to a more comprehensive evaluation of our model’s robustness
in real-world scenarios for longer periods of time.

5. Conclusions

Through the examination of data derived from IoT sensors and historical traffic
patterns, ML models possess the ability to predict the timing and location of congestion.
Such models can be integrated into a broader Intelligent Transportation System (ITS)
infrastructure by leveraging data to notify motorists, suggest alternate routes, optimize
signal timings, and enhance the overall traffic management.

The objective of this work was to improve the accuracy of time series forecasting for
multi-location, multi-step-ahead predictions of traffic flow in an urban setting. Our work
encompassed a thorough evaluation and comparison of several ML and DL models in
six locations. Traffic flow predictions are also impacted by exogenous variables other than
prior traffic flow data. Weather, holidays, and other contextual circumstances may all have
substantial influences on traffic flow variations. Hence, the predictive models developed
were enhanced by feature selection and engineering methods regarding temporal and
weather data. The paper proposes a unique strategy to provide an accurate step-by-step
prediction framework through the implementation of interpretable models. The novel
aspect of this work is attributed to a selection approach that employs the best-performing
predictive algorithms at each forecasting step, which can be compared to existing state-of-
the-art approaches in the area.

The comparative analyses of the prediction results illustrated that, overall, the DL im-
plementations fall behind compared to traditional shallow learning models, such as Decision
Tree Ensemble regressors. Focusing on the latter, depending on the traffic location and the
timestep ahead, a different algorithm can be deployed. In particular, for longer forecasting
horizons, ET and RF outperform other algorithms in almost all traffic locations. Although
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their prediction accuracy decreases as we progress towards the latter steps, even in the 24th
step, the evaluation metrics show that the models achieve a high level of accuracy, especially
when compared to other closely relevant research studies (such as [44]). That said, considering
the overall performance over all locations and future steps in the forecasting horizon, HGBR
and LGBM are, on average, the most reliable models, especially for the first few steps.

5.1. Limitations

The most potent limitation of this study pertains to the efficacy of the algorithms,
which is intricately linked to the statistical characteristics of the case study dataset. Data
gathered from other locations and for different time intervals may exhibit diverse statistical
features, resulting in disparate findings. However, our approach deploys a varying range of
models each time, selecting the best performer. Therefore, it enables more adaptive behavior
in terms of the predictive performance and is capable of capturing the diversification and
randomness of new data.

Moreover, the granularity and size of the data are important impediments to the
development of a predictive framework with increased generalization. The limited size of
the training data may have negatively affected the performance of DL models (e.g., LSTM),
which, according to scientific studies, often demand high volumes of data to reach higher
levels of accuracy. Additional parameter tuning and training could improve the results for
the implemented RNNs. Nevertheless, managing a large amount of data can be challenging
and requires careful balancing. High-volume datasets can appear as complex information
networks and aid in model training for supervised or semi-supervised learning, but they
may also generate time and space complexity issues.

5.2. Future Work

Concerning future work, experimenting with more diverse and extensive datasets
from other urban traffic locations and sensors can help to ensure robustness and increased
generalization in our approach. In addition, hidden links between traffic flows in various
areas have been discovered. Investigating the impacts of these external elements on traffic
flow prediction, especially their hidden characteristics, could greatly improve the accuracy
of future forecasts. In a more technical context, regarding the future expansion of this work,
potential areas of further research to consider are the following:

• Introducing closely related spatial features to the developed models, for example,
public bus arrivals and departures or ride-hailing orders in the area.

• The performance of experimental modeling utilizing larger and more diverse train-
ing datasets with added complexities. With the added data, the behavior of the
implemented RNNs should be closely examined.

• Additional DL techniques could be explored, such as CNNs combined with a RNN
implementation, possibly under a CNN-LSTM configuration. The public availability of
comprehensive and extensive traffic flow datasets is typically limited. However, there
are approaches within the field of Transfer Learning (TL) that have been developed
to solve new but comparable problems by utilizing prior knowledge. Integrating
existing knowledge when training such DL models allows a reduction in the amount
of required training data and leads to better learning rates [76]. Examples of such
methods can be found in [77,78], where the outputs of physics-based models were
utilized as soft constraints to penalize or regulate data-driven implementations, and
in [79], where a fusion of prior knowledge network was developed using self-similarity
properties of network traffic data.

• Integration of this traffic forecasting approach as a component in another expanded
forecasting framework. For example, a localized EV charging demand forecasting
framework could be utilized to predict the short-term EV charging load demand.
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The following abbreviations are used in this manuscript:

ARIMA Autoregressive Integrated Moving Average
biLSTM biderectional LSTM
BR Bagging Regressor
BRR Bayesian Ridge Regression
CDT Cell Dwell Time
CNN Convolutional Neural Network
CV Cross validation
CVRMSE Coefficient of the Variation of the RMSE
DL Deep Learning
DT Decision Tree
ENR Elastic Net Regression
ELM Extreme Learning Machine
ET Extra Tree
ETB Ensemble Tree-Based
GA Genetic Algorithm
GBDT Gradient-Boosted Decision Trees
GPS Global Positioning System
GRU Gated Recurrent Units
GSCV Grid Search Cross Validation
HGBR Histogram-Based Gradient-Boosted Regressor
HR Huber Regressor
ICT Information and Communication Technologies
IoT Internet of Things
ITS Intelligent Transportation Systems
KELM Kernel Extreme Learning Machine
KNN K-Nearest Neighbors
LarsCV Least Angle Regression CV
LGBM Light Gradient Boosting Machine
LR Linear Regressor
LSTM Long Short-Term Memory
MAE Mean Absolute Error
ML Machine Learning
MLP Multilayer Perceptron
MLR-LSTM Multiple Linear Regression and LSTM
RFE Recursive Feature Elimination
RF Random Forest
RNN Recurrent Neural Network
RR Ridge Regression
R2 R-squared
RFECV Recursive Feature Elimination with Cross Validation
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RMSE Root Mean Square Error
SC Smart City
SFS Sequential Forward Selection
SW Sliding Window
SVM Support Vector Machines
TL Transfer Learning
XGB eXtreme Gradient Boosting
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