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Katarzyna Turoń and Andrzej Kubik

Received: 28 December 2023

Revised: 25 January 2024

Accepted: 26 January 2024

Published: 31 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

smart cities

Review

Smart Cities and Urban Energy Planning: An Advanced Review
of Promises and Challenges
Saeed Esfandi 1,2,* , Safiyeh Tayebi 3,4, John Byrne 1,2 , Job Taminiau 2 , Golkou Giyahchi 5

and Seyed Ali Alavi 6

1 Center for Energy and Environmental Policy, Joseph R. Biden, Jr. School of Public Policy and Administration,
University of Delaware, Newark, DE 19716, USA; jbnov@yahoo.com or jbbyrne@udel.edu

2 Foundation for Renewable Energy and Environment, New York City, NY 10111, USA; jt@freefutures.org
3 Department of Geography, Rutgers Global Health Institute, Rutgers the State University of New Jersey,

New Brunswick, NJ 08854, USA; safiyeh.tayebi@rutgers.edu
4 Rutgers Global Health Institute, Rutgers the State University of New Jersey, New Brunswick, NJ 08901, USA
5 Department of Urban and Regional Planning, Faculty of Art & Architecture, Tarbiat Modares University,

Tehran 14115-335, Iran; golkou.giyahchi@modares.ac.ir
6 Geographic Information System Analyst, Deputy of Engineering and Development, Tehran Sewerage Company,

Tehran 15875-5696, Iran; a.alavi@tsc.ir
* Correspondence: sesfandi@udel.edu

Abstract: This review explores the relationship between urban energy planning and smart city
evolution, addressing three primary questions: How has research on smart cities and urban energy
planning evolved in the past thirty years? What promises and hurdles do smart city initiatives
introduce to urban energy planning? And why do some smart city projects surpass energy efficiency
and emission reduction targets while others fall short? Based on a bibliometric analysis of 9320 papers
published between January 1992 and May 2023, five dimensions were identified by researchers
trying to address these three questions: (1) energy use at the building scale, (2) urban design and
planning integration, (3) transportation and mobility, (4) grid modernization and smart grids, and
(5) policy and regulatory frameworks. A comprehensive review of 193 papers discovered that
previous research prioritized technological advancements in the first four dimensions. However,
there was a notable gap in adequately addressing the inherent policy and regulatory challenges.
This gap often led to smart city endeavors underperforming relative to their intended objectives.
Overcoming the gap requires a better understanding of broader issues such as environmental impacts,
social justice, resilience, safety and security, and the affordability of such initiatives.

Keywords: urban energy planning; smart city; advanced technologies; smart buildings; urban design
and planning; transportation and mobility; smart grids; policy and regulatory frameworks

1. Introduction

While cities cover a mere 3% of Earth’s total land expanse [1], they are home to over half
of the world’s inhabitants [2] and play a crucial role as centers of energy consumption, with
estimates showing that they annually consume 60% to 80% of the world’s energy [3,4], mainly
derived from non-renewable sources [5]. Moreover, from an environmental standpoint, cities
bear significant responsibility for approximately 70% to 75% of global GHG emissions [4,6,7].
Projections suggest that by 2050, urban areas will cradle nearly 70% of the world’s inhabi-
tants [3,8]. Intriguingly, with every 1% increase in the urbanization rate, the consumption of
non-renewable energy grows by about 0.72% [9]. This escalating urban population, coupled
with heightened energy consumption and GHG emissions, although indicative of economic
strides and societal advancement [10,11], simultaneously raises concerns about sustainability
and resilience.

With energy as the lifeblood of modern cities, urbanization faces mounting pressures
including escalating demands, environmental imperatives, diminishing non-renewable
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resources, fluctuating supplies and prices in global markets, infrastructural limitations, and
the vulnerability of urban energy systems to the existential threat of climate change [12–14].
Furthermore, emerging research underscores the pivotal role of buildings, urban form and
spatial structure, transportation systems, renewable energy (RE), energy infrastructure, and
power grids in enhancing cities’ energy profiles and performance [5,14–16]. By constructing
and retrofitting energy-efficient systems, curbing urban sprawl, optimizing RE integration,
improving urban microclimates, and fostering walkable and mixed-use urban settlements,
cities can potentially break from a past built on energy-intensive sectors [13–15]. As such,
the integration of energy planning into urban planning and management procedures is
not just prudent but potentially transformative, especially when contextualized within the
overarching goals of climate change mitigation and decarbonization [4,17,18].

The emergence of “Smart Cities” offers promising solutions to facilitate this integration
and can address pressing energy and sustainability challenges through a new generation of
information and data-driven urban and energy planning [14,19,20]. Grounded in the evolv-
ing field of urban planning and supported by technological advancements such as Artificial
Intelligence (AI), Digital Twins (DTs), Remote Sensing (RS), Geographic Information System
(GIS), Internet of Things (IoT), Intelligent Transportation System (ITS), and smart grids,
smart cities aim to integrate Information and Communication Technologies (ICT) into city
planning process [20–24]. These tools and technologies enable the optimization of energy
consumption, the integration of RE sources into the urban fabric, a reduction in GHG
emissions, and ultimately an improvement of the quality of urban life as a whole [19,25–27].
However, achieving the potential of the smart city model is not without hurdles along
the way. The advancement of smart cities poses various challenges, including managing
and interconnecting complex tools, platforms, and sensors, and gathering and analyzing
large data sets while ensuring system interoperability and addressing security and privacy
concerns [28–30]. Additionally, the rapid pace of technological change necessitates continu-
ous adaptation and multidisciplinary cooperation among engineers, city planners, social
and behavioral scientists, utility planners, and city administrators [31]. Ensuring equitable
access to these smart solutions to prevent the emergence of “digital divides” within urban
populations is another significant challenge [32]. Last but not least, financial constraints
can also impede the large-scale deployment of advanced technologies from building to city
scale [19,33,34].

While the existing literature highlights the transformative potentials and technological
advancements associated with the energy aspects of smart cities, it does not thoroughly
explore the complexities and challenges involved [30]. Specifically, this advanced review
shows a dearth of scholarly investigations that assess the potential advantages and diffi-
culties associated with energy-focused smart city initiatives. Addressing this deficiency
is crucial and an advanced review in this domain can offer deeper insights into the multi-
faceted nature of smart city initiatives. Equipped with this knowledge, decision-makers
and stakeholders can make more informed choices and policies, particularly concerning
the inherent trade-offs elucidated by such studies. This review endeavors to bridge this
gap by thoroughly examining the synergy between urbanization, energy planning, and
smart city evolution, specifically addressing the following three questions:

• How has the research on the convergence of smart cities and urban energy planning
transformed over the past three decades?

• What are the promising benefits and accompanying challenges that smart city initia-
tives introduce in the realm of urban energy planning?

• Why do some smart city projects, despite rapid technological advancements, struggle
to consistently achieve energy efficiency and carbon emission reduction goals, while
others succeed?

A methodology using bibliometric analysis and scoping review was employed to
answer these questions. Initially, guided by the PRISMA Extension for Scoping Reviews
(PRISMA-ScR) framework [35], we undertook a bifurcated literature selection procedure.
The initial search of the literature yielded 9320 pertinent papers published between January
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1992 and May 2023. We cataloged the metadata of these publications into VOSviewer
software, generating co-occurrence maps of keywords. Several insights were gained from
an in-depth examination of these maps. Firstly, this analysis identifies three distinct
phases in the literature on smart cities and urban energy planning: an initial focus on
technology, smart transportation, and sustainable urban governance (January 1992–2008),
a middle phase emphasizing rapid technological advancements with a limited socioeco-
nomic focus (2008–2017), and a recent trend towards integrating technological growth
with socio-ecological and economic considerations (2018–May 2023). However, there is a
notable gap between studies on the technical aspects of smart cities and those addressing
their socio-economic and environmental. Secondly, the analysis unearthed five pivotal
dimensions encapsulating the nexus between urban energy planning and smart city en-
deavors: 1. Energy use at the building scale, 2. Urban design and planning integration,
3. Transportation and mobility, 4. Grid modernization and smart grids, and 5. Policy and
regulatory frameworks.

These dimensions served as the foundation for a second phase of review that involved
scoping questions. Initially, subsequent scrutiny refined the obtained paper collection,
narrowing it down to 193 key papers deemed suitable for an in-depth review and evaluation.
This in-depth review revealed that the great majority of studies highlighted the advantages
of incorporating energy systems into smart urban environments and there is a scarcity of
research regarding the current and future challenges and obstacles that could undermine
the effectiveness of nearly all energy-related smart city initiatives. Only in recent years has
academia begun to scrutinize the prevailing and potential challenges. Furthermore, despite
notable technological advancements and the myriad of smart city initiatives aiming to
enhance urban energy efficiency across dimensions 1–4, a deficit in research exists regarding
appropriate policy and regulatory frameworks.

The abovementioned identified issues could be among the main reasons why some
smart city projects deviate from their energy and environmental objectives, exacerbate
socio-economic disparities, and grapple with an array of technical challenges. Therefore, for
smart city projects to truly augment urban energy sustainability, inclusivity, and resilience,
there is an exigent need for integrative frameworks and policies. Such paradigms should
transcend mere technical considerations, encompassing environmental and socio-economic
determinants as well. To strike this balance, further research is needed on overall energy
performance, environmental impacts, public engagement, socioeconomic justice and in-
clusion, technical and implementation complexities, and resilience, privacy, and security
concerns of energy-related smart city initiatives.

2. Materials and Methods

In this advanced review, we employed an integrated bibliometric and scoping review
methodology. As articulated by Page et al. [36], review papers play a significant role in
compiling and analyzing existing knowledge in a particular field, allow for inquiry into
questions unavailable to individual studies, identify shortcomings within primary research,
and contribute to the development or evaluation of theories. In conducting this review, we
followed the guidelines outlined in the PRISMA-ScR to ensure transparency and adherence
to best practices [35]. Moreover, we performed this review utilizing the six stages suggested
by Cooper and Hedges [37], which include problem identification, literature exploration,
data evaluation, data analysis, interpretation of results, and presentation of findings.

We employed primary scientific sources from the Web of Science (WoS) database,
the oldest and most widely used database of research publications and citations world-
wide [38]. This approach was taken to avoid overlooking crucial and up-to-date sources,
as well as to obtain reliable access to ontologies, underlying hypotheses, families of
terms, main components, and processes. To direct the WoS literature search process,
a preliminary review of 19 reports and documents, published by reputable organizations
(Appendix B, Table A1), was conducted to extract an initial list of keywords for defining
search strings. To ensure the relevance of the extracted keywords, a panel consisting of
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14 experts from diverse fields such as urban planning, transportation planning, architecture,
electronic engineering, computer science, geography, and energy and environmental policy
was convened for consultation. Using a Delphi questionnaire, the experts rated the impor-
tance of each statement or keyword and submitted additional keywords not included in the
initial questionnaire. This assessment utilized a Likert-type response scale consisting of five
points ranging from “Extremely important” to “Not at all important”. The administration
of this survey was carried out through Google Forms in April 2023.

The next phase involved devising the research protocol and determining specific
criteria for inclusion and exclusion (Table 1). These criteria play a crucial role in narrowing
down the search scope and ensuring that only articles relevant to the topic are selected [35].
To create an effective search strategy, expert input was considered alongside these criteria,
leading to the compilation of targeted search strings. Then, we reviewed and refined
the search strings together to enhance accuracy and ensure consistent application of the
inclusion and exclusion criteria. In each round, we screened the titles, abstracts, and
keywords of the first 200 articles to further improve the search string’s precision. After five
rounds of development and refinement, the final search string yielded 11,800 papers. Using
our predetermined inclusion and exclusion criteria, a total of 9320 papers were chosen to
be imported into VOSviewer software (version 1.16.9) for bibliometric analysis.

Table 1. The inclusion and exclusion criteria.

Inclusion Criteria Exclusion Criteria

Focus: papers that specifically address topics related to urban
energy planning and smart cities

Out of Scope: papers that focus on specialized aspects or sectors
such as technical and engineering papers

Relevance: papers that explore the relationship between various
dimensions of urban energy planning and smart city initiatives

Irrelevance: papers focusing solely on urban energy planning
dimensions or smart city initiatives

Time frame: papers published between January 1992 and
1 May 2023 Non-English language papers

Publication type: peer-reviewed journal articles and
conference proceedings Papers that are not peer-reviewed or lack scholarly rigor

It is worthwhile to note that during the preceding steps, we discovered that there
have been remarkable advancements in smart city technologies, policy frameworks, and
energy planning methods over the past three decades. The term “Smart City” emerged in
the 1990s, bringing forth new possibilities for how modern technology could impact urban
areas. Dameri and Cocchia [39] provided a comprehensive account of the origins of this
concept, highlighting that its initial conceptualization occurred in 1992 by Gibson et al. [40]
through their book titled “The Technopolis Phenomenon: Smart Cities, Fast Systems, Global
Networks”. Accordingly, we selected the time period from January 1992 to May 2023 to
conduct this bibliometric and scoping review. Examining this period allowed us to gain
a deeper comprehension of how urban energy planning practices have evolved and how
smart city initiatives have been incorporated into rapidly changing energy landscapes.

VOSviewer is a freely accessible tool designed specifically for conducting bibliometric
analyses. It utilizes the VOS mapping technique developed by Van Eck and Waltman [41],
which stands for “visualization of similarities”. One application of VOSviewer, serving as
the foundation for this paper, is to generate visual maps depicting keyword relationships
and networks using co-occurrence data [42]. By using this software, researchers can visually
represent the connections and associations between keywords in a dataset, providing
insights into their relationships, underlying co-occurrence patterns, and trends in specific
research areas [43].

While bibliometric analysis can effectively handle and derive insights from the initial
set of 9320 papers, we used a stringent filter to identify key papers for the in-depth review.
The initial step involved applying the highly cited papers filter on the WoS, which trimmed
the number of papers from 9320 to 254. Subsequently, we scanned these papers to identify
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those that cover one or more of the five identified dimensions and address potential
advantages and/or challenges associated with integrating smart city initiatives into urban
energy planning. This selection process culminated in a refined set of 193 papers. The
total of 193 papers reviewed in this study exceeds the typical average number of review
articles. Given the multidisciplinary and multifaceted nature of the investigated topic, it
was imperative to encompass a broad range of literature to ensure all pertinent aspects
were adequately addressed. The overall review process is illustrated in Figure 1.
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Figure 1. The review procedure.

3. Results of the Bibliometric Analysis

The co-occurrence map, crafted using VOSviewer software, illustrates a visual narra-
tive of the research landscape, including keywords, clusters, and their interrelationships
(Figure 2). Each node in this map represents a specific keyword, with the size of each
node indicating its frequency or significance in the literature [42]. The connections between
nodes represent frequent co-occurrences and suggest topics often discussed together. The
thickness and proximity of these links indicate the degree of association between keywords.
Nodes close to each other on the map tend to co-occur more frequently, reflecting a stronger
relationship between them [43]. Additionally, there are three clusters whose keywords
exhibit closer relationships with each other than with keywords from other clusters. Terms
within the same cluster share thematic coherence, meaning they are often discussed in
conjunction or in relation to each other.
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Figure 2. Keywords co-occurrence network (January 1992–May 2023).

In Figure 2, the first cluster, illustrated in green, draws attention to the significant role
emerging technologies have in shaping urban energy systems. This cluster underscores the
integration of AI, 5G, IoT, sensors, and other communication technologies, emphasizing
their role in real-time data processing and decision-making. Notably, this cluster also
accentuates concerns surrounding cybersecurity, privacy, and energy efficiency, highlight-
ing the dual narrative of technological advancements and their potential challenges. The
second cluster, in red, shifts the focus to the intersection of urban development and envi-
ronmental sustainability, underscoring the need for sustainable practices amidst climate
change discussions. However, this cluster reveals a disparity by incorporating technolog-
ical advancements with human-centric issues. Lastly, the third cluster, colored in blue,
portrays aspirations for a greener future, spotlighting the importance of energy transition
and optimization and smart mobility solutions. This cluster delves into innovations such as
Electric Vehicles (EVs) and their corresponding infrastructures, highlighting opportunities
for city-wide transformation. Crucially, this cluster brings to the forefront the challenge of
modern energy distribution the pivotal role of smart grids, and the nuances of balancing
energy production, consumption, and trading in an ever-evolving urban environment.

The co-occurrence map reveals that the studies reviewed have addressed both positive
prospects and concerns when it comes to integrating smart city tools and technologies into
urban energy planning. However, positive and technocratic perspectives are prevalent
rather than studies focused on addressing social concerns and obstacles. Critical social
considerations, such as justice, public engagement, public trust, risks, public health, diver-
sity, accessibility, and the digital divide are situated on the periphery of the network with
smaller nodes and fewer connections to other nodes.
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Figure 2 provides insights that confirm existing knowledge and open up new re-
search directions. Some areas of the map show a high density of interconnected nodes,
representing well-explored topics. However, there are other regions with relatively few
connections, indicating areas that have not yet been extensively investigated. On the other
hand, even within the highly connected clusters representing established fields of study,
there may still be hidden gaps or unanswered questions that have gone unnoticed by
mainstream academia.

Figure 3 shows that 77.5% of the 9320 scholarly papers were published between
2018 and May 2023. The concentration on research efforts within these years underscores
the value of the comprehensive review conducted in the next section. Therefore, when
considering the entire time span from January 1992 to May 2023, Figures 2 and 3 highlight
both the significant development of the field and several prospects for further exploration.
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Figure 3. Annual distribution of 9320 selected papers by publication year.

Guided by the VOSviewer co-occurrence maps for each period, as illustrated in
Figure 4, our bibliometric analysis emphasizes the progressive evolution of the literature
on smart cities and urban energy planning through three transformative periods. The
initial period from 1992 to 2008 was formative, merging technology with sustainability
and governance, and giving rise to the role of smart transportation within urban energy
and environmental planning. Between 2009 and 2017, rapid technological growth was
accompanied by the emergence of AI, energy storage, smart grids, and EVs. However, so-
cioeconomic factors were often overlooked. The most recent phase, 2018 to 2023, has sought
to redress this by harmonizing technological growth with economic and socio-ecological
priorities, influenced by the imperatives of climate change, energy transition, social and
environmental justice, the COVID-19 pandemic, and privacy and security concerns and
marked by widespread developments in 5G, DT, IoT, blockchain, big data analytics, and
machine learning, among others. As Figure 4 shows, despite these advancements, a notable
gap persists between the literature focusing on the technical dimensions of smart cities and
studies addressing the socioeconomic and environmental implications, indicating the need
for a more balanced research approach.
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keywords co-occurrence analysis.

4. Navigating the Dual Landscape: Smart City Implications for Urban Energy Planning

Upon analyzing the keywords’ relation within the co-occurrence map (Figure 4),
five predominant dimensions were identified. These dimensions serve as the nexus be-
tween urban energy planning and smart city initiatives as demonstrated in the reviewed
studies. Specifically, these dimensions encompass: “Energy use at the building scale”,
“Urban design and planning integration”, “Transportation and mobility”, “Grid modern-
ization and smart grids”, and “Policy and regulatory frameworks”. The four technical
dimensions were identified by observing the dense interconnections within and between
clusters. These interconnections signify active areas of research in smart cities, highlighting
the main thematic areas where technology intersects with urban energy planning. The fifth
dimension, “Policy and regulatory frameworks”, was discerned from smaller, peripheral
nodes on the co-occurrence map that, despite their size, maintain connections to the key-
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words of the four technical dimensions, indicating its emerging significance and the need
for further exploration in this area. In this section, we undertake a comprehensive review
of selected papers to delve into these dimensions and specifically examine how smart city
tools and technologies impact urban energy planning across the five identified areas.

4.1. Energy Use at the Building Scale

The literature on urban energy planning within the context of smart cities has primar-
ily adopted a technocentric approach, emphasizing technological and algorithmic solutions
for optimizing energy use in buildings, which account for approximately 40% of global
energy consumption [16,44]. Smart buildings incorporate advanced technologies and
systems alongside passive architectural design measures, aiming to enhance energy man-
agement [45–47]. Technologies such as DT [48], AI [45], and simulation software [4,48,49],
when used during the design phase, consider factors such as geographical location and cli-
mate to propose optimal building design for energy efficiency [50]. During the operational
phase, Demand-side Management (DSM) strategies [51], including energy-efficient tech-
nologies, smart metering and benchmarking [44,52], Smart Building Energy Management
Systems (SBEMS), and demand response programs [45], use AI, Internet of Energy (IoE)
and IoT devices to monitor occupant behavior and energy consumption patterns and make
adjustments to energy systems [45,52–56].

Smart technologies and passive design also facilitate the integration of on-site RE gen-
eration [53,54], allowing buildings to adopt solar PVs and wind turbines efficiently [55,56].
However, the intermittency of these RE sources is an enduring challenge. AI techniques,
using data from satellite imagery and meteorological stations, predict weather patterns to
manage RE sources effectively [45]. Passive design optimizes the use of natural resources,
reducing the reliance on traditional energy systems and promoting a reduction in over-
all energy demand [54,57,58]. Additionally, buildings equipped with smart technologies
can connect to smart grids, acting as “Prosumers” (both producers and consumers) of
energy [59]. They can utilize, store, or feed electricity into the grid, bolstering a resilient
energy infrastructure and enabling smart grid systems to provide real-time data for more
effective energy management [8,60,61]. Integrating smart technologies with passive design
and RE sources thus holds the promise of transforming energy management in buildings,
with significant implications for urban sustainability.

Smart city initiatives offer a promising vision for energy optimization in the building
sector but also present significant challenges that warrant careful consideration [45,61,62].
High initial costs and questionable long-term profitability pose substantial barriers to the
deployment of smart technologies, as the significant upfront investment required for smart
systems and RE sources can deter adoption [33,34,63,64]. Within the ‘Industry 4.0′ era, the
rapid pace of technological change risks rendering these systems obsolete [64], resulting in
scalability issues and the lack of interoperability among smart devices [63,65]. Integrating
new technologies with existing building systems often necessitates costly upgrades or
replacements, and maintaining these advanced systems requires ongoing management
and specialized expertise [59,63,66]. Furthermore, the complexity of implementing passive
design measures, which may be more demanding than traditional construction methods,
leads to reluctance among some architects to adopt these energy-efficient practices [62].

The adoption of energy-efficient technologies in buildings faces resistance from stake-
holders and is constrained by financial barriers [33,34,62]. Developers, contractors, and
even end-users may be reluctant to embrace these technologies due to the upfront costs or a
lack of perceived benefits [62,66]. Moreover, economically disadvantaged groups and even
the average households may encounter difficulties when it comes to securing adequate
funding to capitalize on these promising functionalities [34]. Additionally, practitioners
within the building sector typically demonstrate limited proactive engagement in utilizing
such energy-saving techniques [62]. These substantial infrastructure, capital, landlord and
occupant engagement, and technical expertise required for the successful implementation
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of smart technologies compound the complexity and cost issue, representing a significant
challenge in the transition to smart building practices.

Last but not least, smart technologies involve the collection and processing of large
volumes of data, which gives rise to substantial concerns regarding privacy and secu-
rity [61,63,65,67]. According to Farzaneh et al. [45], the primary obstacles lie in effectively
managing, safeguarding, and examining data. In order to ensure the successful integration
and acceptance of these technologies within our urban environments, it is crucial to im-
plement protective measures that safeguard the vast amounts of data collected by smart
buildings [65,67]. This plays a pivotal role in upholding public trust in these technological
advancements [45].

4.2. Urban Design and Planning Integration

The success of smart cities is fundamentally anchored in technological advancement;
however, this potential is amplified when synergistically integrated with intelligent urban
planning and design [4,19,68,69]. It necessitates a unified approach where urban planning,
design, energy management, and advanced technologies converge to optimize a network
of interconnected smart buildings, thus catalyzing collective energy savings and extending
the impact beyond the scope of individual buildings [18,70–72].

Like smart buildings, both active and passive measures are crucial in enhancing urban
energy performance through urban design and planning [72]. Urban design significantly
influences energy consumption, with the urban form and structure being key to reducing
energy demands [15,73]. Integrating smart technologies and software into urban design
enhances the effectiveness of these measures [49,74]. For example, the urban microclimate,
influenced by the design and layout of spaces, affects energy demands for heating, cooling,
and lighting [75]. Optimizing building orientation and spatial configuration using smart
tools and RS technologies can regulate solar radiation and wind patterns, helping to control
the urban microclimate [49,75,76]. GIS tools, Light Detection and Ranging (LIDAR), and
3D modeling can identify optimal sites for solar PV installations, assessing solar potential
on rooftops [77–82]. RS and smart sensors are also vital in detecting and addressing
the Urban Heat Island (UHI) effect, which exacerbates energy consumption and global
warming [83,84]. Data collected informs interventions such as the placement of green
spaces and the use of reflective or cooling materials to mitigate UHI effects [85]. Monitoring
these interventions through RS technology creates a feedback loop for urban design, driving
developments that minimize UHI impacts and optimize solar energy utilization [84].

Moreover, GIS and RS, combined with smart city technologies, bolster smart growth by
aiding urban planners in promoting walkability and reducing reliance on energy-intensive
transportation. They achieve this through strategic urban design that encourages com-
pact city forms and enhanced land use, density, and zoning policies [15,86,87]. DTs and
simulation software, leveraging data from mobile devices and IoT sensors, enable the
modeling of commuting behaviors and energy consumption patterns, informing land use
and transportation policies [88,89]. These tools also support the implementation of recent
urban development concepts such as “15-min city”, utilizing generative planning and
technologies such as 6G and IoT to optimize the placement of amenities and improve
city connectivity [90–92]. Additionally, the integration of GIS with Building Information
Modeling (BIM) allows for the comparison of energy performance across urban devel-
opment scenarios [3,4,93]. Furthermore, IoT-based energy management systems provide
real-time insights into energy use [94], while machine learning systems can analyze data to
forecast energy needs and enhance distribution in public spaces [95]. Smart meters and
simulation monitoring systems furnish urban planners and utilities with immediate data
on energy consumption, expediting the development of more effective energy management
and conservation strategies [96,97].

Integrating smart initiatives into urban planning and design is pivotal for energy effi-
ciency and urban growth, but several barriers could compromise their success. Key among
these are the considerable infrastructure and investment demands necessary for the deploy-
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ment of smart technologies. These technologies rely on robust digital, ICT infrastructure, and
high-speed internet [98], often hindered by the digital divide affecting diverse socioeconomic
areas, and the gap between developed and developing nations [99–101]. The significant capi-
tal required to introduce these technologies poses a formidable financial barrier, potentially
beyond the reach of many cities [30,99]. Compounding this, the effectiveness of smart city
services is dependent on access to extensive geospatial data, which can be restricted by the
limited availability of necessary technology and data. Moreover, acquiring and analyzing
large-scale geographical data, crucial due to smart city functions’ reliance on geospatial
data [81], faces hurdles in some areas, with access to essential large urban data sets such
as LIDAR, GIS, and real-time information on traffic and energy usage often challenged by
socioeconomic, political, and technical issues, including security, privacy concerns, and the
varied technical requirements of smart technologies.

Urban planners and policymakers may encounter another notable challenge in the
form of limited public engagement and acceptance [101,102]. These are particularly evident
in smart city proposals that seek to modify city structures, such as changes in density and
land use zones, or even renovating problematic urban areas aimed at optimizing the poten-
tial benefits of smart cities such as improving exposure to sunlight and natural ventilation
or reducing buildings’ operational and travel-related energy consumption. Such proposals
often face conflicts with property rights held by citizens, making their implementation
more difficult. For instance, many individuals may not be inclined to restructure their
neighborhoods into mixed-used, walkable, densely populated neighborhoods like 15-min
cities but instead prefer living in suburban areas where they can use their private vehicles
rather than walking or utilizing public transportation [103]. Moreover, consider new smart
city plans that propose redeveloping or repurposing urban areas. While these plans might
promise better energy efficiency or functionality, the internationalism and one-size-fits-all
approach behind these plans risks erasing a part of the city’s culture and history, which
once lost, cannot be reclaimed [104,105].

Furthermore, a significant challenge lies in ensuring equitable distribution of smart city
risks and benefits [101,102]. Urban planners might be faced with decisions such as where
to deploy smart infrastructure or how to ensure that technology-driven services (such
as community solar power plants) are equally accessible to all residents not just affluent
or technologically adept communities [101,106]. Therefore, if there is no/limited public
acceptance and if the realization of the concept worsens the existing equity balance, research
needs to be dedicated to overcoming these barriers. Moreover, with the proliferation of
smart devices, from meters to household gadgets, solar PVs, and batteries, the quantity
of Electronic Waste (E-waste) is expected to rise. E-waste often contains toxic substances
that, if not disposed of properly, can harm the environment and human health. Therefore,
urban planners and city officials face the challenge of finding appropriate sites for E-waste
disposal and recycling, ensuring they are not situated near disadvantaged urban areas
predominantly inhabited by low-income households [107].

4.3. Transportation and Mobility

Smart urban transportation, a cornerstone of smart cities, impacts various dimensions
of urban living and significantly contributes to enhancing citizens’ quality of life [108,109].
It is a crucial facet of smart cities, affecting not only transportation but also energy con-
servation, carbon footprint reduction, improved air quality, optimized land use, increased
use of RE, social participation, and citizen safety [26,110]. ITS is instrumental in improving
traffic management, reducing congestion, and shortening travel times [110]. Navigation,
an early ITS function, helps urban residents find optimal routes through GPS, telematics,
and IoT sensors, which provide real-time traffic data. These systems allow for dynamic
routing and congestion avoidance using predictive algorithms such as neural networks
and shortest-path calculations [111–113]. Furthermore, IoT-enabled smart parking systems
guide drivers to available spaces, minimizing the time spent in search of parking and
reducing congestion [114,115]. These smart mobility initiatives save commuting time and
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lower GHG emissions and energy consumption, underscoring their significant role in smart
city evolution.

Moreover, the incorporation of advanced analytics, AI, and DTs into urban trans-
portation planning is pivotal for creating energy-efficient and low-emission transport
systems [116]. Urban mobility simulations and the Internet of Vehicles (IoV) are essential to
recent DTs [117,118], using agent-based models to emulate urban movement patterns [119].
Large data sets from traffic sensors, smart meters, and mobile devices inform analyses of
travel behaviors, allowing planners to simulate and evaluate the effects of various transport
and land use changes [120]. This process aids in optimizing scenarios for energy use and
GHG emissions reduction [121,122]. On a smaller scale, smart lighting systems in public
spaces, powered by sensors, IoT devices, and energy-efficient LEDs, adjust brightness
based on environmental and activity data, significantly cutting energy use and carbon
emissions [106,123,124]. These systems also gather real-time data on mobility and energy
usage, enabling dynamic traffic lighting management that can improve traffic flow and
decrease fuel consumption and emissions by responding to the volume of vehicles, cyclists,
and pedestrians [121–123]. Moving beyond driver-centric methods, future strategies will
aim for collective optimization of traffic across networks, prioritizing overall flow [110].

Smart technologies such as IoT sensors, IoV, and GPS are revolutionizing urban mobility
by optimizing public transit, micro-mobility, and shared transportation options [26,125]. Real-
time tracking of buses and trains enhances commuting efficiency, diminishing the need
for personal vehicle use [113,126]. Smart platforms improve carpooling and ride-sharing
services by matching riders on similar routes, thereby easing traffic and lowering emis-
sions [127,128]. Moreover, GIS and large data set analyses assist in determining optimal
locations and capacities for bike-sharing and e-scooter stations, fostering the replacement of
cars for short distances [128,129]. Additionally, multimodal transportation systems, under-
pinned by smart technologies, consolidate real-time traffic data to guide urban authorities
in traffic management and provide travelers with the best transportation options for their
needs, thereby reducing car reliance and promoting healthier, eco-friendly transport al-
ternatives [113]. These efforts collectively aim at curtailing car dependency, alleviating
congestion, enhancing physical activity, and championing sustainable transport networks.

Smart city initiatives are key to the broader adoption of EVs, Hybrid Electric Vehicles
(HEVs) [130], and Connected and Autonomous Vehicles (CAVs) [131], offering significant
benefits in reducing emissions and fossil fuel consumption [132]. Smart infrastructure
supports this by establishing smart charging stations and Grid-to-Vehicle (G2V) facilities,
providing convenient access for HEV and EV charging [130,133]. These stations, equipped
with features such as RE sources, real-time pricing, and DSM strategies, promote off-peak
charging to decrease grid load and energy costs [134,135]. Additionally, technologies such
as wireless charging and Vehicle-to-Grid (V2G) systems enable EVs to supply excess energy
back to the grid, effectively making them mobile energy storage units [130,131,133,136].
The integration of autonomous vehicles into smart city initiatives promises to revolutionize
urban transport by optimizing routing and mitigating traffic, further aiding in energy and
carbon footprint reduction efforts [124,131]. This holistic approach to vehicle electrification
within smart cities is poised to play a transformative role in achieving sustainability targets.

Indeed, the transformation of transportation and mobility through smart city initiatives
is a beacon of promise for enhancing energy efficiency and reducing carbon emissions. Nev-
ertheless, bringing this vision to fruition is one of the smart city concept’s most formidable
challenges [109]. The integration of smart technologies into transportation, such as ITS,
smart charging stations, and V2G technology, necessitates hefty capital investments, posing
a substantial financial burden on cities [137]. The difficulty is compounded for cities with
aging infrastructure, where the integration of new technologies isn’t straightforward or
cost-effective, particularly in older cities with established systems [138]. Adding to the
financial concerns are technical hurdles and issues concerning communication, control, and
security in implementing these advanced transportation systems [139]. As cities advance
the use of EVs and other electric mobility options, a spike in energy demand looms, threat-
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ening to overburden electricity grids, risking outages, and grid failures, notably in regions
with already stressed infrastructures or where EV adoption is rapidly climbing [140–143].

To manage the anticipated rise in energy demand from increased electric mobility,
various solutions such as V2G, RE integration, and energy storage are proposed. However,
each solution brings its technical and economic complexities [140,141,144]. V2G technology,
for instance, demands secure bidirectional communication between EVs and the grid to
prevent unauthorized access or control, which is crucial to safeguard against manipulation
of charging cycles that could damage the grid and deplete vehicle battery life [135,144].
Moreover, as transport networks evolve to become more automated and IoT-based, they be-
come increasingly susceptible to cyber-physical threats [145,146]. A single breach in such an
interconnected system could have cascading effects, potentially disrupting traffic manage-
ment systems and leading to road chaos, accidents, and injuries [147–150]. The resilience
of smart transportation systems against such vulnerabilities remains a critical area for
development to ensure the safe and efficient operation of future urban mobility networks.

In the complex domain of ITS, issues of privacy and security stand as significant chal-
lenges to their broader adoption. The core functionality of ITS relies on the transmission
of vast amounts of data, which, if compromised through unauthorized access, poses a
substantial threat. Such security breaches risk compromising user privacy by revealing
sensitive travel data and could potentially allow for malicious tracking and personal in-
formation access [148,149]. This concern over the security of personal data managed by
ITS is a notable factor in the hesitation to embrace these technologies. Additionally, the
adoption of emerging transportation technologies such as CAVs encounters resistance due
to safety, reliability, and the public’s unfamiliarity with the technology [149]. Moreover, the
shift towards EVs and multimodal transport systems is often met with skepticism. Despite
the benefits of improved environmental impact and energy efficiency, the transition to EVs
is gradual, hindered by issues such as range anxiety, the lack of sufficient charging infras-
tructure, and the economic burden of high initial investment and ongoing maintenance
costs [132,151].

Following the ITS adoption barriers, it is crucial to recognize the social dimension
where a digital divide in urban populations can further complicate matters. In cities
worldwide, the digital divide manifests as a significant problem, with certain households
and individuals becoming increasingly marginalized due to limited technological literacy
or financial resources. This digital gap threatens to deepen social and environmental
disparities by limiting access to smart transportation services, thereby risking a widening
of inequality [152–154]. Moreover, the effectiveness of ITS is not solely determined by
technological sophistication but also by how it aligns with user behavior. Urban planners
must therefore consider the potential shifts in lifestyle, travel habits, and mobility patterns
as smart technologies become more prevalent. Understanding these behavioral shifts is
vital for accurately predicting their effects on energy consumption, carbon emissions, and
urban air quality [155].

4.4. Grid Modernization and Smart Grids

The implementation of smart grids and the modernization of existing grid systems
brings multifaceted benefits [156–158]. These enhancements are vital in reducing GHG
emissions, enhancing energy security, optimizing smart city operation costs, and meet-
ing the diverse and increasing energy demands of growing urban populations [157,159].
Smart grids integrate advanced data analytics [160], machine learning algorithms [161],
DT technology [89], and IoE and IoT devices [162] to revolutionize energy distribution.
This integration allows for precise monitoring and predictive control of consumption pat-
terns, catering proactively to smart city infrastructural demands [161–163]. For example,
IoT applications in smart grids facilitate the integration of diverse networks and tech-
nologies, enhancing the efficiency of energy management systems in smart buildings and
cities [162,163]. Furthermore, multi-energy networks leverage IoT to unify the management
of electricity, heat, gas, and traffic networks, ensuring a comprehensive energy strategy
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for urban areas [94]. This not only ensures efficient, reliable energy flow but also imbues
the grid with the resilience to handle the variable nature of contemporary urban energy
demands [164]. Beyond grid modification, there is a strategic shift towards reimagining
energy systems, encompassing production, storage, and consumption. Energy storage, for
instance, influences smart grid functionality by balancing supply and demand, storing
surplus power during low demand, and deploying it during peak times, thus enhancing
the grid’s capability to manage energy efficiently [165,166].

Smart technologies, including blockchain, are vital for enhancing urban microgrids
and decentralized energy systems, facilitating better coordination of distributed energy
resources [167,168]. Microgrids provide a modular energy generation and distribution
framework, leading smart cities towards a more resilient, multi-energy system away from
traditional centralized models [167,169,170]. These multi-carrier microgrids, incorporating
energy converters and storage alongside various energy sources such as electric, gas,
heating, and cooling [169] bolster energy security and empower efficient operation of city
infrastructures and transportation systems, particularly during grid disruptions [170,171].
Moreover, smart microgrids facilitate the cost-effective inclusion of RE sources, benefiting
from the advanced management capabilities of modern technologies [170,172]. They
efficiently handle the variability of RE and optimize grid performance, thereby increasing
the share of renewables in smart city energy portfolios [158,169,172,173]. Nonetheless, the
growing infusion of RE into grids presents the challenge of maintaining a balance between
energy supply and demand [166,174]. The strategic deployment of energy storage within
smart grids emerges as a solution, promoting efficient equilibrium and enhancing the
reliability and efficacy of the energy system [165,174].

Section 4.3 highlights that the convergence of decentralized energy systems, such
as smart grids, with advanced technologies such as V2G and EVs, brings additional ad-
vantages. V2G technology allows EVs to return electricity to the grid, offering demand
response services that enhance grid functionality [134,139]. Decentralization, especially
through blockchain-enabled smart grids, fosters local energy production [175–177] and
empowers energy communities to engage in peer-to-peer (P2P) energy trading [176,178].
These communities benefit from automated, secure transactions facilitated by smart con-
tracts, eliminating the need for intermediaries [176–179]. Such localized energy production,
paired with demand response incentives, curtails transmission losses and bolsters grid
balance, thereby heightening the efficiency and stability of the entire grid network [177].
Decentralization also ensures a more reliable integration of renewable energy sources
into urban energy frameworks, improving their efficiency and reducing their carbon foot-
print [45,179,180]. This shift towards local energy autonomy not only increases citizen
engagement in their energy consumption but also stimulates local economic growth. Ulti-
mately, incorporating these innovative approaches within a decentralized energy model
positions smart cities as leaders in sustainable urban energy planning, addressing local and
wider societal, environmental, and economic goals [181].

Smart grids are heralded for their role in mitigating the energy crisis, reducing con-
sumption, fostering flexible electricity markets, and enhancing consumer engagement [182].
However, they introduce challenges that can impact grid efficiency and security [183,184].
As Swain et al. [167] note, modern smart city solutions pose questions about energy effi-
ciency and the security of data within smart grids, necessitating advanced expertise for
effective management and safeguarding against cyber threats [183–185]. The complexities
of protecting these grids require significant investments in technology and secure oper-
ational frameworks [183,186]. Additionally, the potential of energy storage technologies
to stabilize smart grids is countered by the high costs and technical difficulties associated
with large-scale implementation, hindering their widespread use [184]. The variability
and unpredictability of RE sources further complicate their integration, despite advances
in smart grids and data analytics [166,174,185,187]. Comprehensive solutions, including
advanced technologies and robust cybersecurity measures, are imperative for effectively
incorporating RE into smart grids [183,185].
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Moreover, a significant challenge in the deployment of smart grids is the effective
engagement of users and the enhancement of public awareness regarding these sys-
tems. [160,183,188]. There is currently a lack of customer demand for smart grid tech-
nologies due to limited incentives for consumers that regulate their electricity consump-
tion [189]. Moreover, the broader goals of justice and inclusion should be at the forefront of
these technological transitions. The decentralization of energy grids, while promising in its
approach, necessitates a careful balance between innovation and equity [188]. Such systems
hold the power to transform communities by providing them with autonomy over their
energy sources and economic benefits, but this transformation must ensure that all citizens,
irrespective of their socio-economic status, can reap those benefits. All residents, especially
those in marginalized and economically disadvantaged communities, must have equitable
access to the benefits of smart grid technologies [188,189]. Such issues, if overlooked, could
further widen the socio-economic divide. In the context of local peer-to-peer (P2P) energy
trading, it is crucial to address inherent trust and privacy concerns [183]. While decen-
tralized systems integrated with blockchain technology may offer a solution to manage
these concerns, high-performance computing, efficient data network management, and
cloud-based computing methods are integral parts of these systems [50] and can elevate
the overall cost and introduce additional complications [185]. Failing to address these
challenges adequately will not only deter the holistic development of sustainable energy
grids but also undermine the transformative potential of smart city initiatives, confining
their benefits to a limited segment of the population.

4.5. Policy and Regulatory Frameworks

It is the task of policy and regulatory frameworks to support and accelerate the deploy-
ment of smart cities. To do so effectively, policy designs and regulatory platforms capable
of overcoming the aforementioned challenges are needed. At the moment, ineffective,
ill-conceived, or absent policies and regulations impede the successful implementation of
smart city initiatives [190–192]. In particular, policymakers are faced with the imperative to
position socioeconomic justice and inclusiveness as pillars of the smart city concept if the
technical potential is to be achieved in a fair and just manner [32]. Without such a focus,
those of us in society who are most exposed to socioeconomic, environmental, or other
risks typically are left out when the benefits of technology implementation are distributed.
For instance, although governments offer incentives for energy-saving technologies, the
complexities of application and disbursement processes may deter adoption, particularly
by low- and moderate-income households [62]. Moreover, certain smart city applications
may inadvertently marginalize demographics such as the elderly, those less technolog-
ically adept, or residents living in disadvantaged urban areas [193,194]. Ignoring such
circumstances can lead to project failure [195].

The policymaker and regulator have avenues available to pursue holistic designs
and platforms that could help ensure fair benefit distributions, improve public trust, and
make smart city service providers accountable to the public at large. One such design
is to apply the wealth of data created by smart city technologies (IoT devices, sensors,
smart meters, etc.) to the benefit of the community. For instance, high-resolution data on
peak energy usage times across the city can inform DSM programs [196–198], enabling
everyone in the community to lower their consumption at moments of peak cost [96] which
especially benefits low-income customers who spend disproportionate amounts of their
income on energy services. Empowering the community through the provision of real-time,
granular data about energy consumption, grid performance, and user behavior in data-rich
dashboards can significantly enhance public trust in energy policies and regulations [199].
By making energy data publicly accessible, smart city initiatives can enable citizens to
better understand how energy is used in their city, how their own energy use compares to
others, and how energy policies and regulations are impacting their community [199]. This
transparency can foster a sense of ownership and engagement among citizens, encouraging
them to participate more actively in energy conservation efforts and policy discussions.
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Likewise, the data from smart city initiatives can provide a powerful tool for holding
smart city service providers accountable. For example, integrating AI and IoT into energy
systems can spark privacy and security concerns, necessitating clear policies on data
access, protection, and liability [200,201]. Policies that outline guidelines and frameworks
for tracking, measuring, and reporting energy use and grid performance, among others,
can help to ensure that private sector companies and service providers are meeting their
commitments and delivering on their promises [19]. This accountability can further build
public trust, as well as drive improvements in energy management and policy-making [202].
In contrast, failure to elicit smart city service provider compliance with stated objectives
may erode public trust as residents may perceive these initiatives as excessively intrusive
or conclude that the drawbacks outweigh the benefits [191].

There is, in short, an essential need to continuously integrate smart city visions into the
overarching city development goals to fully bring the promise of the smart city concept to
life [203]. The rapid technological evolution of smart city components, which might result
in temporary regulatory ambiguities or policy inefficiency, needs to be accompanied by a
co-evolving policy and regulatory landscape that, through community engagement and
participation, places community-wide development goals and objectives center-stage [204].
In this light, stakeholder engagement takes a central position in the development and
implementation of policy frameworks as collaborative endeavors among city officials and
residents improve policy effectiveness and integrate a wide spectrum of socioeconomic
concerns, culminating in the adoption of smart city development strategies that are desired
and to the benefit of the community at large [190].

5. Discussion and Conclusions

This conducted review showed that the energy performance of the building sector
is transforming through the integration of technologies such as AI, DT, IoT, IoE, and RE
sources in building design and construction [45,59,60]. These same technologies find
application in urban planning and design, forming a synergy with passive measures to
enhance energy efficiency. The deployment of IoT devices, remote sensing, GIS, and AI
algorithms provides a unified approach, allowing for the optimization of RE harvesting,
spatial planning, UHI mitigation, and energy demand prediction [50,82,85,94]. This empha-
sizes the interconnectedness of buildings and urban design and planning, showcasing the
seamless integration of energy efficiency from individual buildings to the urban landscape.
In the realm of smart transportation and mobility, technologies such as ITS, IoT-enabled
solutions, V2G, and EVs represent a broader application of intelligent systems and tech-
nologies [106,123,124,145]. Grid modernization and smart grids mark the convergence of
these initiatives. Enhanced with IoT devices and other smart technologies, smart grids
increase control, predictive capabilities, and energy efficiency while fostering decentralized
systems, energy storage, and RE integration [174,176,184,186,187].

These technological advancements are posited by some to be pivotal in empowering
cities to predict, prepare for, and mitigate risks in real-time, turning reactive measures
into proactive strategies, and fostering a resilient and sustainable future. Over the last
three decades, a multitude of urban development concepts have emerged, inspired by the
promising aspects of smart cities as illustrated in Figure 5. These initiatives are driven by
the goal of transforming communities and urban areas into entities that are energy-efficient
and carbon-neutral. This movement has given rise to an array of concepts and models,
such as Smart Eco-City, Eco2 City, Ubiquitous Eco-City, Low Carbon City, Carbon Neutral
City, Net Zero Carbon Community, Zero Carbon City, Low Energy District, Nearly Zero
Energy Neighborhood, Zero Energy Community, Positive Energy Blocks, and ultimately,
Positive Energy Districts (PEDs) [205,206]. Underpinned by these models, numerous
smart city-based projects have been implemented or are in the planning stages globally. A
notable example is the European Commission’s objective to have 100 PEDs either planned,
developed, or established by 2025 [207]. In the context of these varied and ambitious
initiatives, a critical question arises: Why do some smart city projects, despite rapid
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technological advancements, struggle to consistently achieve energy efficiency and carbon
emission reduction goals [105], while others succeed [206]?
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Prior to addressing the aforementioned question, it is instructive to examine the
definition of PEDs as outlined in the European “SET Plan Action 3.2 Smart Cities and Com-
munities Implementation Plan [208].” PEDs encompass the integration of electric vehicles,
advanced materials, local RE sources, local storage, smart energy grids, demand response,
user interaction and involvement, ICT, and participatory energy management strategies
in order to showcase a future where cities not only consume energy but also generate,
store, and sustainably manage it [208]. In fact, the emergence of PEDs and other smart city-
based concepts unfolds as a multidimensional transformation that not only emphasizes the
technical and technological aspects but also implementation, performance evaluation, and
management policies [105,205]. While there are multiple factors contributing to the varying
success of smart city projects, one potential answer to the third question of this paper is
the possible oversight of well-developed policies and regulations, which is a principal
contributor to the challenges illustrated in Figure 5. Although some of these challenges
are technical and technological in nature, more than half span across four dimensions and
are directly linked to the absence of rigorous policies and regulations. These cross-cutting
issues are pervasive, highlighting the imperative for a holistic and coordinated framework
that addresses not only technical solutions but also policy and regulatory strategies.

If we conceptualize the four technical dimensions as the foundational infrastructure
of the smart city and urban energy planning nexus, smart grids can be thought of as the
central nervous system, interconnecting and coordinating these dimensions [209]. On the
other hand, policy and regulatory frameworks act as the decision-making algorithms or
central processing units that guide the operations. Without these guiding mechanisms,
the system risks operational inefficiency, misalignment of goals, and potential failure in
achieving smart cities’ energy and emission reduction objectives [204]. Referring to the
conceptual framework presented in Figure 6, enhancing physical infrastructure and tech-
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nologies is still imperative for optimizing the energy performance of each dimension. This
not only involves individual improvements but also their integration and connection to
boost their collective efficacy. Concurrently, each dimension demands specialized policies
and regulations, necessitating an overarching policy assemblage that comprehensively ad-
dresses all four dimensions. This holistic approach ensures improvements not just in energy
performance, but also across environmental, socioeconomic, and other technical facets.
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Should smart cities aspire to effectively confront the existing and anticipated challenges
in the forthcoming years, strict adherence to the outlined framework becomes crucial. Urban
centers are expected to face unprecedented pressures from these global concerns, alongside
other emerging uncertainties. In this context, the role of smart cities, especially in the energy
sector, emerges as a critical factor in driving sustainable urban energy transitions and climate
resilience. This underscores the importance of smart cities as proactive agents in navigating
and mitigating the complexities of our evolving environmental landscape [6,86,210]. There-
fore, to successfully navigate this endeavor, the next wave of smart city evolution should
emphasize an integrative approach developed based on established policies that are flexible,
adaptable, and forward-thinking. These policies and regulations should set the stage for
a judicious amalgamation of technological prowess with overarching societal and environ-
mental imperatives. In this unfolding chapter, the ultimate success of smart city initiatives
will not only hinge on energy efficiency and climate change mitigation and adaptation but
also on the ability to embed technology within socially responsive, economically viable, and
environmentally sustainable frameworks [28,210].

5.1. Emerging Trends and Concerns

Our review has highlighted a predominant focus within the smart cities literature on
leveraging advanced technology systems to achieve broad-based energy use reductions
and sustainable energy deployment. However, this emphasis has often been at the expense
of fully addressing socioeconomic and environmental considerations. Furthermore, our bib-
liometric analysis, coupled with insights from recent papers, has revealed key predictions
about the future trajectory of research in this domain:

(1) Trend predictions in the realm of smart cities indicate an expected surge in research
focusing on the reciprocal impact between smart city initiatives and the environment.
It is anticipated that future studies will delve deeper into understanding how these
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initiatives can positively influence the environment. This includes exploring the
potential for reducing GHG emissions and mitigating UHI effects through the imple-
mentation of energy-efficient, solar-powered smart cities [10,211,212]. Additionally,
there will likely be a growing emphasis on understanding the adverse environmen-
tal impacts of smart technologies, including the ecological footprint of their entire
lifecycle, from resource extraction to E-waste disposal [213]. Concurrently, research
is expected to intensify in exploring how environmental and climate changes affect
smart cities [214]. This includes examining the resilience of smart infrastructures
against extreme weather conditions and their capacity to adapt to changing environ-
mental dynamics. Such research could lead to innovations in developing more robust
and climate-adaptive smart cities. This dual focus on the interaction between smart
cities and their environmental context is poised to play a pivotal role in informing
sustainable policy development, energy management, and resilient urban planning in
the face of ongoing climatic and environmental shifts [211,212,214].

(2) Socioeconomic justice and inclusion are rapidly gaining attention as key areas of
research in smart city development, emphasizing the need for equitable access to
energy efficiency and other benefits for all societal segments, particularly marginal-
ized communities [32]. This growth in focus is driven by the recognition that certain
populations within digital societies are becoming marginalized due to a lack of techno-
logical literacy or economic means, limiting their access to the benefits that smart cities
offer [215]. Additionally, it is crucial to ensure that not only the benefits but also any
adverse impacts of smart city developments are equally distributed, rather than dispro-
portionately affecting low-income and disadvantaged communities [34,107,188,189].
Research in this area includes exploring mechanisms to ensure the fair distribution of
smart city benefits, such as access to green, reliable, and affordable energy, as well as
energy-saving technologies and programs [32,191,216]. The goal is to make sustain-
able energy systems truly inclusive, addressing the disparities in the distribution of
incentives and burdens, and ensuring that the advancements in smart cities do not
exacerbate existing social inequalities. This concern is increasingly pressing as smart
city initiatives advance, highlighting the need for deliberate and targeted strategies to
bridge the digital divide and foster a more equitable urban future.

(3) The emerging trend in smart city research is the re-imagination of technology-energy-
society relations, with a focus on enhancing public engagement [217]. This approach
advocates for the development of smart technologies that not only promote trans-
parency, accountability, and citizen participation but also address privacy and security
concerns. Such concerns have been a major barrier to the successful implementation of
smart city projects, as hesitancy to participate is often due to a lack of trust. Overcom-
ing these apprehensions is critical for fostering meaningful public engagement [218].
Key to this effort is ensuring the safety and security of citizen data and the account-
ability of smart technologies. It is essential to involve citizens in decision-making
processes, particularly through bottom-up approaches, and to enhance transparency
in both the development and management of these projects [219]. Furthermore, ed-
ucational initiatives that align citizen behavior with energy efficiency objectives are
gaining importance [220]. These steps are vital for building trust, fostering com-
munity ownership, and making smart city projects more attuned to the needs of
their residents.

(4) Future research in the field of smart cities is anticipated to increasingly focus on two in-
terconnected technical and implementation complexities: the integration of advanced
technologies, such as 5G and 6G, into urban energy frameworks, and the technical
aspects of privacy and security within these complex systems [45,63,65,193,200,201].
This shift reflects a growing need to understand and resolve the challenges of sys-
tem interoperability, particularly in the context of global technology transfer. This
involves navigating a range of financial, geopolitical, and skill-related issues [220].
A critical aspect of this research will be to enhance the technical resilience of smart
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city infrastructures against cyberattacks. This includes advancing robust methodolo-
gies for ensuring data privacy and maintaining the integrity of energy management
systems [45,200,201]. Such research is essential for the development of secure and
efficient smart city environments, where the technical safeguarding of information
and infrastructure is as crucial as the physical and social dimensions of urban living.
By holistically addressing both the integration of cutting-edge technologies and the
technical safeguards necessary for security and privacy, future research endeavors
are set to significantly impact the design, policy-making, and operational efficacy of
smart cities.

5.2. Rethinking Policies and Regulations

The emerging trends and concerns in smart city research highlight the urgent need
to reevaluate policy and regulatory frameworks, especially as existing ones may not ade-
quately address the systemic dimensions inherent in smart city development and urban
energy planning. This necessitates a shift towards a more integrative approach, one that not
only embraces technological advancements but also weaves in considerations of socioeco-
nomic justice, environmental impact, and public engagement. Such an approach recognizes
the intricate tapestry of interests among various stakeholders—including governments,
urban authorities, residents, investors, and businesses—and underscores the importance
of a collaborative approach. Engaging practitioners, policymakers, and academics in dia-
logue and development is crucial for formulating comprehensive policy and regulatory
frameworks that can navigate the promises and challenges of smart cities [221,222].

However, a significant challenge lies in the disparity between rapid technological
advancements and slow policy development and performance evaluation. This gap calls
for research into the creation of adaptive and responsive policy and regulatory frame-
works [204]. Research in this domain should focus on designing policies that are both
flexible and robust, capable of keeping pace with technological changes while ensuring
effective governance and oversight. Delving into the interplay between emerging technolo-
gies and existing legal structures is essential, offering insights into areas where conflict may
arise and identifying opportunities for harmonization [191,192]. This line of inquiry is vital
to ensure that technological advancements are steered responsibly, benefiting society and
the environment.

Acknowledging the dual impact of smart city initiatives on societal and ecological
contexts underscores the importance of measurable outcomes in urban energy planning.
This recognition necessitates a shift in policy and regulation to not only keep pace with
technological innovation but also ensure social and environmental responsibility. In a field
marked by uncertainties, like smart cities, every decision carries its own set of trade-offs.
Therefore, it is imperative that policies and regulations are designed to accurately measure
these trade-offs, enabling a balanced and informed approach to decision-making. Such
frameworks are essential for ensuring that smart city initiatives are not only technologi-
cally advanced but also aligned with the comprehensive needs of urban energy systems,
optimizing outcomes while addressing new challenges and maintaining a commitment to
societal and environmental well-being [19,223].

6. Moving beyond This Review

This review provides a foundational synthesis of smart cities in the context of energy
and climate objectives, yet it also opens avenues for further exploration. Building upon the
insights gained, there is a significant opportunity for expanding the research into detailed
case studies of smart cities globally. Such an expansion is not only desirable but necessary to
conduct a comprehensive analysis of the performance metrics of smart cities, particularly in
terms of their energy efficiency and climate mitigation achievements. Future research could
enrich this domain by undertaking comparative analyses of diverse smart city projects
and initiatives. This would involve an in-depth examination of the various dimensions
discussed in Section 5.1.
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Further research endeavors should aim to delineate the unique strategies and chal-
lenges encountered by smart cities, taking into account the various geographical, political,
environmental, and socioeconomic landscapes they operate within. An area ripe for
scholarly exploration involves examining the differential impacts of policy and regulatory
frameworks, technological deployments, environmental, and urban planning, and adminis-
trative strategies on the progression of smart cities towards their defined energy efficiency
and emission reduction targets. A critical analysis of how smart cities have formulated
and implemented adaptation and mitigation policies to overcome their faced challenges,
and the extent to which these policies have been successful or unsuccessful, is crucial. This
analysis should also consider the reasons behind these outcomes, thereby providing a
nuanced understanding of the efficacy of smart city initiatives [105,206,224].

Such scholarly inquiries are not only paramount in enhancing our comprehension of
the role and effectiveness of policy and regulatory frameworks within the context of smart
cities but also crucial in assessing their broader impact on achieving sustainability objectives.
This would significantly enrich the discourse on smart cities, providing a foundation
for future policy formulation and implementation strategies aimed at optimizing urban
environments for energy efficiency and climate resilience.
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Appendix A

Limitations of Study

While reviewing studies conducted on smart cities and urban energy planning, encom-
passing its technological, environmental, transportation, and socioeconomic dimensions,
we encountered some limitations. Primarily, we grapple with the inherent challenges of
selecting pertinent studies and the unavoidable subjectivity infused in data extraction, in-
terpretation, and analysis, inherent to any qualitative review [36]. With transparency at the
forefront of the data and paper selection phase, we meticulously detailed our search string,
inclusion and exclusion criteria, and the databases employed (WoS), striving for a com-
prehensive sweep of the relevant literature. Nevertheless, the confines of our established
parameters might have resulted in omitting pertinent research, those newly published
(after May 2023), inaccessible through our database, or research nestled within special-
ized reports, policy briefs, professional and practical documents, and other non-academic
literature. Therefore, as our review draws predominantly from academic journals, it is
conceivable that practical insights or novel strategies from non-academic sectors, including
urban policymakers or industry innovators, have been underrepresented.

Regarding subjectivity in data analysis, we used our own analytical categorization
and interpretation framework, which inevitably influenced our analysis and findings. The
specific framing and design of our review may also be incomplete, potentially leaving out
important analytical constructs and categories. The bibliometric review focused on papers
published between January 1992 and May 2023. However, the majority of the selected
papers for the in-depth review are sourced from the last 5–10 years. This emphasis is reason-
able due to the substantial volume of recent publications and the importance of reviewing
and analyzing current knowledge and research findings. Moreover, the deployment of
VOSviewer software, pivotal for our bibliometric analysis, brings its inherent constraints to
keyword extraction and semantic apprehension, potentially curtailing nuanced interpre-
tations. Additionally, although Section 4 focuses on five key dimensions and thoroughly
investigates their promising and challenging sides, there might be emerging or niche topics,
technological advancements, or other challenges, concerns, and barriers that were not
covered throughout this review.

To overcome these limitations, we developed a comprehensive research protocol that
includes explicit review questions, well-established search strings, and criteria for inclusion
and exclusion. Our approach adheres to the checklist requirements for PRISMA-ScR
analyses and provides justification for the decisions made at each stage of the review process.
Four authors independently evaluated both search strings and results before reaching
a consensus collectively to mitigate subjectivity during paper selection. To minimize
the possibility of excluding relevant studies, we extensively included and scrutinized a
substantial number of papers (193 records), far surpassing what is typically seen in other
existing reviews in this field. Moreover, in the initial phase of the review, we identified
and utilized 19 highly relevant reports and documents (Appendix B). These sources helped
define our search strings and informed our recommendations for future research. This
approach was necessary because smart cities and urban energy planning are not simply
academic concepts; to effectively integrate smart city initiatives into improving urban
energy profiles, it is crucial to establish a mutually beneficial relationship between theory
and practice.
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Appendix B

Table A1. The list of reviewed non-peer-reviewed documents and reports.

# Organization Documents # Organization Documents

1 European
Commission

1-Summary Report on Urban
Energy Planning:

Potentials and Barriers in Six Cities
2-Strategic Energy Technology (SET)

Plan ACTION n◦3.2
Implementation Plan

3-Digitalization in Urban
Energy Systems:

Outlook 2025, 2030 and 2040

8 MIT SENSEABLE
CITY LAB projects

12-The Smart Enough City: Putting
Technology in Its Place to Reclaim

Our Urban Future

2
International

Energy Agency
(IEA)

4-Digitalization & Energy
5-Energy Technology

Perspectives 2023
6-Empowering Cities
for a Net Zero Future:
Unlocking Resilient,
Smart, Sustainable

Urban Energy Systems

9 Arup 13-Five Minute Guide:
Energy in Cities

3

United Nations
University,

UNU-EGOV,
International
Development

Research Centre
Canada (IDRC)

7-Smart Sustainable
Cities—Reconnaissance Study 10

IBM Institute for
Business Value

Executive Report
14-Smarter Cities for

Smarter Growth

4 European
Parliament 8-Digital Agenda for Europe 11

ASEAN Smart
Cities Network and
ASEAN Secretariat

(ASEC)

15-ASEAN Smart Cities
Planning Guidebook

5 American Public
Power Association

9-Creating a Smart City Roadmap
for Public Power Utilities 12 OECD

16-Measuring smart cities’
performance: Do smart cities

benefit everyone?
17-Enhancing the Contribution of

Digitalization to the Smart Cities of
the Future

6
International

Renewable Energy
Agency (IRENA)

10-World Energy Transitions
Outlook 2023: 1.5 ◦C Pathway 13 World Economic

Forum

18-Electric Vehicles for Smarter
Cities: The Future of Energy

and Mobility

7 C40 CITIES Climate
Leadership Group

11–10 Climate Challenges & Plenty
of Solutions 14 Deloitte 19-Renewables (em)power

smart cities
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