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Abstract: The speed at which vehicles navigate through roundabouts is information that needs
to be considered in the intersection design process, simulation model development, and policy
implementation. The last published data on speed profiles by distance was the Federal Highway
Administration (FHWA) Roundabouts: an Informational Guide report, published in 2000, which pre-
dates the ability to collect large volumes of connected vehicle (CV) data. The objective of this paper is
to use a large sample of CV data to provide empirical analysis on vehicle speeds at roundabouts and
to determine if previous guidelines are still applicable. Over 15 million speed records sampled at
56 roundabouts in Carmel, Indiana, from February to May 2023 during weekdays are categorized
by turn type (i.e., right, through, or left) and by roundabout section (i.e., approach, circulation, or
departure). Speed profiles and distributions for each category are analyzed by four different time-of-
day (TOD) periods. The speed distribution analysis by roundabout section shows that 85% of vehicles
travel under 34, 22, and 35 miles per hour (mph) on the approach, circulation, and departure zones,
respectively. The analysis by turn type indicates that vehicles making left turns consistently maintain
speeds below 20 mph when navigating inside roundabouts. In contrast, vehicles proceeding straight
through or turning right accelerate soon after entering. Regardless of turn-type or TOD periods, most
vehicles depart the roundabouts at similar speeds around 35 mph. A comparison between sampled
and theoretical speed profiles reveals that while a state-of-the-practice model accurately estimates
vehicle accelerations and decelerations near roundabouts, it does not account for reduced speeds
before circulation begins and, in some cases, underestimates values on the circulation and departure
sections. The results presented in this paper can be used to update current knowledge on vehicle
speeds at roundabouts. Furthermore, local and state transportation agencies can use the presented
technique to periodically update travel speed knowledge for their roundabouts where CV data or
detection technology to derive traveling speeds is available.
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1. Introduction

Roundabouts have become a popular intersection design alternative in the United
States since the 2000s [1]. One of the main reasons for wide implementation is their
safety benefits. Significant reductions in injury crashes and their severity have been
observed, mainly because roundabout configurations eliminate left-turn, head-on, and
right-angle crashes [2,3].

As more roundabouts are constructed, it becomes increasingly important to develop
a thorough understanding of driver behavior at these intersections. Such knowledge
can help improve designs [4], fine-tune simulation and emission models [5,6], and better
inform policy makers [7]. Travel speeds are particularly relevant information [8,9]. Current
maximum entry design speed recommendations vary from 15 to 30 miles per hour (mph),
which is approximately 25 to 50 km per hour (kph) [2,4].
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1.1. Literature Review

Various analytical methods have been developed to estimate vehicle speeds near
roundabouts. The American Association of State Highway and Transportation Officials
(AASHTO) has documented the relationship between travel speed and horizontal cur-
vature [10]. Krammes et al. developed techniques to estimate the operating speed of
two-lane and four-lane rural roads as a function of degree curvature [11]. The Federal
Highway Administration (FHWA) provides in its Roundabouts: An Informational Guide
report theoretical speed profiles for different approach speeds [4]. Additionally, the Na-
tional Cooperative Highway Research Program (NCHRP) presents equations in a report to
calculate roundabout entry and exit speeds that consider accelerations [2].

Other studies have used different techniques to measure vehicle speeds at roundabouts.
Kim and Choi performed vehicle speed surveys at 14 sites in South Korea to evaluate
safety [12]. Pilko et al. retrieved speed data from a passenger vehicle equipped with a
Global Positioning System (GPS) device to verify design speeds at four roundabouts in
the City of Zagreb [13]. Gallelli et al. derived vehicle travel speed at two roundabouts by
means of video recordings and simulation [14]. Khan et al. generated speed S curves of
seven different vehicle categories traversing a roundabout in India by observing travel
times and calculating travel distances with Google Maps [15].

1.2. Motivation

Current methods to estimate vehicle speeds at roundabouts include analytical tech-
niques, simulations, field visits, and the use of detectors. Analytical techniques and simula-
tions rely on assumptions to perform their estimations. Field visits are time-consuming
and highly dependent on the practitioner’s ability to collect data. Additionally, field visits
and the use of detectors are costly and difficult to scale.

Recently, anonymized crowd-sourced high-fidelity connected vehicle (CV) trajectory
data has become commercially available. Each month, this data set provides over 500 billion
records of vehicles’ location, speed, and heading while traversing transportation networks
in the United States. These attributes provide unique opportunities to systematically
evaluate and manage transportation infrastructure at scale [16].

CV trajectory data has already been utilized to calculate operational performance [17–20],
estimate control parameters [21,22], and manage [23,24] signalized intersections. This data
has also been used to estimate delays at roundabouts [25], but there are no published reports
on speed characteristics in and adjacent to roundabouts using this emerging data set.

CV data provides a large sample of vehicle speeds as they traverse road networks.
This data set allows for a scaled and objective evaluation of vehicle speeds at roundabouts
without the need for assumptions and with minimum manual labor required.

Objective and Contribution

The objective of this paper is to perform an analysis of sampled CV trajectory speeds
across 56 roundabouts in Carmel, Indiana, United States, to contribute with the following:

• provide current aggregated sampled speed profiles for left-, through-, and right-
turning vehicles by time-of-day (TOD) periods,

• compare recently sampled speed profiles with the literature to determine if state-of-
the-practice models should be updated, and

• generate updated information about the distribution of speeds on the different sec-
tions of a roundabout to determine the speeds at which different proportions of
motorists travel.

The presented technique can be used by local and state transportation agencies to peri-
odically update travel speed knowledge for their roundabouts where CV data or detection
technology to derive traveling speed is available. This is important, especially when vehicle
speeds change as motorists become more familiar with newly implemented roundabouts.
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2. Materials and Methods

This section first provides information on the data set used in the study; then, the
methods applied to generate the results are explained.

2.1. Connected Vehicle Trajectory Data

Weekday CV trajectory data from February 2023 to May 2023, with an estimated
market penetration rate (MPR) of 4.8% [26], is used in this study. The data consists of a
set of waypoints for entire vehicle trips (i.e., from on to off) and is obtained from passen-
ger vehicles that were factory-equipped with the required technology for sampling and
transmission. There is a 3 s reporting interval between samples, each with a 3.0 m. (~10 ft.)
spatial accuracy. Every waypoint has the following information: latitude, longitude, speed,
heading, and an anonymous vehicle trajectory identifier.

By linking individual waypoints with the same trajectory identifier and sorting them
by timestamp, a complete chronological vehicle journey can be obtained. Thus, a trajectory
(τ) is defined as its set of waypoints (wi) [17]:

τ = {wi}n
i=1 (1)

wi =
{

identifier, latitudei, longitudei, timestampi, speedi, headingi
}

(2)

where i = 1 is the first sample collected after the vehicle is turned on, and n is the last sample
collected before the vehicle is turned off. The range of heading values is [0◦, 360◦), where
0◦ is the true north, and it increases clockwise.

It is important to note that the CV data set does not include any infrastructure infor-
mation. However, all roundabouts evaluated in this study are single-lane, multi-lane 2 × 2,
or multi-lane 2 × 1 and have speed limits that range from 25 to 45 mph (~40 to ~72 kph).
Further details on the CV data set, including a discussion of acquisition, storage, data
access, best practices, and costs, are provided in [17].

2.2. Roundabout Speed Analysis

The speeds used in the study are those directly obtained from the CV data set
(Equations (1) and (2)), and no additional estimation or averaging is performed. The ap-
proach to evaluate speeds at roundabouts is as follows:

1. Select relevant speed values from the CV trajectory data.
2. Categorize each sampled speed as belonging to a vehicle that turned right, through,

or left.
3. Categorize each sampled speed as being located on the approach, circulation, or

departure sections of the roundabout.
4. Generate high-level graphics for analysis.

It is important to only evaluate vehicle speeds that are mainly affected by roundabout
operations. Further, the segmentation of vehicle speeds by turn type and roundabout
section is critical to allow for an analysis that can evaluate each of these categories separately
since vehicle speeds are expected to vary significantly between them.

These steps are summarized in Figure 1 and discussed in the subsections below.

2.2.1. Step 1: Data Selection

Only the sampled speeds from the subset W400 of trajectory waypoints found within
400 ft. (~122 m.) from a roundabout center r are considered for analysis. That is

W400 =
{

w ∈ W
∣∣dg(w, r) ≤ 400

}
(3)

where W is the set of all sampled waypoints w and dg is a function that calculates the
geodesic distance (ft.) [27] between its arguments.
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Figure 1. Sampled speeds of a CV traversing WBT at 106th and Ditch Rd. (n: 12). (a) Aerial view and 
location of the sampled trajectory waypoints (map data: Google). (b) Speed profile. 
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Figure 1. Sampled speeds of a CV traversing WBT at 106th and Ditch Rd. (n: 12). (a) Aerial view and
location of the sampled trajectory waypoints (map data: Google). (b) Speed profile.

Figure 1a shows the waypoints of a vehicle trajectory that traveled through the ana-
lyzed roundabout selected for further analysis.

2.2.2. Step 2: Turn Type Identification

A detailed explanation of how to determine vehicle movements at intersections from
CV data is provided in Chapter 4 of the open-access Next generation traffic signal performance
measures: Leveraging connected vehicle data report [17]. In summary, vehicle headings are
compared as they approach and depart from an intersection to determine directions of
travel and turn types.

First, the selected W400 waypoints are categorized as approaching or departing a
roundabout to generate approach versus departure clusters of their headings. A waypoint
is said to approach a roundabout if its δ value is less than 20◦; otherwise, it is categorized
as departing [17]. δ is defined as

δ(w, r) =
∣∣∣wheading − θ

∣∣∣, θ ∈ [0◦, 360◦) (4)
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where θ is the direction of a vector drawn from w to r. A small δ indicates that w approaches
the center of the roundabout, and a large δ indicates that w departs.

After approach and departure heading clusters are obtained, their centroids are identi-
fied using k-means [28]. K-means calculates the set K of k clusters and the set of centroids
m1, . . . , mk that minimize the error sum of squares ESS, defined as:

ESS(K, m1, . . . , mk) =
k

∑
j=1

nj

∑
i=1

∥∥xij − mj
∥∥2 (5)

where nj is the number of observations in the j-th cluster and xij is the i-th observation in
the j-th cluster.

Once the centroid of each cluster is estimated, relative heading boundaries are defined
to determine whether a vehicle turns right, through, or left at each roundabout. The
sampled trajectory shown in Figure 1a is assessed as traveling westbound-through (WBT).

2.2.3. Step 3: Roundabout Section Identification

Each waypoint is assigned to one of the following roundabout sections based on its
heading and proximity to the center of the roundabout:

• Approach (set A): the waypoints that advance towards the roundabout located farther
than 100 ft. (~30 m.) from the center are assigned to this category. That is

A =
{

w ∈ W400
∣∣dg(w, r) > 100 and δ(w, r) < 20◦

}
(6)

• Circulation (set C): the waypoints found within 100 ft. (~30 m.) from the center are
assigned to this category. That is

C =
{

w ∈ W400
∣∣dg(w, r) ≤ 100

}
(7)

• Departure (set D): the waypoints that leave the intersection located farther than 100 ft.
(~30 m.) from the center are assigned to this category.

D =
{

w ∈ W400
∣∣dg(w, r) > 100 and δ(w, r) ≥ 20◦

}
(8)

Figure 1a indicates where the approach, circulation, and departure sections are located
for the plotted trajectory waypoints. The approach and departure areas can shift depending
on the origin-destination (OD) pairs of the traversing vehicles.

2.2.4. Step 4: Speeds Visualization

Even though the geospatial representation of color-coded waypoints shown in Figure 1a
presents some insights into the vehicle’s change in speed as it progresses through the round-
about, important nuances are lost. For this reason, the vehicle’s speed profile as it traverses
the roundabout, pivoting on the far side of the intersection, is provided in Figure 1b. This
graphic shows how the vehicle quickly decelerates while approaching until it comes to a stop
(callout i) and then continuously accelerates as it circulates through and departs. As expected,
the vehicle’s speeds are higher farther away from the center and are lower right before and
within the roundabout.

The graphics presented in Figure 1, in addition to cumulative frequency distribution
(CFD) diagrams, are expanded in the Results section to provide speed information from
more than one vehicle and OD pair.

3. Results

This study analyzes weekday vehicle speeds from February to May 2023 at 56 round-
abouts located in Carmel, Indiana (Figure 2). Carmel is a suburban area auto-denominated
as the “Roundabout Capital of the U.S.”. The city has actively replaced traffic signals with
roundabouts since the late 1990s; therefore, most of the residents and those who work in
Carmel are now familiar with roundabout operations [29].
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Figure 2. Study locations (map data: OpenStreetMap).

The evaluated roundabouts are single-lane, multi-lane 2 × 2, or multi-lane 2 × 1 with
inscribed circle diameters that go from 100 ft. (~30 m.) to 160 ft. (~49 m.). Each roundabout
has four legs and displays advisory speeds of 15 mph (~24 kph) within the circulation
section. All approaches have speed limits that range from 25 to 45 mph (~40 to ~72 kph).

The rest of this section first presents speed profiles of passenger vehicles at the studied
roundabouts and compares them to current models. Then, an analysis of speed distribution
by roundabout section is provided. The following TOD periods are considered:

• AM Peak (AM): 07:00:00–09:00:00 h.
• Midday (MID): 09:00:00–16:00:00 h.
• PM Peak (PM): 16:00:00–18:00:00 h.
• Other: 00:00:00–07:00:00 h and 18:00:00–23:59:59 h.

3.1. Speed Profiles

Two different types of speed profiles are provided. One displays results by TOD
period and by the type of turn vehicles take at the roundabouts. The other displays results
based on approach speeds and performs a comparison with a current theorical model.

3.1.1. By Turn-Type and Time-of-Day Period

Figure 3 shows 50th percentile speed profiles derived from over 15,000,000 waypoints
belonging to all sampled vehicle trajectories that traversed a roundabout in Figure 2. The
speed profiles are grouped by turn type and segregated by TOD periods.

Significant speed differences are shown between turn types as vehicles approach the
roundabouts (callout i). This is an artifact of the speed profiles pivoting on the far side of
the roundabout since each turn type has a different distance to travel between its entry
and exit from the circulatory roadway. In Figure 3, vehicle speeds come to a minimum
just before entering the roundabout. Hence, it is shown how left-turning trajectories travel
the largest distances between their entry (callout ii) and the far side, followed by vehicles
traveling straight through (entering at callout iii). Trajectories turning right traverse the
shortest distance between their entry (callout iv) and the far side.
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Figure 3. 50th percentile speed profiles by TOD period and turn type derived from April and May
2023 CV weekday data at the 56 analyzed roundabouts (n: 15,420,360). (a) AM (n: 2,308,653). (b) MID
(n: 6,666,929). (c) PM (n: 3,327,811). (d) Other (n: 3,116,967).

Another significant difference between turn types is their speed inside the round-
abouts (i.e., from their minimum speeds to the far side). Left-turning vehicles display
fairly constant speeds below 20 mph (~32 kph) (callout v) before accelerating to leave the
intersection. Constant speeds are briefly held for trajectories traveling straight through,
and right-turning vehicles promptly accelerate after entering. Regardless of the speed
differences while approaching and circulating the roundabouts, all speeds are similar when
vehicles depart (callout vi) with values near 35 mph (~56 kph).

As expected, speeds during the PM TOD period are the slowest due to the more
congested traffic conditions during that time. No speeds faster than 35 mph (~56 kph)
were observed.

Figure 4 shows 85th percentile speed profiles derived from the same sampled data used
to generate Figure 3. Both visualizations present similar patterns, the main difference being
that the 85th percentile speed profiles (Figure 4) display less pronounced minimum speeds
before entering the roundabout. No speeds faster than 40 mph (~64 kph) were observed.
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Figure 4. 85th percentile speed profiles by TOD period and turn type derived from April to May 2023
CV weekday data at the 56 analyzed roundabouts (n: 15,420,360). (a) AM (n: 2,308,653). (b) MID
(n: 6,666,929). (c) PM (n: 3,327,811). (d) Other (n: 3,116,967).

3.1.2. By Approach Speeds: Comparison with a Theoretical Model

Figure 5 depicts the 50th (green) and 85th (orange) percentile sampled speed profiles
of vehicles approaching about 325 ft. (~99 m.) from the center of a roundabout at speeds
near 25, 35, and 45 mph (~40, ~56, and ~72 kph). The sampled speed profiles shown in
Figure 5 can be compared with FHWA’s theoretical speed profiles generated for the same
conditions in Exhibit 6-3 of their Roundabouts: an Informational Guide report [4]. Numerical
data of the theoretical profiles are extracted [30] and are plotted as black lines.
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Figure 5. Speed profiles by approach speed for vehicles traveling straight through during the MID
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(n: 3,997,546) [4]. (a) 25 mph approach speed (n: 1,428,072). (b) 35 mph approach speed (n: 2,435,380).
(c) 45 mph approach speed (n: 134,094).

In general, similar acceleration and deceleration values are shown from both the
sampled and the theoretical profiles. The main difference is that the theoretical speed
profiles do not account for reduced speeds before vehicles enter the circulatory roadway
(callout i). Additionally, for vehicles that approach with speeds near 25 mph (Figure 5a),
the theoretical profile displays reduced speeds within the roundabout (callout ii), while the
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sampled profiles indicate that vehicles accelerate soon after entering (callout i) until they
depart the intersection (callout iii).

3.2. Speed Distribution

Providing speed distribution information by roundabout section and by TOD period
is particularly useful for stakeholders to assess the speeds at which different proportions of
users are traveling. Figure 6 shows speed CFD diagrams grouped by roundabout section
and by TOD periods. These graphics communicate at-a-glance how speeds vary as vehicles
travel through the roundabout.
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Figure 6. Speeds CFDs derived from April to May 2023 CV weekday data at the 56 analyzed
roundabouts (n: 15,420,360). (a) Approach (n: 6,511,852) (Equation (6)). (b) Circulation (n: 4,688,060)
(Equation (7)). (c) Departure (n: 4,220,448) (Equation (8)).

The approach section (Figure 6a) shows a wider range of values and larger differences
between TOD periods. Vehicles travel slowest during PM (callout i) and fastest during
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Other (callout ii). This is because traffic conditions are less congested during the Other
TOD period, making it a good candidate to become the baseline reference.

In contrast, the circulation (Figure 6b) and departure (Figure 6c) sections present
distributions with less variance by TOD period. This behavior can be attributed to the
fact that congestion predominantly affects the approach section at roundabouts as vehicles
must yield into the circulatory roadway. Once within the circulatory roadway, vehicles
usually travel under free-flow conditions unless pedestrians traverse at the roundabout or
if there is obstruction generated by downstream blockage.

Tables 1–3 present the 25th, 50th, 75th, 85th, 90th, 100th, and interquartile range (IQR)
speed values at the approach, circulation, and departure segments, respectively. These
tables allow for a thorough assessment of driver behavior by TOD and roundabout section.
It is shown that

Table 1. Speed distributions at roundabout approaches evaluated in Figure 6a derived from
6,511,852 samples.

Percentile
U.S. Customary (mph) Metric (kph)

AM MID PM Other AM MID PM Other

25 9 13 5 18 14 21 8 29

50 20 22 16 25 32 35 26 40

75 28 29 26 31 45 47 42 50

85 31 32 30 34 50 51 48 55

90 34 34 32 35 55 55 51 56

100 60 59 68 62 97 95 109 100

IQR 19 16 20 13 31 26 32 21

Table 2. Speed distributions at roundabout circulation evaluated in Figure 6b derived from
4,688,060 samples.

Percentile
U.S. Customary (mph) Metric (kph)

AM MID PM Other AM MID PM Other

25 15 14 14 16 24 23 23 26

50 18 17 17 18 29 27 27 29

75 21 20 20 21 34 32 32 34

85 22 21 22 22 35 34 35 35

90 23 23 23 24 37 37 37 39

100 59 44 67 64 95 71 108 103

IQR 6 6 6 5 10 10 10 8

Table 3. Speed distributions at roundabout departures evaluated in Figure 6c derived from
4,220,448 samples.

Percentile
U.S. Customary (mph) Metric (kph)

AM MID PM Other AM MID PM Other

25 26 25 25 26 42 40 40 42

50 30 29 29 30 48 47 47 48

75 34 33 33 34 55 53 53 55

85 35 35 35 35 56 56 56 56

90 37 36 37 37 60 58 60 60

100 59 60 64 67 95 97 103 108

IQR 8 8 8 8 13 13 13 13
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• 50% of vehicles travel under 25, 18, and 30 mph (~40, ~29, and ~48 kph) on the
approach, circulation, and departure sections, respectively.

• 85% of vehicles travel under 34, 22, and 35 mph (~55, ~35, and ~56 kph) on the
approach, circulation, and departure sections, respectively.

4. Discussion

The analysis of passenger vehicle speeds at the roundabouts in Figure 2 allows for
a comparison with theoretical models as presented in Figure 5. From this assessment,
it is concluded that some parts of state-of-the-practice models should be updated with
the information presented herein. For example, lower vehicle speeds before entering
roundabouts should be accounted for in future theoretical models (Figure 5, callout i).
Furthermore, higher speeds in the circulation and departure sections for vehicles that are
slowly approaching should be considered (Figure 5, callout ii). Nonetheless, it should be
emphasized that the deceleration and acceleration values generated by both the theoretical
approach and the sampled speeds are very similar. This indicates that the rate of speed
change generated by theoretical models may not need to be updated.

It is important to note that the analyses presented in this document are solely based on
roundabouts located in Carmel, Indiana, United States, where most local drivers have be-
come familiar with roundabout operations. Future research should focus on the expansion
of this analysis to other cities and states in the United States, and, ideally, to other countries.

Furthermore, to provide a generalized view of vehicle speeds at roundabouts, results
are mostly aggregated for the entire system, making no distinctions between single-lane,
multi-lane 2 × 2, or multi-lane 2 × 1 roundabouts. To enhance the granularity of the study,
future research should provide a segregated analysis by geometric roundabout classes.
Regardless of these limitations, this study provides valuable insights derived from real
sampled speed data.

5. Conclusions

This study provided an analysis of sampled CV trajectory speeds at 56 roundabouts
in Carmel, Indiana, from February to May 2023. Over 15 million speed samples were
extracted from the CV data set and categorized by their turn type (i.e., right, through, or
left) and by which roundabout section they belong (i.e., approach, circulation, or departure)
to derive the following key results:

• Left-turning vehicles consistently maintain speeds below 20 mph (~32 kph) when
navigating inside roundabouts (Figure 3).

• Vehicles traveling straight through briefly maintain constant speeds inside the round-
about before accelerating prior to exiting (Figure 3).

• Right-turning vehicles constantly accelerate soon after entering the roundabout and
do not decelerate until after departure (Figure 3).

• A speed distribution analysis showed that 85% of vehicles travel under 34, 22, and
35 mph (~55, ~35, and ~56 kph) on the approach, circulation, and departure sections,
respectively (Tables 1–3 and Figure 6).

A comparison between sampled and theoretical speed profiles showed similar acceler-
ations and decelerations; however, the theoretical model does not account for significant
speed reductions that occur before entering the roundabouts and underestimates speeds of
slow-approaching vehicles (Figure 5). A careful comparison between existing assumption-
based roundabout vehicle speed models and the results presented herein is suggested. The
presented information needs to be considered in the roundabout design process, simulation
model development, and policy implementation.
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