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Highlights

What are the main findings?

• The review consolidates recent advances in RSSI fingerprint-based indoor localization,
providing a complete view from technology choice to ML/DL model application.

• It systematically classifies radiomap generation and data preprocessing methods,
compares algorithm performance, and identifies unresolved technical bottlenecks.

What is the implication of the main finding?

• The structured analysis offers a ready-to-use roadmap for researchers, helping to
design efficient and adaptable localization systems.

• By mapping challenges to potential solutions, the review supports targeted innovation
and faster adoption of RSSI-based positioning in diverse real-world scenarios.

Abstract

With the development of technologies and the growing need for accurate positioning inside
buildings, the localization method based on Received Signal Strength Indicator (RSSI)
fingerprinting is becoming increasingly popular. Its popularity is explained by the relative
simplicity of implementation, low cost and the ability to use existing wireless infrastructure.
This review article covers all the key aspects of building such systems: from the wireless
communication technology and the creation of a radiomap to data preprocessing methods
and model training using machine learning (ML) and deep learning (DL) algorithms.
Specific recommendations are provided for each stage that can be useful for both researchers
and practicing engineers. Particular attention is paid to such important issues as RSSI
signal instability, the impact of multipath propagation, differences between devices and
system scalability issues. In conclusion, the review highlights the most promising areas for
further research. For smart cities, the approaches and recommendations presented in the
review contribute to the development of urban services by combining indoor positioning
systems with IoT platforms for automation, transport and energy management.
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1. Introduction
Localization technologies are fundamental to modern information systems, enabling

accurate positioning in a wide range of applications. In open environments, global naviga-
tion satellite systems (GNSS) such as Global Positioning System (GPS) have transformed
areas such as transportation, logistics, and geographic information systems [1]. However,
GNSS performance declines dramatically indoors and in densely populated urban areas,
where signal interference and multipath effects become serious problems. These limitations
have led to the development of alternative localization approaches, resulting in innovative
indoor positioning technologies [2].

Indoor localization is a key area of research in the field of positioning, requiring
solutions to many unique challenges. In recent years, such systems have become an
integral component of location-based services (LBS). It is also a fundamental element
of smart city infrastructure, where real-time spatial data from buildings is integrated
into urban IoT platforms [2]. In modern megacities, a significant part of human activity
and service operation occurs in closed spaces—transport hubs, shopping malls, business
complexes, educational institutions and healthcare facilities. Without precise positioning
technologies in such conditions, it is impossible to fully implement the concept of “smart”
urban management. In a smart city, such systems support the operation of intelligent
transport hubs, emergency evacuation planning, energy-efficient building management
and the provision of personalized services to residents. In healthcare facilities, they enable
patient and medical equipment monitoring, in retail, they enable personalized navigation
and marketing strategies [3]. Unlike outdoor positioning systems, indoor localization
technologies face problems of signal attenuation, multipath propagation and high spatial
heterogeneity of the environment caused by the presence of physical obstacles (walls,
furniture, human flow, etc.) [4]. These factors necessitate the development of specialized
methods and approaches adapted to indoor conditions.

Modern indoor localization technologies can be divided into two main categories:
non-radio frequency based and radio frequency based. The first group includes methods
using inertial navigation systems (INS) [5], magnetic fields [6], acoustic waves [7] and
optical systems [8]. Inertial systems using accelerometers, gyroscopes, and magnetometers
provide autonomous positioning, but are subject to error accumulation and require regular
calibration. Magnetic navigation takes advantage of the unique variations in the magnetic
field indoors, which reduces infrastructure costs but makes the method sensitive to changes
in the environment. Acoustic technologies based on time-of-flight (ToF) or phase shifts
of sound waves provide high accuracy, but their use is limited by noise and the need to
maintain a direct line of sight between the transmitter and receiver. Optical systems using
cameras or light sensors demonstrate high spatial resolution, but their effectiveness is
dependent on lighting quality and environmental conditions [9]. In addition to camera-
based optical methods, a rapidly growing area is visible light communication (VLC)-based
localization, which uses LED lighting infrastructure both as a source of illumination and
for positioning [10,11]. In such systems, the visible light received signal strength (optical
RSSI) is measured to build fingerprints or perform trilateration.

The most common group of indoor positioning technologies are radio frequency
methods, due to their high adaptability, cost-effectiveness and availability of the necessary
infrastructure. In this category, Wi-Fi [12,13], Bluetooth [14,15], ZigBee [16], LoRa [17],
Ultra-Wideband (UWB) [18], RFID [19] and NFC [20]-based systems are distinguished.
Each of these technologies has unique characteristics that determine their applicabil-
ity in different scenarios, taking into account the requirements for accuracy, range, and
energy efficiency.
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Radio frequency-based localization methods are divided into geometric and fingerprint-
based. Geometric methods use triangulation, time of arrival (ToA) and angle of arrival
(AoA) measurements [2]. These methods provide high accuracy, but require special-
ized equipment and are sensitive to interference. In contrast, fingerprinting methods
rely on pre-formed databases of signal characteristics (RSSI, Channel State Information
(CSI)) at various points in space, with subsequent comparison of real measurements with
reference values.

Unlike geometric approaches, fingerprinting methods demonstrate high effectiveness
when combined with machine learning and deep learning algorithms, which have played
a key role in advancing and improving the accuracy of indoor localization technologies.
The use of ML algorithms allows modeling complex dependencies in signal data and
compensating for noise distortions. Among the popular algorithms, the k-nearest neighbors
(k-NN) [21], support vector machine (SVM) [22] and decision tree (DT) [23] methods can
be distinguished, which are used to determine locations. More sophisticated methods,
such as neural networks, can take into account signal nonlinearities and environmental
dynamics. For example, convolutional neural networks (CNNs) effectively analyze spatial
features of RSSI data [24], and recurrent neural networks (RNNs) are able to take into
account temporal dependencies in changing conditions [25]. Although the focus of this
review is on RF-based RSSI fingerprinting, we also note VLC-RSSI fingerprinting-based
localization as a promising direction that complements RF approaches. In such systems, the
received signal levels from LED lighting are used as “fingerprints”, which allows achieving
centimeter-level accuracy in monitored premises [10].

Despite the significant amount of research devoted to the use of RSSI fingerprint
and ML methods in indoor localization tasks, there remains a lack of a comprehensive
analysis of existing approaches and their comparative evaluation. This review aims to fill
this gap by integrating the existing solutions, critically examining the applied algorithms,
and identifying the factors that determine the localization accuracy. This study covers the
full development cycle of an indoor localization system—from signal propagation models
to radiomap construction, including an analysis of the challenges encountered during
radiomap generation, data preprocessing stages, selection and evaluation of ML models, as
well as practical applications of localization technologies. In the future, recommendations
for future research aimed at developing more robust and adaptive indoor positioning
systems will be proposed.

The review is organized as follows: Following the Introduction, Section 2 provides a
comparative analysis of existing review articles, highlighting their scope, limitations, and
positioning of the current work. Section 3 presents the research methodology, describing the
criteria for literature selection, data sources, and the thematic analysis approach. Section 4
outlines the principles of the RSSI fingerprint method, including signal propagation models
and the fingerprinting process. Section 5 discusses the applications of indoor localization,
covering a variety of use cases. Section 6 reviews the localization technologies commonly
employed in indoor environments, such as Wi-Fi, Bluetooth Low Energy (BLE), ZigBee,
LoRa and VLC. Section 7 explores radiomap generation techniques and data preprocessing
methods. Section 8 focuses on the ML and DL models used for localization. Section 9
addresses the open challenges and future directions in RSSI-based indoor positioning.
Section 10 provides structured recommendations for the development of an indoor lo-
calization system based on RSSI fingerprint. Finally, Section 11 concludes the review by
summarizing the main insights and outlining potential areas for further investigation.
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2. Analysis of Existing Review Articles
The existing literature on indoor localization includes both broad and focused review

articles that contribute to the understanding and advancement of localization technologies.
Some surveys offer comprehensive overviews of multiple technologies and methodologies,
while others are dedicated to specific systems such as Wi-Fi, LoRa, or Bluetooth. Collectively,
these studies form the basis for understanding the current landscape, current challenges,
and potential research directions in indoor positioning systems.

The study [26] provides a comprehensive overview of indoor localization scenarios and
methodologies. It focuses on the evolution from traditional techniques (e.g., trilateration) to
advanced ML-based approaches. The study highlights a broad range of techniques, offering
clear categorizations and performance metrics like accuracy and scalability. It also identifies
key areas of improvement, such as the limited integration of ML and DL techniques. The
study [27] provides a comparative analysis of indoor positioning systems. It emphasizes
hybrid approaches and data fusion techniques, offering insights into their advantages
and limitations. The work thoroughly explores measurement techniques and proposes
evaluation frameworks. The integration of AI with wireless localization is explored in [28].
The study highlights AI’s potential to address traditional challenges in localization, focusing
on ML and DL synergies. It explores hybrid techniques and future trends, identifying
opportunities for innovation. In the paper [29], the authors discuss localization solutions
tailored for IoT applications. The review highlights hybrid methods and performance
metrics relevant to IoT environments. The study [9] categorizes and evaluates various
localization technologies, including radio frequency-based. It provides strong comparisons
of techniques and use cases, particularly in navigation and disaster management. In [30], the
focus is on fingerprint-based indoor localization using intelligent algorithms. It thoroughly
explains fingerprint database creation and self-learning architectures, showcasing the
potential of ML approaches. The study highlights the need for more public databases to
benchmark systems effectively. Overall, it provides valuable insights but calls for further
research into diverse approaches. Study [2] examines RSSI-based localization systems
integrated with ML. It focuses on their scalability and robustness in smart city applications.
The work highlights urban use cases and the potential for widespread implementation
in dynamic environments. The transformative impact of DL is highlighted in [31]. The
study covers hybrid approaches and device-free techniques, discussing DL models and
their adaptability in security and healthcare. It identifies the high computational demands
of DL methods as a key limitation. The study underscores the need for collaborative efforts
to address these issues.

In contrast to these general surveys, some review articles focus specifically on individ-
ual wireless technologies. The study [3] explores Wi-Fi-based RSSI fingerprint methods
enhanced by ML models, such as neural networks. The work identifies key challenges,
including dataset variability and signal fluctuations, which can impact performance. The
work on [32] emphasizes the principles and applications of Bluetooth-based localization
systems. It highlights their low-cost and energy-efficient nature, making them suitable for
healthcare and smart cities. The review discusses challenges such as multipath interfer-
ence, which can affect performance in dynamic environments. The work [33] emphasizes
LoRa-based localization techniques, discussing trilateration, fingerprinting, and time-based
methods. The work highlights the unique challenges specific to IoT applications, such as
signal interference and accuracy limitations. A study on localization based on communica-
tion technology in VLC presents an overview of RSSI identification methods using LED
transmitters as positioning reference points [34]. The paper highlights the advantages of
VLC, including high spatial resolution, immunity to radio interference, and the ability to
reuse existing lighting infrastructure. It also notes the main limitations of VLC systems,
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such as the need for line of sight, vulnerability to shadowing, and sensitivity to ambient
light, which can impact performance in dynamic environments.

To better understand the strengths and limitations of existing review articles in the field
of indoor localization, we conducted a comparative analysis based on a structured set of
evaluation criteria. Table 1 summarizes the coverage of key aspects across eight widely cited
review articles, alongside our proposed work. The criteria include: practical applications,
the range of localization technologies discussed, explanation of RSSI fingerprint principles,
radiomap generation and data preprocessing techniques, the use of ML/DL algorithms,
evaluation of models and discussion of open research challenges.

Table 1. Comparative analysis of existing review articles on indoor localization.

Title, Year Applications Localization
Technologies

Principles of
the RSSI

Fingerprint

Radiomap
Generation
Techniques

Data Pre-
Processing
Techniques

ML/DL Data
Evaluation

Open
Challenges

[2], 2023 No Yes No No No Yes Yes Yes

[9], 2021 No Yes Yes No No No No No

[26], 2021 No Yes Limited No Limited Yes Yes Yes

[27], 2024 Yes Yes Yes Limited No Limited Yes Yes

[28], 2023 No Yes Yes No No Yes No Yes

[29], 2022 Yes Yes Yes No Limited No Yes Yes

[30], 2020 Yes Yes Yes No No Yes No Yes

[31], 2024 Limited Yes Yes No No Yes No Yes

[35], 2025 Yes Yes No No No Yes Limited Yes

[36], 2025 Yes Yes No No No Yes No Yes

Our work,
2025 Yes Yes Yes Yes Yes Yes Yes Yes

The analysis shows that most existing reviews focus on technologies and general
principles, but often do not provide a complete picture of the implementation pipeline. For
example, several reviews, such as [28,30,31] provide broad technological coverage but do
not go into detail on data collection, preprocessing. Similarly, some studies only address
the conceptual level of ML/DL usage without addressing data processing or performance
evaluation. A recent review [35] offers a comparative analysis of various localization
technologies, including Wi-Fi, BLE, UWB, RFID, and hybrid solutions, with a focus on
accuracy, coverage, and generalizability. However, it lacks a unified approach to consider
RSSI fingerprinting, nor does it analyze key steps in its implementation, such as radio
map construction methods and data preprocessing techniques. Although [36] provide a
broad and up-to-date review of indoor localization technologies and their applications in
various sectors, the review also does not establish uniform principles for RSSI identification
and does not systematically discuss radio mapping strategies and data pre-processing
methods. In contrast, our review aims to address these shortcomings by providing a
comprehensive and technically detailed overview covering the entire localization process.
In particular, it explains the principles of RSSI fingerprint, describes different radiomap
generation strategies, and includes data preprocessing techniques required for robust
ML/DL performance. We also provide an in-depth comparison of ML and DL algorithms
applied in this area and highlight open challenges.

An analysis of existing review articles shows that the existing body of review literature
provides important foundations for understanding indoor localization technologies, but
most studies either provide general overviews without going into practical details of
ML/DL integration, or they focus on individual technologies such as Wi-Fi, LoRa, or
Bluetooth. Despite the significant contribution of these publications, most of them do not
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cover the full cycle of building and applying RSSI fingerprint systems, including the stages
of generating radiomap, data preprocessing, selecting an appropriate ML or DL model.

Unlike existing works, this review provides a comprehensive and technically detailed
review covering all key steps of indoor RSSI fingerprint localization. The main contributions
of this study are as follows:

(i) This study presents an extensive review of various localization solutions proposed in
the research literature, with a primary focus on developments last five years;

(ii) Unlike most reviews, the review covers all stages of creating localization systems:
from signal propagation models to generating radiomap, data preprocessing, selecting
and evaluating ML/DL models, applications of indoor localization;

(iii) Use cases in healthcare, logistics, retail, education, smart buildings, transport hubs,
museums, hotels and smart cities are covered in detail;

(iv) A structured classification of radiomap generation methods is proposed: manual
collection, automated, simulation, ML methods and hybrid approaches. RSSI data
preprocessing methods are analyzed separately: formatting and eliminating missing
values, noise filtering, detection and treatment of emissions, normalization, dimen-
sionality reduction, data augmentation;

(v) A typology and comparative analysis of studies using ML and DL methods such as
k-NN, SVM, Random Forest (RF), Bayesian, Multilayer Perceptron (MLP), CNN, RNN
and hybrid architectures is presented. Specific error and accuracy values in different
scenarios are given;

(vi) This review summarizes the key limitations of modern localization systems—such as
signal instability, complexity of radiomap generation, device heterogeneity, noise and
poor model portability—and proposes promising solutions to improve the stability
and adaptability of these systems;

(vii) This review provides structured recommendations for designing RSSI fingerprint-
based indoor localization systems, covering all key stages from technology selection
to ML/DL algorithms.

3. Research Methodology
This study adopts a systematic review methodology in accordance with the PRISMA

2020 guidelines [37]. This review systematically collected, analyzed, and summarized
existing scientific data on indoor localization based on RSSI fingerprints using machine
learning (ML) methods. The methodology focuses on a broad examination of existing
research, identifying patterns, trends, and knowledge gaps.

The literature search was conducted using databases such as IEEE Xplore, Elsevier,
MDPI, Springer, etc. The following keywords and their combinations were used: “RSSI
fingerprint”, “indoor localization”, “machine learning based localization”, “indoor posi-
tioning” and “machine learning-based localization”. An iterative approach was used to
refine the search results, including citation tracking and link chaining, which provided an
extensive and thorough overview.

Two independent reviewers screened titles, abstracts, and full texts to assess eligibility,
with discrepancies resolved by discussion. The selection process followed the PRISMA
2020 flow diagram (Figure 1). A total of 2582 records were initially identified from major
databases. After removing non-research articles, duplicates, non-English publications,
and papers outside the time span, 887 records remained for screening. Based on titles
and abstracts, 491 records were excluded. Of 396 reports sought for retrieval, 265 were
assessed for eligibility. Finally, 188 studies met the inclusion criteria and were included in
this review.
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Figure 1. PRISMA 2020 flow diagram.

For each included study, data extraction included publication details, algorithms used,
dataset type, evaluation metrics, and claimed performance. A thematic synthesis was
then conducted to group studies by applied methods, identify emerging trends, assess
challenges, and identify future research directions in the field of RSSI fingerprint-based
indoor localization.

After applying the inclusion and exclusion criteria for the review article, a total of
188 relevant scientific publications were identified. The pie chart illustrates the distribution
of these publications by publisher (Figure 2). This distribution clearly demonstrates that
the majority of research on RSSI fingerprint and ML algorithms for indoor localization
is published in IEEE journals. Figure 3 shows the distribution of articles included in our
review, with a particular focus on the last five years, during which we aimed to cover as
much research as possible. The relatively small number of articles in 2025 is due to the fact
that many articles for the current year have not yet been published or are still unavailable.
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Figure 2. Distribution of selected publications by Publisher.

 

Figure 3. Distribution of reviewed articles by year.

Figure 4 is a mind map that depicts the structure and main components of the topic
of indoor localization based on RSSI fingerprint. The study consists of ten interrelated
sections, each of which focuses on an aspect of the localization process, from theoretical
principles to implementation issues and future directions.
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Figure 4. Review structure.

4. Principles of the RSSI Fingerprint Method
This section lays the theoretical groundwork for understanding how RSSI-based

fingerprinting enables indoor localization. It begins by examining the physical nature
of RSSI signals and their propagation models in various environments, highlighting the
challenges associated with signal variability and multipath effects. It then introduces the
fingerprinting technique as a data-driven alternative to geometric methods, explaining its
operational phases and advantages in indoors.

4.1. RSSI and Propagation Models

RSSI is a fundamental parameter in wireless communication, representing the power
level of a received radio signal in decibels relative to a milliwatt (dBm). The basic principle
of RSSI-based localization relies on the fact that as the distance between the transmitter and
receiver increases, the received signal strength decreases due to path loss.

RSSI-based localization methods rely on various propagation models to estimate the
relationship between distance and received signal strength. These models describe how
radio waves behave in different environments and account for factors such as path loss,
reflections, and obstacles.

1. The simplest free-space path loss model assumes an unobstructed line-of-sight (LoS)
between the transmitter and receiver. This model was first introduced by Harald T.
Friis in May 1946 [38]. The received power in this case is given by Friis’ transmission
Equation (1):

Pr(d) = Pt + Gt + Gr − L − 20log10d − 20log10 f + 20log10c (1)

where Pr(d)—received power at distance d, Pt—transmitted power, Gt—gain of the trans-
mitting antenna, Gr—gain of the receiving antenna, L—system loss factor, f —signal fre-
quency, c—speed of light, d—distance between the transmitter and receiver.

This model, however, does not consider real-world environmental factors such as
reflections and obstacles. In urban and indoor environments, signal propagation is more
complex due to multipath effects and shadowing.

2. A more realistic model that considers reflections from surfaces is the two-ray ground
reflection model, which extends the free-space model by incorporating both the direct
signal and the reflected signal from the ground [39]. The received power in this model
is given by (2):
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Pr(d) =
PtGtCrh2

t h2
r

d4L
(2)

where Pr(d)—received power at distance d, Pt—transmitted power, Gt—gain of the trans-
mitting antenna, Cr—gain of the receiving antenna, L—system loss factor, d—distance
between the transmitter and receiver, ht—height of the transmitting antenna, ht—height of
the receiving antenna.

3. To address the randomness in real-world signal propagation, the log-normal shad-
owing model introduces a stochastic component to account for environmental varia-
tions [40]. The received power is expressed as (3):

Pr(d) = Pt − PL(d0)− 10nlog10

(
d
d0

)
+ Xσ (3)

where Pr(d)—received power at distance d, Pt—transmitted power, PL(d0)—path loss
at a reference distance d0, n—path loss exponent, which depends on the propagation
environment, d—distance between the transmitter and receiver, Xσ¯zero-mean Gaussian
random variable representing random shadowing effects.

This model is widely used for indoor and urban localization because it better represents
random fluctuations in signal strength caused by obstacles and multipath effects.

Selecting the appropriate propagation model is crucial for accurate RSSI-based localiza-
tion, as different environments require different modeling approaches. While the free-space
model is suitable for open areas, the log-normal shadowing model is more appropriate for
complex indoor environments. However, even with an appropriate propagation model, the
accuracy of RSSI-based localization can still be compromised by various environmental
and system-specific factors. Due to these challenges, accurately estimating distance using
RSSI alone is difficult, as environmental factors and device-specific variations introduce
significant uncertainties. To address these limitations and enhance localization accuracy,
it is essential to employ more robust approaches, such as accurate propagation models
tailored to the environment, RSSI fingerprint methods that leverage pre-collected signal
data, or ML-based calibration techniques that dynamically adjust for signal variations and
environmental changes.

In addition to radio frequency propagation, similar principles can be extended to the
visible light spectrum. In VLC systems, the received signal strength also decreases with
distance due to optical loss, absorption, and reflection from surfaces. Since visible light
cannot penetrate walls, propagation is limited to line-of-sight conditions, which provides
strong spatial limitation, but also increases sensitivity to shadowing and ambient light [41].

4.2. Fingerprinting Technique

The RSSI fingerprint method is a widely used indoor localization technique in which
the location of a device is estimated by comparing real-time RSSI measurements with a pre-
recorded database of signal strength values. Unlike distance-based localization methods
that rely on propagation models, fingerprinting is data-driven, making it more suitable
for multipath environments and non-line-of-sight (NLoS) conditions [42]. RSSI fingerprint
method does not require additional hardware, as most smartphones, IoT devices, and Wi-
Fi-enabled systems can measure RSSI using built-in wireless modules. Figure 5 illustrates
the typical workflow of RSSI fingerprint-based indoor localization using a ML. The process
is divided into two main phases: the offline phase and the online phase.



Smart Cities 2025, 8, 153 11 of 45

Figure 5. Workflow of RSSI fingerprint-based indoor localization.

In the offline phase, RSSI values are collected at known reference points from multiple
access points (AP), creating a fingerprint database. These measurements are then cleaned
and processed during the data pre-processing stage to address noise and fluctuations. The
refined dataset is subsequently used to train a ML model capable of associating signal
patterns with spatial coordinates. During the online phase, the system receives real-time
RSSI values from the user’s mobile device in an unknown location. These values are input
into the trained ML model, which performs pattern matching to predict the most probable
location by comparing the real-time data against the previously recorded fingerprint.

The accuracy of fingerprinting-based localization depends on several factors, includ-
ing the density of reference points, the number of access points, and the quality of the
fingerprint database [43]. Increasing the number of APs generally improves accuracy but
also raises computational complexity and localization costs. Since RSSI values fluctuate
over time, periodic updates to the fingerprint database are required to maintain accuracy.
Addressing these challenges on fingerprinting remains an ongoing research area aimed at
improving its scalability and real-world deployment.

While the definition of RSSI has traditionally been applied to radio frequency tech-
nologies such as Wi-Fi, Bluetooth, ZigBee and LoRa, the same approach can be used for
visible light [44]. In VLC-based systems, optical RSSI values obtained from LED luminaires
serve as fingerprints, which are then compared with real-time measurements. This method
uses existing lighting infrastructure, provides centimeter-level accuracy, and guarantees
immunity to electromagnetic interference, although it requires line-of-sight and stable
lighting conditions [45].

5. Applications of Indoor Localization
Indoor localization technologies are widely used in various fields of activity, providing

increased efficiency, safety and user convenience. These systems are used in healthcare [46],
logistics [47], retail [48], autonomous vehicle [49], emergency [50], providing the ability
to track objects and optimize processes based on spatial data. In smart city ecosystems,
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indoor localization systems are important elements that connect physical space with digital
management platforms. Integrating positioning systems with IoT and AI management
systems allows municipalities to optimize urban infrastructure, improve the quality of
services provided, and ensure a higher level of safety for residents and visitors [2].

Below are the possible applications and real-world scenarios of indoor localization
(Figure 6):

Figure 6. Applications of indoor localization.

1. Healthcare. In healthcare facilities, indoor localization systems help improve patient
safety, optimize staff performance, and use equipment efficiently [51,52]. Implementa-
tion of tracking systems allows monitoring patient movements in real time, which is
especially important for people with cognitive impairments, minimizing the likeli-
hood of incidents [53,54]. In case of emergencies (e.g., accidents, fires), localization
systems allow you to quickly determine the location of personnel and necessary
resources, ensuring prompt provision of medical care [55].

2. Retail and shopping malls. In large retail spaces, indoor localization technologies
provide a personalized approach to customer interaction and optimization of business
processes [56]. The use of mobile applications with indoor navigation allows visitors
to easily navigate the shopping center space and find the stores and products they
need. Analysis of customer locations makes it possible to generate personalized offers
and notifications, increasing engagement and stimulating sales. In retail and shop-
ping malls, VLC-RSSI fingerprinting is attractive because it can reuse LED lighting
infrastructure to provide high-accuracy indoor navigation [41].

3. Smart offices. In a corporate environment, indoor localization systems allow you to
effectively manage space, increasing employee comfort and productivity [57]. In a
hybrid work environment, employees can quickly find free desks, meeting rooms,
and collaboration areas. Intelligent building management systems automatically
adjust lighting and climate control depending on room occupancy, reducing energy
costs. In emergency situations (e.g., fire, smoke), localization systems track personnel
movements and direct them to the nearest emergency exits [55,58].

4. Logistics and warehouse complexes. At industrial facilities, internal localization sys-
tems help optimize logistics processes and improve safety. Product location tracking
systems help minimize inventory errors and reduce product search time [59]. Moni-
toring employee movements in hazardous areas improves safety and reduces the risk
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of industrial injuries. Localization technologies provide navigation for mobile robots
and drones for automated cargo transportation [60,61].

5. Transport hubs. At airports, railway stations, and bus stations, internal localization
technologies improve passenger convenience and flow management efficiency. Pas-
sengers can quickly locate boarding gates, check-in counters and other key areas,
reducing the likelihood of delays. Integrating localization systems with airport logis-
tics services improves the reliability of the baggage handling process [62,63]. LiDAL,
the first indoor light-based object detection system based on radar principles and us-
ing VLC, is applied in various scenarios, the most notable example being car detection
in airport parking lots [64,65].

6. Museums and cultural sites. In cultural institutions, localization enables the creation
of personalized interactive routes and improved interaction with visitors. Visitors can
easily find the exhibits and exhibition areas that interest them [66,67].

7. Educational institutions. On university campuses, indoor localization systems im-
prove ease of movement and resource management [68]. First-year students and
visitors to campus can navigate the campus more quickly. In emergency situations,
technologies help control the movement of students and staff, speeding up the evacu-
ation process [55]. Analysis of the occupancy of classrooms and study areas allows
for their optimal use.

8. Sports and entertainment events. In large arenas and stadiums, localization plays a key
role in organizing events and managing the flow of people. Visitors can quickly find
their seats, reducing the likelihood of congestion. Localization systems help prevent
crowds from congesting in narrow passages. Integration with mobile applications
allows for the provision of event-related content to visitors [3].

9. Hotels and resorts. In the hospitality industry, indoor localization systems provide
personalized services and convenience for guests. Guests can easily find restaurants,
swimming pools, gyms, and conference rooms [69]. Localization systems help fulfill
customer requests faster.

10. Smart cities. In the concept of “smart cities”, localization technologies are integrated
with IoT devices to improve the efficiency of urban infrastructure [70]. Citizens
can find administrative offices, stores, and other important objects. In emergency
situations, localization systems help direct people to safe zones.

Thus, indoor localization technologies have wide application possibilities, increasing
efficiency and safety in various fields. Their further development in combination with
IoT and AI opens up new prospects for process optimization and improving the quality
of services.

6. Localization Technologies
This section provides an overview of the main wireless communication technologies

commonly used for indoor localization: Wi-Fi, Bluetooth, ZigBee, LoRa and VLC.
The pie chart in Figure 7 illustrates the distribution of articles included in the review

based on the types of wireless technologies used in RSSI fingerprint-based indoor local-
ization tasks. The chart clearly shows the dominant position of Wi-Fi technology, which is
utilized in 45% of the analyzed studies. This prevalence is due to the widespread availabil-
ity of Wi-Fi infrastructure in buildings, ease of access to RSSI data, and high compatibility
with existing devices.

Bluetooth ranks second, being employed in 18% of the studies. Its popularity is
attributed to low energy consumption and the ability to integrate with mobile devices and
BLE beacons. VLC accounts for 15% of the reviewed works, demonstrating its potential
to achieve high positioning accuracy by leveraging existing LED lighting infrastructure,
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although its applicability is limited by line-of-sight requirements. LoRa technology appears
in 7% of the publications, reflecting growing interest in large-scale localization with low
power requirements. ZigBee is used in 7% of the studies, benefiting from its support for
mesh networking and resistance to interference. The remaining 8% are categorized as
other technologies, including UWB, RFID, and FM. Thus, the chart highlights that Wi-Fi
remains the most commonly adopted solution for indoor positioning tasks, while alternative
technologies are applied in more specialized scenarios. Below is a brief description of each
of these technologies.

Figure 7. Distribution of reviewed articles by technology.

6.1. Wi-Fi

Wi-Fi is a wireless communication technology based on IEEE 802.11 standards. It
provides data transmission in the 2.4 GHz, 5 GHz and 6 GHz bands, using Orthogo-
nal Frequency-Division Multiplexing (OFDM) to ensure a stable signal and high speed.
Wi-Fi networks operate on the Carrier Sense Multiple Access with Collision Avoidance
(CSMA/CA) protocol, which prevents collisions during data transmission [71].

In addition to traditional data transmission, Wi-Fi is widely used in indoor positioning
systems. Wi-Fi-based positioning methods include measuring the RSSI and using phase
and time characteristics [72]. Wi-Fi signals can pass through walls and other obstacles,
making localization possible even in conditions where there is no direct line of sight [73].

6.2. Bluetooth

Bluetooth is a wireless communication technology that operates in the 2.4 GHz band
and uses Frequency Hopping Spread Spectrum (FHSS) to reduce interference. Unlike
Wi-Fi, Bluetooth is optimized for energy-efficient data transmission, making it popular in
IoT systems [74].

BLE allows you to determine your location using beacons and signal analysis [75].
The RSSI fingerprint method allows you to create a database of RSSI fingerprint, which
is then used to determine the location using ML algorithms. In addition, modern
BLE solutions use AoA and Angle of Departure (AoD) technologies, which improve
positioning accuracy [76].
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6.3. ZigBee

ZigBee is a wireless communication protocol based on the IEEE 802.15.4 standard
and designed for energy-efficient data networks. It operates in the 2.4 GHz, 915 MHz and
868 MHz bands, enabling self-organizing mesh networks [77].

In indoor positioning systems, ZigBee utilizes RSSI to estimate the distance between
devices. Combined with ML algorithms, ZigBee can be employed for localization in
low-power environments [78].

6.4. LoRa

LoRa is a wireless communication technology designed to transmit data over long
distances with minimal power consumption. It uses a patented LoRa modulation method
based on Chirp Spread Spectrum (CSS), which provides high immunity to noise. LoRa
operates in unlicensed frequency bands (868 MHz in Europe, 915 MHz in North America
and 433 MHz in Asia) [79].

Although LoRa is primarily aimed at wide area networks (LoRaWAN), it can also
be used for indoor localization [80]. Basic localization methods include RSSI and Time
Difference of Arrival (TDoA), which allows to estimate distance based on the difference in
the time it takes for a signal to arrive at different receivers [81].

6.5. VLC

VLC is a wireless technology that uses the visible spectrum (400–800 THz) to transmit
data, typically using LED lights as transmitters [82]. VLC systems work by modulating
the intensity of light at high frequencies that are invisible to the human eye, and are
received using photodiodes. Because light does not penetrate walls, VLC offers high
spatial confinement and immunity to electromagnetic interference, making it an attractive
alternative to traditional radio frequency-based methods [83].

7. Approaches to Radiomap Generation and Data Preprocessing
Accurate radiomap construction and effective preprocessing of RSSI data are essential

for the success of fingerprint-based localization systems. This section provides a structured
overview of the main strategies for generating radiomap, including manual, automated,
simulated, and hybrid approaches. It also presents a detailed classification of preprocessing
techniques aimed at addressing noise, missing values, outliers, and high dimensionality,
thereby enhancing the reliability and robustness of ML/DL-based localization models.

7.1. Radiomap Generation Techniques

The basic principle of RSSI Fingerprint method is to create a radiomap, which is a
database of RSSI values collected at reference points in the room. This data is used to
subsequently determine the location of the device based on the analysis of the received
signals. The generation of a radiomap is one of the key stages in the RSSI Fingerprint
method, since the correctness of the device location directly depends on the quality and
accuracy of this map. The radiomap serves as a basis for subsequent comparison of real
RSSI measurements with reference values, and any error or insufficient detail at the stage
of its formation can significantly reduce the accuracy of positioning. Therefore, the choice
of the method for constructing a radiomap, as well as the density and reliability of the
collected data, play a decisive role in the effectiveness of the entire localization system.
There are various approaches to generating radiomap, which can be divided into five main
groups (Figure 8).
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Figure 8. Radiomap generation techniques.

In addition to on-site collection radiomap, publicly available datasets are widely
used in the indoor localization literature as standardized benchmark data for testing and
validating algorithms. These datasets provide ready-made radiomap collected under
controlled conditions, allowing researchers to objectively compare localization methods
and evaluate their generalization capabilities. The most commonly used datasets are
described below:

UJIIndoorLoc—one of the largest and most well-known Wi-Fi fingerprinting datasets.
It was collected on the campus of Universitat Jaume I, Spain. It includes more than
21,000 records [84]. The UJIIndoorLoc database is flexible as it supports localization tasks
based on building ID, floor and location classification, 3D coordinate regression or hybrid
approaches due to its large-scale multi-floor structure.

The JUIndoorLoc dataset covers a five-floor building at Jadavpur University (In-
dia), RSSI measurements were collected on a fine 1 m2 grid using a custom Android
application [85]. It is specifically designed for evaluating machine learning and deep
learning models.

The Tampere dataset is a crowdsourced Wi-Fi fingerprint database collected at Tam-
pere University of Technology, Finland [86]. It includes 4648 fingerprints recorded from
21 Android devices in various orientations in the university’s five-story, 22,570 m2 building.
The data was collected by freely moving volunteers, allowing for the capture of different
signal propagation patterns across floors and conditions.

The IPIN2016 Tutorial dataset was collected in a 30 × 5 m2 (150 m2) corridor at the
Faculty of Engineering, University of Alcala, Spain [87]. It contains 927 training fingerprints
and 702 test samples, as well as signals recorded from 168 detected Wi-Fi access points
(WAPs) on one floor.

The Wireless InSite dataset is a synthetic database created using Remcom’s Wireless
InSite 3.3.0 ray tracing software [88]. It simulates Wi-Fi signal propagation in challenging
indoor environments and provides realistic channel characteristics such as path loss, delay
spread, angle of arrival, and RSSI values.

The UTSIndoorLoc dataset was collected from the Faculty of Engineering and In-
formation Technology (FEIT) building at the University of Technology Sydney (UTS),
Australia [89]. It covers 16 publicly accessible floors with a total floor area of approximately
44,000 m2. The dataset contains 9494 Wi-Fi fingerprints recorded at 1840 control points,
including 9107 training samples and 387 testing samples.
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7.1.1. Manual Data Collection Method

The manual data collection method is a traditional way of creating a radiomap, where
RSSI measurements are taken manually at pre-defined reference points in the room. A
person walks through the pre-defined positions, recording the coordinates of the reference
points and recording the RSSI values from the available access points. An example of this
approach is the study [90], which used traditional manual data collection methods to build
a radiomap. The data were collected in the university library building on the 3rd and 5th
floors for 15 months. Trained specialists took several consecutive Wi-Fi fingerprints (a total
of 63,504 samples) at fixed 448 positions and in specified directions. Another example is
the study [91], in which RSSI values were collected manually using ZigBee. Data collection
was performed in a simple 5 × 5 m2 lobby and four sensor nodes were used, arranged in a
rectangular shape as an access point. The main disadvantages of this approach are its labor
intensity and high time costs, especially for large or dynamically changing spaces.

7.1.2. Automated Data Collection

Automated data collection significantly reduces labor costs and time expenditures
compared to traditional methods that require manual data collection. For this purpose,
mobile robots equipped with SLAM (Simultaneous Localization and Mapping) technology
are used. SLAM simultaneously solves two problems: determining the current location
of the robot and building a map of the environment. This technique is especially effective
in conditions where there is no pre-known map, and allows the robot to adjust its route
in real time based on the data it receives. The work [92] describes the use of a robot to
autonomously build a fingerprint without stopping, which significantly speeds up the
process of creating a fingerprint. Using SLAM, the authors reduce the time to build a Wi-Fi
fingerprint map by 64–71% and reduce energy consumption by 61–64%. The work [93] also
uses a TurtleBot 2 mobile robot with LiDAR SLAM to automatically generate a radiomap.

Crowdsourcing offers an alternative automation method where data is collected by
regular users using mobile devices. The use of crowdsourcing for automatic data collection
is described in the study [94], where data is collected from users’ mobile devices. Users
select a route on a building plan via a mobile app and Wi-Fi RSS data is automatically
collected as the user moves, with data locations calculated based on timestamps and
movement speed. The study [95] presents a new method for automatically generating a
radiomap for indoor Wi-Fi localization using crowdsourced data. The system significantly
reduced the time required to generate the radiomap while maintaining high accuracy,
showing an average positioning error of 2.34 m.

7.1.3. Simulation and Modeling Methods

Simulation and modeling techniques allow generating a radiomap without the need to
conduct a full survey of the real environment. This is especially useful for complex or hard-
to-reach areas where manual data collection may be difficult or impossible. The study [96]
proposes a new method, semi-simulated Wi-Fi fingerprint construction, which allows
generating a dense radiomap with less time and effort. The proposed semi-simulated RSS
(SS-RSS) method generates dense fingerprints using only coarse real-world measurements
by simulating data at intermediate positions. The fully simulated radiomap method
proposed in the study [97] by Batoul Sulaiman et al. uses Wireless InSite software to
generate a fully simulated radiomap. The authors simulated radio signal propagation
taking into account building materials. The 3D Shoot and Bouncing Ray method was used
to evaluate the influence of different materials (concrete, glass, wood, metal) on RSSI.



Smart Cities 2025, 8, 153 18 of 45

7.1.4. Machine Learning and Data Interpolation

ML and interpolation methods can generate a radiomap based on a limited number
of measurements. Data interpolation is the process of estimating unknown values that lie
between two known data points. In other words, interpolation allows the prediction of
intermediate data values based on existing measurements or observations. An example
is the work [98], which proposes the Access-Point Centered Window-Based Radio-Map
Generation Network (APCW-RGN) method to automatically generate a Wi-Fi radiomap,
reducing the time and cost of data collection. The method uses generative adversarial
network (GAN) and an access point-centered data window, which allows taking into
account obstacle materials and the distance to the AP. The study [99] uses Euclidean
distance matrix recovery methods using deep neural networks and CNNs to improve
the accuracy of indoor positioning based on RSSI. The proposed method restores missing
data and remove noise in signal strength measurements, reducing the complexity of real-
time computations by moving most of the processing to the offline stage. Zhang and Cai
proposed a radiomap generation method based on multivariate polynomial interpolation,
which enables the creation of high-density RSSI fingerprint databases from a limited number
of reference points, significantly reducing calibration efforts [100]. The study proposes a
method for improving the RSSI fingerprint database for indoor localization using spatial
interpolation (IDW, quadratic and cubic spline, kriging), which allows creating synthetic
data with an accuracy comparable to real measurements and a maximum prediction error
of no more than 6 dBm [101]. In the paper [11], authors presented a new fingerprint
database reconstruction method for visible light positioning. Instead of relying on dense
offline measurements or complex signal propagation models, their approach synthesizes
fingerprints based on known LED coordinates while taking into account the photodiode
rotation angle. This method significantly reduces the inspection effort and achieves accuracy
comparable to dense fingerprint databases, reducing the positioning error to 39.85% in
simulations and 29.78% in experiments.

Compressed sensing has also been proposed as a promising technique for synthetic
RSSI fingerprint generation. By exploiting the sparsity of RSSI measurements, compressed
sensing enables the reconstruction of high-dimensional radio maps from a limited number
of observations, thereby reducing the effort of site surveys while maintaining comparable
localization accuracy [102]. In the paper [103], the authors proposed the RSSD-CS algo-
rithm, in which RSS differences compensate for device heterogeneity, and CS reconstructs
the complete fingerprint database from a limited number of samples. Their experiments
showed that the RSSD-CS fusion method improves the positioning accuracy by 15–20%
compared to traditional RSS- or SSD-based approaches, especially in scenarios with hetero-
geneous devices. The researchers in [104] propose a method to build indoor fingerprint
databases using compressed data. They first use a super-complete dictionary-based sparse
k-SVD coding method to ensure the sparsity of RSSI fingerprints, and then reconstruct a
complete radio map from a limited number of measurements using compressed data. This
approach significantly reduces the cost of site surveying, eliminating a critical bottleneck in
the deployment of large-scale fingerprinting systems.

7.1.5. Combined Approaches (Hybrid Methods)

Hybrid approaches combine several methods to improve the accuracy and efficiency
of radiomap generation. The study [105] combines subspace clustering methods with
graph methods. The proposed method uses an RSSI data clustering algorithm using a
signal subspace model and a sequential data segmentation algorithm. The system auto-
matically matches data clusters to physical regions using a graph model and the Viterbi
algorithm, which allows achieving a matching error of less than 1%. The work [106] com-
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bines SLAM and map management methods to create a hybrid radiomap. The study [93]
combines automated robotic data collection and data generation using GAN. The work [97]
presents a hybrid method that combines real measurements, interpolation and full modeling
(Wireless InSite).

7.2. Data Preprocessing

Since RSSI data is susceptible to various sources of error, such as signal fluctuations,
outliers, missing values, and high dimensionality, the data preprocessing stage is especially
important. It is aimed at eliminating incorrect measurements and improving the quality of
input information before feeding it to ML algorithms. Without adequate preprocessing,
even the most advanced algorithms may yield unreliable results due to noisy or inconsistent
input data. Therefore, the preprocessing stage is an important component in the develop-
ment of an indoor localization system. There are various data preprocessing techniques,
which can be divided into six main groups (Figure 9).

Figure 9. Data preprocessing techniques.

7.2.1. Formatting and Eliminating Missing Values

Handling missing values and anomalies in RSSI data is an important preprocessing
step, since incomplete or corrupted data significantly reduces the accuracy of positioning
algorithms. Various data cleaning and restoration methods are actively used to improve
the reliability of the radiomap and the quality of the ML model. Below, an overview of
the key approaches proposed in the literature is provided. The authors of [107] consider
Wi-Fi data cleaning methods aimed at eliminating errors, anomalies, and missing values in
RSSI measurements. The proposed algorithm utilizes the correlation between fingerprints
based on RSS values and access point identifiers to compute the relationships among all
samples and remove weakly correlated fingerprints from the dataset. The work [108]
describes a radiomap reconstruction method that uses the extended Kalman filter (EKF)
and Gaussian processes (GP) to fill in missing values. The authors show that the proposed
method minimizes positioning errors by predicting missing RSSI values taking into ac-
count temporal and spatial correlation. The study [109] proposes a Neighbor Mean Filter
algorithm for processing a fingerprint database to compensate for missing RSSI values.
The technique reduces the level of positioning errors by filling in missing data with the
average values of the nearest neighbors. The authors of [110] use an autoencoder and a
GAN to automatically update the radiomap, minimizing the cost of collecting and labeling
data. The method allows adapting the fingerprint database to changing environments,
improving the stability of the positioning system. The work [111] presents an approach
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based on sparse data representation, which allows to significantly reduce the amount of
required RSSI measurements. The authors use compressive sensing and SRSVD method to
reconstruct missing values, achieving high accuracy with minimal resource overhead.

7.2.2. Smoothing and Filtering Noise

RSSI measurements are subject to significant fluctuations even under stationary con-
ditions due to multipath reflections, signal absorption, and other environmental changes.
These fluctuations have a negative impact on the stability of the radiomap and the accu-
racy of localization. Smoothing and filtering methods are actively used to improve the
stability of the positioning system and suppress random noise. The authors of [112] apply
the Kalman filter to reduce RSSI fluctuations when localizing Bluetooth devices, which
improves the stability and accuracy of measurements. The work demonstrates that the
proposed method effectively suppresses random signal fluctuations due to changes in the
environment. The study [113] proposes a comprehensive approach combining wavelet
transform, fuzzy clustering (Fuzzy C-Means), and Kalman filter to eliminate noise in RSSI
data. Experiments show that the proposed method reduces the positioning error due to
adaptive noise filtering. The authors of [114] combine the location fingerprint method
with the unscented Kalman filter (UKF), providing improved filtering of RSSI data. The
method demonstrates high resistance to noise and increased localization accuracy com-
pared to traditional approaches. In [115], an autoencoder trained on noisy RSSI data to
efficiently reconstruct efficient restoration of the original signal values. The authors show
that the proposed method significantly reduces the impact of random RSSI fluctuations on
positioning accuracy. In study [43], outlier noise filter in RSSI samples is mitigated using
robust principal component analysis (RPCA). RPCA demonstrates a strong capability in
effectively reducing noise.

7.2.3. Detection and Treatment of Emissions

RSSI measurements used in indoor localization tasks are often subject to outliers
caused by multipath reflections, interference, hardware failures, and temporary signal
fluctuations. Outliers can significantly distort the structure of the radiomap and lead
to a decrease in positioning accuracy. Therefore, the key stage of preprocessing is the
automatic detection and correct processing of anomalous values. The study in [116]
presents an improved version of the weighted k-NN method to detect and eliminate
outliers in RSSI data. The technique reduces the impact of anomalous values, increasing
the positioning accuracy in a multipath environment. The authors of [117] apply a fast-
clustering algorithm to identify anomalous RSSI values and their subsequent processing
using the radial basis function (RBF). The method demonstrates high accuracy due to
automatic detection of outliers in the data. The study [118] presents an outlier detection
method based on autoencoders and CNN. The authors demonstrate that the proposed
approach can automatically filter out anomalous RSSI values, improving localization
accuracy. The study [119] proposes the use of GANs to detect anomalies in a radiomap.
The authors show that GAN is effectively trained on normal data and can detect outliers
that may reduce positioning accuracy.

7.2.4. Data Normalization

Data normalization allows to bring signal values to a common scale, eliminate the
influence of scatter and make the data more homogeneous and suitable for training ML and
DL models. Since RSSI values can vary significantly depending on the characteristics of
access points, distance, transmitter power and signal propagation environment, using raw
data without normalization leads to model instability and reduced positioning accuracy.
The authors of [120] demonstrate that normalizing RSSI data before training a deep neural
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network (DNN) helps to minimize the influence of different access points on positioning
results. The work [121] presents a method for RSSI normalization before feature extraction,
which ensures data uniformity for subsequent training of ML models. The authors of [122]
investigate the effect of normalizing RSSI values before processing them with ML and
Kalman filter algorithms. The study shows that preliminary normalization helps to reduce
positioning errors. The study [123] describes a method for normalizing RSSI data before
converting them into images for processing with the Vision Transformer. The authors show
that the proposed method improves localization accuracy by reducing the variability of
RSSI values.

7.2.5. Dimensionality Reduction

In some cases, RSSI-based positioning systems may involve high-dimensional data
due to a large number of access points and measurements. This can lead to feature redun-
dancy, model overfitting, and high computational costs. Dimensionality reduction methods
allow us to simplify the data structure, preserve the most significant information, and
improve the efficiency of ML algorithms. There are many approaches to dimensionality
reduction, including both linear and nonlinear methods. The authors of [124] propose
using autoencoders to reduce the dimensionality of the radiomap, allowing us to extract
the most significant features from the RSSI data. The method allows us to reduce the
memory footprint and improve the efficiency of ML algorithms during localization. The
study [125] provides a comparative analysis of various dimensionality reduction methods,
including PCA, singular value decomposition (SVD), random projection, as applied to
the problem of positioning in wireless networks. The authors demonstrate that the choice
of the optimal method depends on the data structure and measurement conditions. The
study [126] presents a stacked autoencoder method that reduces the dimensionality of data
while preserving important spatial features of RSSI. The authors show that the proposed
method improves the positioning accuracy due to a more compact data representation. The
work [127] proposes a joint-norm robust principal component analysis (JRPCA) method
for dimensionality reduction and denoising in the radiomap. The authors demonstrate
that the JRPCA model outperforms traditional PCA methods in handling noisy data. The
work [128] explores the application of kernel principal component analysis (KPCA) for the
dimensionality reduction of a radiomap. Compared with traditional PCA, KPCA better
preserves nonlinear dependencies in the data, which contributes to higher localization
accuracy. The authors of [129] propose a cluster-based JRPCA algorithm for RSSI data
dimensionality reduction and clustering. The method minimizes computational costs and
improves model accuracy. The study [130] proposes a hybrid approach that combines an
autoencoder and LSTM for simultaneous dimensionality reduction and temporal process-
ing of RSSI data, aiming to enhance the system’s robustness to signal fluctuations. The
authors of [131] investigate the impact of KPCA on the performance of extreme ML for
dimensionality reduction. Experiments show that the proposed method achieves better
generalization ability of positioning models. The work [132] proposes various dimensional-
ity reduction techniques that can improve classification accuracy in passive localization
systems. The authors consider the use of t-SNE and PCA for improving the quality of
the radiomap.

7.2.6. Data Augmentation

Data augmentation is an important step in building ML models, especially when the
number of available RSSI measurements is limited. Indoor localization requires a large
and detailed radiomap, which can be labor-intensive to assemble manually. Augmentation
methods allow creating synthetic or augmented data based on existing measurements, ex-
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panding the training set without the need for additional field experiments. The work [133]
discusses the use of generative models to synthesize new RSSI data, which allows expand-
ing the training set without additional measurements. The authors show that synthetic data
can be effectively used to improve positioning accuracy. The study [134] combines fuzzy
clustering methods and DL to model and augment RSSI data. The authors demonstrate
that proposed method allows compensating for data gaps, improving the quality of the
radiomap. The study [135] proposes to use the multi-output Gaussian process (MOGP) to
generate new RSSI fingerprints taking into account the spatial correlation between access
points. The work [136] presents a strategy for augmenting a radiomap based on a limited
data set. The authors show that the use of ML and interpolation algorithms can signifi-
cantly improve the positioning accuracy with a minimum number of measurements. The
authors of [81] use CNN to generate new RSSI fingerprints, which improves the quality
of the radiomap in a changing environment. The work [137] presents a data augmen-
tation method to improve the robustness and accuracy of ML algorithms in room-level
localization tasks. Synthetic RSSI data generation is used to improve the performance of
models, especially when training data is limited. The study [11] presents a new fingerprint
database reconstruction method for VLPs that does not depend on channel propagation
models and instead uses only known LED coordinates and photodiode orientation, making
the approach more practical and efficient compared to existing reconstruction methods.
In the paper [138], the authors also developed a new fingerprint regeneration method
for scenarios with uneven point distribution, which allows to do without an exact signal
propagation model and improve positioning almost to the level of a dense database.

8. Machine Learning and Deep Learning
ML and DL algorithms can account for nonlinear dependencies, spatial correlation of

signals, and adapt to environmental changes in RSSI-based indoor localization tasks. This
section reviews the main approaches, including classical ML, DL, transfer learning, and
reinforcement learning, as well as the performance metrics used to evaluate the models.

8.1. Performance Metrics

To objectively assess the quality of localization methods based on ML and RSSI finger-
print, various performance metrics are used. In the reviewed literature, a wide variety of
performance metrics are employed to evaluate RSSI fingerprint-based localization systems,
including accuracy, precision, average localization error, RMSE, R2, and CDF. Such diversity
complicates direct comparison between studies, as results are often reported using different
criteria and datasets. Nevertheless, in this review we attempt to provide a consistent
comparative analysis by grouping the most commonly used metrics and systematically
defining them. The key metrics used in the studies are shown below:

1. Accuracy—shows the proportion of correctly identified locations relative to the total
number of forecasts. Calculated as (4):

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

where TP is true positive, TN is true negative, FP is false positive, FN is false
negative classifications.

2. Precision—characterizes the proportion of correctly classified objects among all
objects that were classified by the algorithm into a given class (5):

Precision =
TP

TP + FP
(5)
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where TP is true positive, FP is false positive classifications.
A high precision value indicates that the algorithm generates a small number of

false positives.
3. Average Localization Error is one of the key metrics that measures the average

deviation between the predicted and actual location of the device. It is calculated
using Equation (6):

Average Localization Error =
1
N ∑ N

i=1

√
(xi − x̂i)

2 + (yi − ŷi)
2 (6)

where N is the number of test points, (x i, yi) are the true coordinates, (x̂i, ŷi) are the
estimated coordinates.

4. Mean-Squared Error (MSE)—characterizes the average value of squared deviations
of estimated coordinates from real ones. The equation for MSE is as follows (7):

MSE =
1
N ∑ N

i=1[(xi − x̂i)
2 + (yi − ŷi)

2
]

(7)

where N is the number of test points, (x i, yi) are the true coordinates, (x̂i, ŷi) are the
estimated coordinates.

MSE is sensitive to large errors because they significantly increase the value of
the metric.

5. Root-Mean-Squared Error (RMSE)—is the square root of the MSE, used to estimate
the typical size of the forecast error (8):

RMSE =
√

MSE =

√
1
N ∑ N

i=1[(xi − x̂i)
2 + (yi − ŷi)

2
]

(8)

where N is the number of test points, (x i, yi) are the true coordinates, (x̂i, ŷi) are the
estimated coordinates.

The RMSE metric is expressed in the same units as the original measurements (e.g.,
meters), making it clear and easy to interpret.

6. R-Squared (R2)—shows what proportion of the variance in the data can be explained
by the model used (9):

R2 = 1 − ∑N
i=1(yi − ŷi)

2

∑N
i=1(yi − yi)

2 (9)

where yi are actual values, ŷi are the predicted values, y is the average of the actual values.
The closer the R2 value is to 1, the better the model describes the original data.

7. Cumulative Distribution Function (CDF) is used for visual and quantitative analysis
of the distribution of localization errors. It expresses the probability that the localization
error will not be greater than a given value e (10):

CDF(e) = P(Error ≤ e) (10)

where P denotes the probability and e is a predefined error threshold.
CDF allows for a visual assessment of the probability of a device being within a given

error and is conveniently used to compare different localization methods.
Thus, the use of these metrics allows for a comprehensive and objective assessment of

the effectiveness of the proposed methods, accurately identifying their strengths and weak-
nesses, and selecting optimal solutions from the point of view of practical implementation.
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8.2. Machine Learning
8.2.1. k-Nearest Neighbors and Weighted k-NN

The k-NN algorithm is one of the most popular and easy-to-implement ML methods
used in classification and regression problems. In the context of indoor localization based
on RSSI fingerprint, k-NN is used to determine the location of a mobile node by comparing
the current RSSI vector with previously registered fingerprints in the training base. The
principle of k-NN is as follows: for a new observation, the k closest points in the training
set are determined. The class or coordinate is predicted based on the labels of these
neighbors—by voting or averaging coordinates [139].

Table 2 contains a comparative analysis of scientific articles that use k-NN algorithms
and their modifications (WkNN, MKNN, DML-KNN, etc.). Key characteristics of each
work are presented: title, year of publication, method used, technology and quantitative
localization results. In particular, in the article [140], the improved WkNN model with
Gaussian regression achieved RMSE of 1.78 m on BLE data, and Kalman filter with k-NN
achieved 1.9 m on FM signals [141]. In study [142], authors use DML-KNN in their research
and achieves improved accuracy in floor and coordinate classification tasks. Study using
RBIC showed up to 99% classification accuracy for Wi-Fi fingerprints through clustering
and subsequent classification [143]. Overall, models with hybrid approaches achieved
significant reduction in localization errors through filtering and prediction compared to
classical k-NN. In study [144], authors used WkNN for VLC with multiple photodiodes,
achieving a median error of 4.74 mm with four luminaires and 9.87 mm with two luminaires,
demonstrating the effectiveness of multi-photodiode reception for improving accuracy.
In the paper [145] a method based on Spearman distance-WkNN was proposed, which
provided an average localization error of about 4.9 cm, which confirms the applicability of
statistical similarity metrics in improving the accuracy of RSSI-fingerprint VLC systems.

Table 2. Works using k-NN for RSSI-based indoor localization.

Title Year Method Technology Performance Results

[140] 2021 Improved WkNN + GPR BLE RMSE = 1.78 m, improved accuracy compared to
kNN and WkNN algorithms

[141] 2020 Kalman Filter + KNN (KF-KNN) FM Average error = 1.9 m, improved accuracy
compared to kNN and WkNN algorithms

[142] 2024 Distance Metric Learning
(DML-KNN) Wi-Fi 7.14 m with 90% of the localization errors. DML

improves KNN performance by 80%

[143] 2023 Rank-Based Iterative Clustering
(RBIC) + ML classifiers Wi-Fi Localization accuracy ranges from 94% to 99%

[144] 2020 WkNN VLC Median error of 4.74 mm for four luminaires and
median error of 9.87 mm with two luminaires

[145] 2020 Spearman
distance-WkNN VLC Positioning error is 4.9 cm

[146] 2024 M-kNN LoRa
The modified k-NN model showed high accuracy,
scoring 86.85% accuracy during 5-fold
cross-validation

[147] 2024 k-NN, WkNN Wi-Fi Fingerprinting achieved 76.50% overall accuracy

[148] 2022 k-NN Wi-Fi, BLE Wi-Fi Fingerprinting gave the best accuracy
among BLE and Zigbee at 3–5 anchors

8.2.2. Bayesian Methods

Bayesian methods in the context of the localization problem are based on the prob-
abilistic interpretation of the location determination process. They are built on Bayes’
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theorem, which allows calculating the probability of a hypothesis in the presence of new
data [149]. The basic approach is to create a model that estimates the probability of a device
being in a certain position based on previously collected information and current RSSI
measurements. In the field of localization, Bayesian methods are represented by various
algorithms, among which the most common are the Naive Bayes classifier, Hidden Markov
Model (HMM) and GP. Study [150] proposes an adaptive Bayesian model for multi-story
environments that improves localization accuracy compared to traditional methods. The
presented approach reduced the average localization error to 1.2 m on individual floors
and to 1.8 m in the multi-story mode. In work [151], a Bayesian model-based method is
presented for detecting RSSI fingerprint variations using unlabeled data. Experimental
results show that the proposed approach provides an improvement in localization accuracy
of about 10–15%, achieving an average error of about 1.5 m even under significant environ-
mental changes. The work [152] proposes to use hidden Markov models with preliminary
feature extraction using the dynamic mode decomposition (DMD) method. The testing
results showed an average localization error of about 1.75 m and an overall accuracy of
94.65%, which is 12–40% better than classical approaches based on WKNN, RF, and Naive
Bayes classifier.

8.2.3. Support Vector Machine

SVM is a powerful ML tool that has been successfully applied to the indoor localization
problem based on fingerprinting technique. SVM effectively copes with nonlinear data
dependencies by using various kernel functions and demonstrates high robustness to noise
and variations in RSSI signals [153]. An analysis of six studies that applied the SVM method
is presented in Table 3.

Table 3. Works using SVM for RSSI-based indoor localization.

Title Year Method Technology Performance Results

[154] 2020 One-vs-All SVM ZigBee Training accuracy: 84.92%
Testing accuracy: 74.39% in area: 8 m × 12.5 m.

[155] 2023 Willmott’s index of agreement
(WIA) based on the SVM Wi-Fi Average localization accuracy 0.466 m,

improvement 84.96%

[156] 2023
Kernel Adaptive Filtering, SVM

based on reproducing kernel
Hilbert space (RKHS)

Wi-Fi Improved accuracy by at least 7%

[157] 2024 SVM and Transfer Learning Wi-Fi CSI is significantly more accurate than RSSI,
especially for time series

[158] 2022 Back Propagation–Support
Vector Regression (BP-SVR) RFID Average localization error 9.5 cm in a

6 × 8 m2 room

[159] 2020
Hybrid approach

(trilateration + fingerprinting
with SVR)

UWB Localization accuracy of over 95%

[160] 2021 A one-against-all multi-SVM
classifier VLC The average positioning

error declined by 73.28%

The highest localization results among the analyzed studies were achieved using
hybrid approaches combining SVM with other modern ML algorithms and various data
sources. Mo et al. proposed an approach based on a combination of back propagation neural
network and support vector regression (BP-SVR), which achieved an average positioning
error of only 9.5 cm in a 6 × 8 m2 room [158]. High performance was also achieved by
the method using UWB technology with a hybrid approach combining trilateration and
SVR, where the average positioning error was less than 10 cm in complex multi-factorial
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environments [159]. The authors of [155] achieved an average localization accuracy of
0.466 m, which is 84.96% better than the results obtained using legacy radiomap, by using
SVM regression with Wilmott Index of Agreement and automatic fingerprint database
updating. The paper [160] proposes a method using a one-against-all multi-SVM classifier,
which made it possible to compensate for the influence of random reception angles and
reduce the average positioning error by 73.28% compared to traditional approaches.

8.2.4. Ensemble Methods

Random Forest is an ensemble ML method based on constructing multiple decision
trees and aggregating their predictions to improve the overall accuracy of the model [161].
Many studies use RF as a standalone classifier or as part of ensemble methods—along with
other algorithms (e.g., KNN, SVM, MLP).

Chen et al. proposed a gradient-based random forest (GBRF) localization method
where RSSI features are transformed using a trained nonlinear mapping function [162].
Using RF as a regression model achieved a localization error of less than 1.5 m and signifi-
cantly improved the nearest neighbor ranking compared to traditional k-NN approaches.
Roy et al. presented a weighted ensemble classifier based on Dempster-Shafer belief theory,
which used RF, SVM, KNN, and MLP algorithms as base models [163]. The method was
tested on two widely used datasets, JUIndoorLoc and UJIIndoorLoc, where it demon-
strated up to 98.26% classification accuracy and an average positioning error of 0.79 m.
In study [146], Kamal et al. an experiment on indoor localization was implemented in a
real environment—a multi-story round building, where LoRa technology was applied and
RSSI + SNR fingerprinting was used. In a comparative analysis of various algorithms (RF,
MKNN, SVM, Decision Tree), RF showed high positioning accuracy with an average error
of about 2.2–2.5 m. In the paper [164], authors developed an autonomous VLP (Visible
light positioning) fingerprinting system and evaluated multiple ML and model-based
algorithms. Ridge regression achieved the best results with a mean error of 84.4 mm and a
90th percentile error of 144 mm, outperforming SVR, RF, k-NN, and MLP.

8.3. Deep Learning

With the development of computing power and the availability of large RSSI fin-
gerprint datasets, deep neural networks (DNNs) have become popular. They are better
at handling complex nonlinear dependencies in the signal space. The most popular ap-
proaches are listed below.

8.3.1. Fully Connected Networks (FCN)

FCNs, also known as multilayer perceptrons (MLPs), are a basic architecture of arti-
ficial neural networks in which each neuron in one layer is connected to every neuron in
the neighbor layers [165]. Such networks are widely used in regression and classification
problems, including indoor location tasks based on RSSI. In the context of positioning,
MLPs are used to map an RSSI pattern to coordinates, extracting complex nonlinear rela-
tionships between the input features (RSSI) and the output (x, y coordinates). The network
architecture can be optimized by choosing the number of hidden neurons, the activation
function, and the learning strategy. In study [166], Puckdeevongs applied a 4-4-2 MLP
architecture (four inputs from Wi-Fi stations, one hidden layer with four neurons, and two
outputs—x, y coordinates). The network was trained and tested in the lab and hallway
areas using data collected from ESP8266 modules. In the lab, the accuracy was higher:
with an error less than 0.5 m as 20.93%, and an error from 0.5 to one meter as 34.88%. In
work [77], Fahama et al. applied MLP, RNN, and k-NN algorithms for RSSI localization
based on real and synthetic fingerprints collected in a ZigBee network. MLP trained on real
data showed the best results in all scenarios with an error from 0.9280 to 1.0990 m.
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8.3.2. Convolutional Neural Networks

CNNs are a type of deep neural networks originally developed for processing 2D
images but have been successfully adapted to RSSI-based indoor localization tasks [167].
CNN have the ability to automatically extract spatial and temporal features from the
input data. For example, Zhang et al. proposed a Wavelet-CNN architecture that uses the
Haar wavelet transform before applying 1D convolution [168]. Below, Table 4 presents a
summary of studies that use CNN for RSSI-based indoor localization.

Table 4. Works using CNN for RSSI-based indoor localization.

Title Year Method Technology Performance Results

[12] 2023 CNN Wi-Fi A verification accuracy up to 99.09%

[42] 2022 CNN Wi-Fi Accuracy is up to 91%

[81] 2024 CNN + SE (Squeeze and
excitation) LoRa A localization error is 284.57 m on the test area,

accuracy is 8.39% higher than analogues.

[168] 2023 Wavelet-CNN Wi-Fi The MAE is 1.54 m and RMSE is 1.84 m

[169] 2023 Radio robust image fingerprint
localization RRIFLoc, ResNet Wi-Fi Reduces the average location estimation error

by 56.87%

[170] 2023 CNN Bluetooth An accuracy is about 94%

[171] 2023 Extreme learning machine
autoencoder (ELM-AE)-CNN Wi-Fi Localization improves up to 68.36% in Tampere

and 67.56% in the UJIIndoorLoc dataset

[172] 2020 CNN mmWave Wi-Fi RMSE 11.1 cm; accuracy 99%, an average median
error of 9.5 cm for direct coordinate estimate.

Deng et al. developed the RRIFLoc algorithm, which uses RSSI-to-image transforma-
tion followed by deep residual networks, achieving an error reduction of 56.87% compared
with existing methods [169]. Zhu et al. proposed a Wi-Fi localization model based on a
CNN including two fully connected layers, trained on RSSI heat maps [12]. To speed up
data collection, 3D ray-tracing simulation was used. Verification accuracy of up to 99.09%
was achieved on the UJIIndoorLoc and Wireless InSite datasets. Lutakamale et al. proposed
a CNN-based approach with squeeze and excitation (SE) modules to enhance the attention
to the most significant features, achieving an error of 284.57 m, which is 8.39% better than
previous methods on the same dataset [81].

8.3.3. Recurrent Neural Networks

RNNs are a type of neural network architectures that can process sequential data due
to the presence of feedback loops that allow them to remember information about previous
inputs [173]. However, standard RNNs suffer from the vanishing gradient problem, which
limits their ability to learn long-term dependencies. In response to this, modifications
were developed—LSTM and GRU, which have improved memory management mecha-
nisms [174]. LSTM includes memory cells and three control elements: input, output and
forget gates, which allows for efficient storage and retrieval of information in long time
sequences. GRU simplifies the structure by combining forget and input gates, providing
similar performance at lower computational costs [175].

Table 5 presents the key studies using RNNs and their modifications LSTM. The article
titles, year of publication, methods used, wireless technology applied and brief numerical
results are provided. In study [176], using a dual-layer Bi-LSTM and attention mechanism,
an error of 0.95 m was achieved, with 100% of the errors being less than 2.5 m, indicating
high stability even under signal fluctuations. In the Bluetooth scenario [177], Bi-LSTM also
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achieved an error of 1.3 m, outperforming both LSTM and MLP, especially under unstable
signal conditions.

Table 5. RNN in indoor localization tasks.

Title Year Method Technology Performance Results

[176] 2024 DL-BiLSTM Wi-Fi Average error is 0.95 m with 100% of the errors under 2.5 m; 37%
improvement over DLSTM.

[177] 2022 Bi-LSTM Bluetooth Distance error is 1.3 m with probability of 95% in area 8 m × 12 m,

[178] 2022 LSTM Wi-Fi Improved the precision of indoor localization compared to
state-of-the-art methods.

[179] 2023 Bi-LSTM Wi-Fi Improved coverage and accuracy in real-world conditions.

8.3.4. Hybrid Architectures

Hybrid architectures in indoor localization tasks are a combination of different DL
models and traditional ML methods to achieve high accuracy and robustness to noise and
changing environments. Such architectures combine, for example, CNNs, autoencoders,
transformers, and deep metric learning, providing both feature extraction and efficient
coordinate classification or regression.

Table 6 provides an overview of the current studies using hybrid architectures. The
work [180] proposes a hybrid architecture combining a CNN and a transformer encoder.
First, the CNN extracts spatial features from RSSI fingerprints, and then the transformer
processes the resulting vectors, taking into account global dependencies between APs. The
authors of [181] combined a CNN and a convolutional autoencoder for positioning in a
computationally constrained environment. The Convolutional Auto-Encoder is used for
pre-training to extract the most significant features, and then the CNN classifies the position
based on these features. The architecture is optimized to run on edge devices, achieving
about 99% building accuracy, over 90% floor accuracy, and 9.5 m positioning mean error on
UJIIndoorLoc. In the paper [182] a hybrid algorithm based on LSTM and FCN is proposed
to solve the problem of positioning in visible light systems. Experimental results showed
that the hybrid model provides an average positioning error of 0.92 cm and a maximum
positioning error of less than 5 cm.

Table 6. Hybrid architectures in indoor localization tasks.

Title Year Method Technology Performance Results

[180] 2024 CNN + Transformer encoder LoRa Localization mean error is 290.71 m

[181] 2024 CNN + Convolutional
Auto-Encoder Wi-Fi About 99% building accuracy, over 90% floor

accuracy, and 9.5 m positioning mean error

[182] 2021 LSTM-FCN VLC An average positioning error of 0.92 cm and a
maximum positioning error of less than 5 cm

[183] 2023 CNN + SAE (Stacking
auto-encoders) Wi-Fi The floor accuracy is 96.73%, the building

accuracy 100%, the position accuracy is 11.56 m

[184] 2024

Deep Gaussian Process
Regression (DGPR) + Temporal

Weighted RSSI
Averaging + Kalman Filter

LoRa Average error 1.94 m, 90% error of
3.28 m

[185] 2024 CNN + LSTM Wi-Fi
The proposed architecture outperforms baseline
DL methods by achieving higher accuracy across
all evaluated datasets
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8.4. Transfer Learning

Transfer Learning is an approach in ML and DL where a model trained on one task
(or dataset) is reused or fine-tuned to solve another, related task or for a different environ-
ment [186]. In the context of RSSI fingerprint localization indoors, this method is especially
relevant, since the propagation conditions of radio signals indoors often change. Instead of
retraining the network from scratch for each new scenario, it is possible to use the already
“accumulated” weights from a similar task and only slightly fine-tune them on data from a
new environment [187].

In study [188], a TL-ILC scheme with weight freezing is proposed, where the autoen-
coder trained in the original environment is reused and fine-tuned using a small set of new
data collected by another device in the same environment. Three transfer variants (decoder
freezing, no freezing, random initialization) gave excellent results: the best average local-
ization error was 0.82 m using TL-ILC Type-2. In work [189], the authors reformulate the
indoor-localization problem as a regression problem and apply few-shot learning, which
allows the model to adapt to new rooms using a limited amount of labeled RSSI data. In the
experiment, the model showed a 57.9% improvement over few-shot classification, a 13%
improvement over KNN and a 11.1% improvement over SAE-CNN. The authors of [190]
apply an attention-based auxiliary network and a model transfer strategy between two
different buildings. By leveraging the transfer learning mechanism and the attention-based
auxiliary network (AAN), the positioning error was significantly reduced: the 75% and
90% CDF values and the average localization error of the AAN model decreased by 6.2%,
2.2%, and 4.6%, respectively, compared to the baseline.

8.5. Reinforcement Learning

Reinforcement learning is an ML paradigm in which an agent interacts with the
environment through trial and error and receives a reward for successful actions. The
agent’s goal is to maximize the total reward by learning the optimal behavior strategy [191].
In indoor localization tasks using RSSI fingerprint, RL can be used to improve the data
collection process, adapt to a dynamic environment, and optimize the trajectory of a mobile
robot or user.

In study [87], the authors propose a hierarchical algorithm based on deep Q-learning
that allows sequentially dividing the search space into octants, thereby exponentially re-
ducing the search area with a time complexity. The method demonstrated high robustness
to RSSI fluctuations and achieved a high accuracy and efficiency under single-plane and
multi-plane localization conditions using the IPIN2016, UJIIndoorLoc, and UTSIndoorLoc
datasets. In the study [192], the authors propose a continuous localization framework
based on Deep Reinforcement Learning by formulating the localization task as a Markov
Decision Process (MDP) and introducing a novel reward-setting mechanism grounded
on the detection of stable radio beacons. Experimental validation using Bluetooth 5 de-
vices demonstrated that the proposed method achieved a 59% reduction in root mean
square localization error compared to the classical unsupervised multilateration approach.
Hajiakhondi-Meybodi et al. proposed a reinforcement learning-based framework (JUNO)
for dynamically selecting anchor nodes in ultra-wideband indoor localization systems to
mitigate the effects of NLoS conditions [193]. Unlike conventional RL approaches, JUNO
significantly improves convergence speed and location accuracy without requiring complex
preprocessing, as demonstrated through simulations in ultra-dense indoor environments.

Despite the emergence of several promising reinforcement learning-based approaches
for indoor localization, this area remains relatively underdeveloped. Significant research
efforts are still required to refine RL architectures, optimize training processes, and enhance
model resilience in environments with noisy and highly variable signal conditions.
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9. Open Challenges and Future Directions
Despite significant progress in the development of indoor positioning systems based

on RSSI fingerprint and ML methods, there are a number of unresolved issues that prevent
the large-scale implementation of these solutions in real-world environments. The process
of creating a radiomap using the RSSI fingerprint method is a complex task that is associated
with many obstacles due to physical, technological and organizational factors. The main
challenges of RSSI fingerprint based indoor localization are shown in Figure 10.

Figure 10. Challenges of RSSI fingerprint-based indoor localization.

One of the key challenges is environmental variability and signal variability. Indoor
spaces often contain many reflective surfaces such as walls, ceilings, and furniture, which
causes multipath propagation of the signal [194]. As a result, the receiver not only records
the direct signal, but also its reflected versions, causing interference and significant varia-
tions in RSSI, even at fixed locations. This makes it difficult to create a predictable radiomap,
as the slightest changes in the position of the receiver or objects in the room can cause
significant changes in signal strength. Additionally, LoS issues arise in situations where
radio waves pass through obstacles such as walls or furniture, which creates unpredictable
changes in RSSI [195]. Environmental dynamics, such as people moving or furniture chang-
ing positions, also cause the radiomap to become outdated, as real conditions begin to
diverge from previously recorded RSSI data [184]. To improve the stability of localization
in a changing environment, it is recommended to use reinforcement learning methods
that allow dynamically adapting the model and updating the radiomap based on the
accumulated experience of interaction with the environment.

The process of creating a radiomap requires significant time and labor resources [97].
In most cases, researchers have to physically walk around all points in the space and collect
data from all available signal sources, which is especially problematic in large buildings
or multi-story complexes. Even small changes in the physical structure of the room may
require a complete or partial rewrite of the radiomap, which increases the workload of the
researcher and reduces the efficiency of the system [196]. The development of automatic
radiomap updating systems, such as autonomous robots or drones capable of recalculating
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RSSI in real time, partially solves this problem, but significantly increases the cost and
complexity of the system [92].

The heterogeneity of devices and the need for calibration are another serious prob-
lem [197]. Different devices, including smartphones, tablets and specialized sensors, have
different characteristics of radio signal receivers, which leads to different RSSI values at
the same point in WI-FI systems [198]. BLE-based localization systems are also affected by
device heterogeneity: In the paper [199], authors empirically demonstrated that RSSI values
can vary up to 6 dB between smartphone models in the same positions and orientations
due to hardware variability. To address this issue, they propose using RSSI ranking, which
improves interoperability between devices based on the relative order. The heterogeneity
of devices creates a problem of data incompatibility and requires complex calibration proce-
dures to ensure the same accuracy on all devices. To overcome this problem, it is advisable
to use transfer learning methods that allow adapting trained models to new devices, as
well as normalizing and calibrating RSSI data at the preprocessing stage.

Another significant challenge is noise and interference, which are inevitable in electro-
magnetically saturated indoor spaces. Wi-Fi networks, Bluetooth devices, microwave ovens,
and other electronic equipment can create interference, distorting the RSSI [26]. To combat
this, data filtering and noise reduction algorithms are used, but such methods increase the
computational complexity of the system and can reduce the positioning accuracy [113,114].
To improve the reliability of the data, it is recommended to use filtering methods such as
Kalman filter, wavelet transform and autoencoders, which can effectively remove noise
components and restore the original signals.

Scalability and maintenance of the system also require significant effort. Large spaces
require a large database of RSSI values for each point, which complicates data storage
and management. Frequent recalibration of the radiomap and data updates lead to high
operational costs. The complexity of integrating ML methods adds another layer of com-
plexity [2]. Although such methods can improve the accuracy of the system, they require
large amounts of data to train the models and powerful computing resources [3]. Moreover,
ML models trained on data from one environment may not work correctly in another
environment without additional training or adaptation, which requires constant data
updates [200]. To improve generality, it is recommended to use few-shot learning, meta-
learning, and adaptive tuning of models with a minimum amount of data collected in a
new environment.

RSSI-based localization systems also face a trade-off between accuracy and complex-
ity [201]. The fingerprinting method requires complex data matching algorithms, which
can slow down the system in real time, especially in applications where data processing
speed is critical, such as security systems or emergency navigation. Technical and financial
challenges in implementing the system include the high cost of installing a large number of
access points to provide coverage of the entire room and the difficulty of integrating the
localization system with existing IoT or building management systems [202]. As a solution,
it is proposed to use lightweight architectures (e.g., MobileNet [203], TinyML [204]) and
knowledge distillation methods to create simplified versions of models without significant
loss of accuracy.

Another important point to mention is that in smart cities, the compatibility of differ-
ent localization systems installed in buildings is of particular importance. This requires
unified data format standards, as well as reliable protection of location information during
its transmission and storage. An important condition is the integration of localization
solutions with city monitoring platforms. At the same time, the system must be scalable
not only within a single facility, but also cover a network of interconnected positioning
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points throughout the city, which requires the use of cloud-edge architectures and modern
methods of data integration and processing.

In addition to the challenges faced by RF-RSSI methods, RSSI fingerprinting in VLC
has its own limitations. Firstly, VLC localization requires strict line-of-sight between the
LEDs and receivers; shadowing or occlusion can significantly reduce performance, and
high spatial confinement reduces the coverage area [205]. Secondly, ambient light varia-
tions and dynamic lighting conditions can lead to instability of fingerprint databases [34].
Finally, although centimeter-level accuracy can be achieved under controlled conditions,
performance is significantly reduced by uneven or sparse fingerprint distributions, affect-
ing reliability and scalability [44]. VLC-RSSI challenges such as line-of-sight dependence,
shadowing, and ambient light variations can be mitigated using hybrid RF-VLC systems,
multi-sensor data fusion, adaptive filtering, and relative RSSI normalization. Scalability and
non-uniform LED placement can be addressed using crowdsourcing, synthetic fingerprint
generation and integration with smart lighting infrastructure.

Together, these factors create significant barriers to creating an accurate and reliable
radiomap, requiring an integrated approach to the development and optimization of RSSI-
based indoor localization systems. These difficulties are addressed through automation,
crowdsourcing, interpolation, adaptive models, and generative approaches. Modern
methods allow the creation of more accurate, adaptive, and scalable radiomaps while
minimizing time and resource costs.

10. Discussion on the Development of an Indoor Localization System
Based on RSSI Fingerprint

This review provides detailed recommendations for creating an indoor localization
system based on the RSSI fingerprint method, covering all key stages—from technology se-
lection to building a machine learning model. Creating an indoor localization system based
on the RSSI fingerprint method requires a comprehensive approach, covering technology
selection, radio map construction, data preprocessing, and machine learning algorithm
selection. The diagram shown in Figure 11 reflects the main stages of the RSSI-based
localization system design process.

Figure 11. Key stages in designing an indoor localization system based on the RSSI fingerprint method.

Firstly, the choice of wireless technology plays a crucial role in the design of an RSSI
fingerprint-based indoor localization system and should be based on a thorough analysis
of its advantages and limitations. Based on the analysis of the articles included in this
review, the findings presented in Table 7 summarize the main characteristics of wireless
technologies commonly used in RSSI fingerprint-based indoor localization systems.
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Table 7. Comparison of wireless technologies for RSSI Fingerprint-based indoor localization.

Technology Frequency Band Advantages Disadvantages

Wi-Fi 2.4/5 GHz
Widely available infrastructure, easy
access to RSSI data, relatively high

data throughput

High RSSI fluctuation, multipath
effects, interference from other devices

Bluetooth (BLE) 2.4 GHz
Low energy consumption, widely

supported on mobile devices, suitable
for beacon-based positioning

Short range, RSSI is noisy and less
stable, affected by human

body blocking

ZigBee 2.4 GHz Low power, mesh networking
capability, good for dense networks

Low data rate, less RSSI resolution,
fewer compatible consumer devices

LoRa 433/868/915 MHz Long range, excellent penetration
through walls, ultra-low power

Very coarse RSSI resolution, low data
rate, limited indoor accuracy

VLC 400–800 THz

Centimeter-level accuracy, immunity to
RF interference, high spatial

confinement, uses existing LED
lighting infrastructure

Requires line-of-sight, sensitive to
shadowing and ambient light
variations, limited coverage

beyond walls

Based on Table 7, we can draw the following conclusions regarding the choice of
technology for building an indoor localization system based on RSSI fingerprint. Each
technology has its own advantages and limitations that need to be considered depending on
the requirements of a specific application scenario. Wi-Fi provides ease of implementation
due to the existing infrastructure and high availability of RSSI data, but suffers from signal
instability and interference, which can reduce accuracy. Bluetooth demonstrates low power
consumption and good support on mobile devices, making it convenient for personalized
and portable solutions, albeit with limited range and signal stability. ZigBee is beneficial
for building dense networks within smart buildings due to its support for mesh networks,
but is limited by low data rates and low prevalence among consumer devices. LoRa has
a long range and excellent signal penetration, making it suitable for large-scale systems
with low accuracy requirements, but its low RSSI resolution limits its applicability to high-
precision localization tasks. VLC technology offers centimeter-level accuracy, immunity to
electromagnetic interference, and the ability to reuse existing LED lighting infrastructure,
but it requires line-of-sight, is very sensitive to shadowing, and cannot provide coverage
through walls.

Thus, the choice of technology depends on the specific requirements of the system:
if accuracy is important and the infrastructure already exists, it makes sense to use Wi-Fi;
for mobile and energy-saving solutions, BLE is better; if the priority is network stability
and scalability, it is worth considering ZigBee; and for large-scale coverage with minimal
accuracy requirements, LoRa; when centimeter-level accuracy is required in controlled
spaces with installed LED lighting, VLC becomes a promising complementary solution to
RF-based approaches.

Secondly, the choice of the radiomap generation method also plays a key role in
the accuracy, scalability and cost of the RSSI fingerprint-based localization system. In
this review, was proposed a classification of methods into five main categories: manual
collection, automated, simulation, ML/interpolation-based and hybrid.

Analyzing the articles presented in the review devoted to the radiomap generation
methods, we can draw appropriate conclusions about the applicability of various ap-
proaches depending on the conditions. For small and static premises, manual RSSI fin-
gerprint collection can be used, since it provides high control over the process, but it
requires significant time. In conditions where it is necessary to cover large areas or ensure
regular updates of the radio map (for example, in campuses, shopping centers or industrial
facilities), preference should be given to automated methods using mobile robots or crowd-
sourcing, which can significantly reduce labor costs. If access to the premises is limited or
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rapid generation of a map for a prototype is required, simulation methods and fingerprint
generation based on signal propagation models will be effective. With a limited number of
measurements, it is advisable to use machine learning and interpolation methods to restore
missing data and increase the density of the radio map. Hybrid methods that combine real
measurements, simulations and generative approaches that provide a balance between
accuracy, costs and adaptability of the system are considered the most universal.

However, it should be emphasized that each localization system is unique and should
be designed taking into account the specifics of the environment, available infrastructure,
accuracy requirements, update frequency and computing resources. Therefore, the final
choice of radio map generation method remains with the researcher and should be based
on a thorough analysis of the task and operating conditions.

The RSS reconstruction performance differs significantly between RF and VLC-based
systems, highlighting both their unique advantages and inherent limitations. RF-based
systems face challenges such as multipath fading and interference, but they benefit from
high signal penetration, wide coverage, and well-established propagation models. Using
advanced techniques such as compressed sensing, Gaussian processes, and generative
machine learning, synthetic radio map reconstruction in RF can achieve accuracy close
to that of dense surveys while leveraging the ubiquity of Wi-Fi, BLE, ZigBee, and LoRa
infrastructures. In contrast, VLC-based systems benefit from the spatial limitation of visible
light, resulting in more consistent RSS fingerprints and improved reconstruction accuracy
under line-of-sight conditions. However, VLC-based reconstruction remains sensitive to
shadowing and illumination variations. These differences indicate that while synthetic
RF fingerprints can reduce survey effort in noisy environments, in VLC they can further
exploit the inherent stability of the visible communication signal to achieve centimeter-level
positioning accuracy.

Thirdly, the analysis of the RSSI data preprocessing methods presented in the review
shows that since RSSI signals are subject to noise, outliers, missing values and high variabil-
ity, the choice of an adequate processing strategy directly affects the final performance of
the machine learning model. This review provides a detailed classification of data prepro-
cessing methods, which allows researchers to navigate the selection of effective approaches
at different stages of system construction and make informed decisions in future studies on
indoor localization.

To eliminate missing values and anomalies in RSSI data, it is recommended to use
fingerprint correlation-based restoration methods, neighbor filtering, extended Kalman
filter, autoencoders and GAN, which allow effective gap filling and adaptation of the radio
map to changing conditions. To improve the stability of RSSI data, filtering methods such
as Kalman filter, wavelet transform, autoencoders and RPCA are used, which effectively
suppress random signal fluctuations. To remove outliers caused by interference or mul-
tipath propagation, clustering algorithms, RBFs, autoencoders, and GANs are used to
automatically detect and correct outliers without distorting the overall structure of the data.
Normalization of RSSI values ensures that the data is scaled to a single scale, reduces the
impact of differences between access points, and improves the stability and convergence of
machine learning models. Dimensionality reduction methods such as PCA, KPCA, autoen-
coder, t-SNE, and JRPCA eliminate redundant features, reduce the computational load, and
improve the efficiency of algorithms without losing significant information. To expand the
training set and improve the robustness of models to noise, synthetic fingerprint generation
methods are used, including GANs, multivariate Gaussian processes, and modeling the
spatial correlation between access points.

Thus, the choice of specific preprocessing methods should be based on the charac-
teristics of the source data and the type of model used. Ideally, a localization system
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should include a combined pipeline that combines cleaning, filtering, normalization, and
dimensionality reduction, tailored to the specifics of the environment. As with radio map
generation, the choice of data preprocessing strategy is a researcher’s responsibility and
should be determined by the environment, available computing resources, and positioning
accuracy requirements.

Fourthly, the selection of machine and deep learning algorithms is a key step in
building a localization system, since the accuracy, speed, and adaptability of the entire
system depend on the characteristics of the model.

Table 8 provides a structured comparison of ML, DL, TL, and RL algorithms for indoor
locations based on RSSI fingerprints in terms of their advantages, disadvantages, position-
ing accuracy, power consumption, and reliability. It can serve as a practical reference for
researchers to select appropriate algorithms for their systems. Ideally, an indoor localization
algorithm should demonstrate very high positioning accuracy, achieving a consistently low
error rate. At the same time, it should provide low power consumption and high reliability,
maintaining stable operation in different conditions. Classical machine learning algorithms
such as k-NN, Bayesian, SVM, and ensemble methods have proven themselves well with
limited data and low computing resources, demonstrating high interpretability and ease
of implementation. Deep learning algorithms, including MLP, CNN, RNN, LSTM, GRU,
and their hybrid combinations (e.g., CNN + LSTM, CNN + AE), provide high accuracy due
to the ability to model nonlinear dependencies and take into account the spatiotemporal
features of the signal. However, such models require large amounts of data and increased
computing resources. Of particular interest are hybrid architectures and transfer learning,
which allow models to be adapted to new conditions with minimal fine-tuning. Thus, the
choice of a specific algorithm should be based on data characteristics, resource constraints,
accuracy and robustness requirements, and the ability of the model to adapt to a changing
environment. The review provides researchers with a structured comparison of models and
their metrics (MAE, RMSE, accuracy, CDF), allowing them to make an informed decision
when designing a localization system.

Table 8. Comparative analysis of ML/DL/TL/RL algorithms for RSSI fingerprint-based indoor
localization.

Algorithm Advantages Disadvantages Positioning
Accuracy

Power Con-
sumption Robustness

k-NN (ML) Simple, easy to implement;
interpretable

High inference cost with
large datasets; sensitive to
noise and radio map
density

Medium Medium Medium

Bayesian
methods (ML)

Very lightweight; efficient
on low-power devices

Strong independence
assumption; reduced
accuracy in multipath
environments

Medium Low Medium

SVM (ML)
High accuracy on small
datasets; strong
generalization

Poor scalability to large
datasets; sensitive to kernel
choice

Medium Medium Medium

Ensemble
Methods (ML)

Robust to noise/outliers;
good generalization;
interpretable

Risk of overfitting with
small datasets High Medium High

FCN (DL)
Learns nonlinear
relationships; flexible
architecture

Requires large labeled
datasets; prone to
overfitting

High Medium Medium
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Table 8. Cont.

Algorithm Advantages Disadvantages Positioning
Accuracy

Power Con-
sumption Robustness

CNN (DL)
Extracts spatial patterns
effectively; strong
performance on RSSI maps

High training cost; requires
structured input High High High

RNN (DL)
Captures temporal
dependencies; useful for
trajectory data

Long training time; High
training cost High High High

Autoencoder (DL)
Dimensionality reduction;
denoising; improves
generalization

Indirect metric
optimization; tuning
complexity

High Medium High

CNN + LSTM
(Hybrid DL)

Combines spatial and
temporal features; very
strong in dynamic cases

Highly data- and
compute-intensive High High High

CNN + AE
(Hybrid DL)

Robust to noise; learns
latent features; combines
denoising and spatial
feature extraction

Training complexity;
tuning complexity High High High

TL
Reduces calibration effort;
enables cross-building and
cross-device adaptation

Highly data-intensive High Medium High

RL
Enables online adaptation;
learns calibration and
navigation policies

Sample inefficiency;
complex reward design High High Medium

In addition, if difficulties arise in the development or implementation of localization
systems, researchers can refer to Section 9, which discusses in detail the main problems
faced by modern RSSI-based approaches.

11. Conclusions
This review provides a comprehensive overview of modern indoor positioning so-

lutions based on the RSSI fingerprint method and ML algorithms. The principles of
constructing a radiomap, data preprocessing stages, and various approaches to model
training are considered—from classical algorithms to deep neural networks and hybrid
architectures. Special attention is given to radiomap generation and adaptation methods,
as well as the challenges of transferring models across different devices and environments.

The analysis showed that ML and DL can effectively process unstable RSSI signals,
take into account nonlinear dependencies and adapt to environmental changes, which
significantly improves positioning accuracy. However, several key challenges remain,
including signal variability, multipath propagation, lack of line-of-sight, manual data
collection requirements, device heterogeneity, noise, scalability, and high maintenance
costs. These issues significantly hinder the creation of accurate and reliable radiomap. To
address these limitations, promising directions include automated data collection (e.g.,
SLAM, crowdsourcing), applying generative models and data augmentation techniques,
and implementing adaptive and domain-independent algorithms such as transfer learning
and few-shot learning. Particular interest lies in the application of reinforcement learning
for dynamic adaptation of localization in changing environments.

In addition to the analytical data, the review provides recommendations for the design
of indoor localization systems based on RSSI fingerprint, covering all key components:
selection of wireless technologies, radio mapping methods, data pre-processing strate-
gies, and ML/DL model selection. These structured guidelines are intended to assist
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researchers and practitioners in future research and development of effective, sustainable
and scalable localization solutions. Thus, future research in this field should focus on devel-
oping intelligent, robust, and scalable indoor localization systems suitable for real-world
applications—from smart buildings and logistics to healthcare and industrial automation.

In a broader context, the findings and structured recommendations presented in
the review can significantly contribute to the development of smart city initiatives. The
integration of indoor localization systems into municipal IoT platforms will improve citizen
mobility, optimize energy consumption, improve emergency response, and create a more
responsive, data-driven urban environment.
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