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Abstract: Hyperspectral imaging techniques are widely used to remotely assess the vegetation and
physiological condition of plants. Usually, such studies are carried out without taking into account the
light history of the objects (for example, direct sunlight or light scattered by clouds), including light-
stress conditions (photoinhibition). In addition, strong photoinhibitory lighting itself can cause stress.
Until now, it is unknown how light history influences the physiologically meaningful spectral indices
of reflected light. In the present work, shifts in the spectral reflectance characteristics of Ficus elastica
leaves caused by 10 h exposure to photoinhibitory white LED light, 200 µmol photons m−2 s−1 (light
stress), and moderate natural light, 50 µmol photons m−2 s−1 (shade) are compared to dark-adapted
plants. Measurements were performed with a Cubert UHD-185 hyperspectral camera in discrete
spectral bands centred on wavelengths from 450 to 950 nm with a 4 nm step. It was shown that
light stress leads to an increase in reflection in the range of 522–594 nm and a decrease in reflection
at 666–682 nm. The physiological causes of the observed spectral shifts are discussed. Based on
empirical data, the light-stress index (LSI) = mean(R666:682)/mean(R552:594) was calculated and tested.
The data obtained suggest the possibility of identifying plant light stress using spectral sensors
that remotely fix passive reflection with the need to take light history into account when analysing
hyperspectral data.

Keywords: hyperspectral imaging; fluorescence; photoinhibition; random forest; light stress;
Ficus elastica

1. Introduction

Over the past decades, the frequency of extreme weather events during the growing
season of plants, combining high light intensity and high temperatures, has increased
dramatically [1]. Light stress occurs if the plant does not get rid of the excess energy
received from the bright sun. Under stress from high light intensity, reaction centres
become saturated, and excess energy can irreversibly damage photosystem II (PSII) [2].
This leads to photoinhibition—a steady decrease in the efficiency of photosynthesis [3].
Light stress during the growing season is usually combined with heat stress. Both of these
stresses have a synergistic effect on plants [4,5].

One of the defence mechanisms against light stress is that plant leaves change the
composition of pigments that absorb light. Another defence mechanism is that chloroplasts
can move to shaded areas in plant cells. There is also a defence mechanism in which plants
dissipate excess light energy as heat [6].

Light and heat stress lead to a significant decrease in plant productivity. The ability
to quickly identify plant responses to stress is essential for improving crop-management
practices and addressing the global food-security challenge. Therefore, an important task is
to identify stress in plants quickly, using noninvasive and simple methods, over large areas.
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Rapid diagnosis of light stress in plants over large areas is only possible using Earth remote-
sensing (ERS) data. In confined areas, e.g., in greenhouses, foil tunnels, or open plantations,
proximal spectral sensors can be used for stress recording. It is generally accepted that,
among different remote-sensing techniques, the use of hyperspectral survey data is the
most effective for plant-stress analysis [7]. A large number of remote hyperspectral studies
were carried out on water-stress diagnostics [7–9]. Spectral sensors proved to be effective
in diagnosing stress in plants from high [10–12] and low [13] temperatures. It is important
to diagnose all kinds of stress before the first visible symptoms appear [14]. In this relation,
there is a necessity to develop low-cost portable spectral optical sensors to accurately detect
and diagnose the nature of plant stress [15].

The pigment composition of leaves, their photosynthetic characteristics and, accord-
ingly, their optical properties are influenced by various stress factors, e.g., highly active
forms of oxygen, air pollutants, drought, high temperatures, bright light, increased levels
of UV radiation and others [16].

An evaluation of the physiological state of plants (including remote evaluations) may
be performed using spectral characteristics and measurements of vegetation indices related
to the contents of photosynthetic pigments [17–19]. In this regard, it is important to develop
a new vegetation index (VI) for indicating plant stress.

The mechanism of the damaging effect of light excess on plants (photoinhibition) is
mediated by the generation of superoxide ion O2*− [20,21] and singlet oxygen 1O2 [22] that
can interact with photosystem I and II elements and impair their functions. In particular,
the prerequisites for photoinhibition appear, if the electron light-excitation rate (i.e., number
of P680 or P700 excited states generated per time unit) exceeds the electron transfer capacity
of the thylakoid electron transport chain. In this case, there is a high probability of the
transfer of excited electrons to O2, followed by the formation of reactive oxygen species,
which damage PSII and accessory pigments in antennae complexes [23], thus changing
absorption spectra [21,22,24].

Thus, remote-sensing tools equipped with spectral sensors can identify stress in plants
as such, but it is very difficult to determine its nature. Therefore, the development of a
special technique for determining the light stress of plants using spectral sensors that record
passive reflection is an important task.

The aim of the study was to determine the spectral ranges that make it possible
to diagnose light stress in plants. The implementation of this task was carried out in
laboratory conditions, in which the influence of random factors is minimized. The data
obtained may be useful for the further development of simple and low-cost multispectral
cameras applicable as Earth remote-sensing (ERS) tools.

2. Materials and Methods

Ficus elastica Roxb. ex Hornem plants were selected for the light-stress studies. They
were expected to be sensitive to light stress, as they are short-day shade-tolerant plants.
The plants were grown in the greenhouse of the Botanical Garden of the Southern Federal
University under natural light (about 100 µmol photons m−2 s−1), relative soil humidity of
60%, and a light/dark regime = 14/10 for 14 months. All the plants were of the same age.

Hyperspectral Imaging (HSI) was carried out using a Cubert UHD-185 [25,26]. The
wavelength range of this hyperspectral camera is from 450 nm to 950 nm; the spectral
resolution is 4 nm. The camera lens was located at a distance of 40 cm from the leaf blade of
the plant and directed perpendicular to it (Figure 1). HSI was conducted under 4 halogen
lamps and 1 blue LED. The integral spectrum of the measuring light is shown in Figure 2.
Each hyperspectral image is presented as a single panchromatic image, 1000 × 1000 pixels
in size and 125 spectral images, 50 × 50 pixels in size. The spatial resolution of the obtained
hyperspectral data was approximately 35 mm2.

Nine genetically homogeneous Ficus elastica plants, which were previously kept in
the greenhouse conditions under natural light (Light conditions 0—LC 0), were placed in
darkness for 14 h (LC 1). After exposure to LC 1, three plants were placed at a distance of
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40 cm from the leaf under photoinhibitory light (Variant 1—Var. 1, LC 2, light stress) having
a photosynthetic photon flux density (PPFD) of 200 µmol photons m−2 s−1. Three plants
were placed under moderate light (Var. 2, LC 2, shade) (PPFD = 50 µmol photons m−2 s−1),
and the remaining three plants were returned to the dark (Var. 3, LC 2). The levels of PPFD
were measured using a PAR sensor of a Waltz Diving-PAM fluorometer. The duration of
exposure at LC 2 was 10 h. After the experiment (Repetition 1—Rp 1), the plants were
returned to the greenhouse. Two weeks later, the experiment was repeated (Rp 2). HSI was
performed 4 times (HSI 1–HSI 4), before and after LC 2.
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Figure 1. Hyperspectral imaging of F. elastica leaves. (A) Cubert UHD-185; (B) object of study; (C) 
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Figure 2. Integral spectrum of artificial light sources reflected from a white standard. Measured with 
a Cubert UHD 185 camera with a 4 nm step. 
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Figure 2. Integral spectrum of artificial light sources reflected from a white standard. Measured with
a Cubert UHD 185 camera with a 4 nm step.

The third ficus leaf from the top was always used to obtain the hyperspectral data.
The block diagram of the experiment is shown in Figure 3.

After HSI data preprocessing, 30 to 40 spectral profiles were randomly selected for
each leaf from the top of the leaf blade since it is the flattest area which causes minimal
distortion compared with the bottom and middle parts of the leaf blade. These bottom and
middle parts are strongly curved symmetrically to the central vein.

The t-test and random forest (RF) were used to identify spectral ranges that allow for
diagnosing light stress in plants. The choice of significant spectral ranges was carried out
according to the values of the significance level of the t-test, out-of-bag (OOB) estimate of
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the error rate, mean decrease accuracy, and mean decrease Gini according to the results of
RF pixel-based classification.
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Figure 3. Block diagram of an experiment to study shifts in the spectral reflection characteristics of
F. elastica leaves in the range of 450–950 nm. Var 1, light stress—10 h exposure to the photoinhibitory
light (200 µmol photons m−2 s−1); Var. 2, shade—moderate light (50 µmol photons m−2 s−1);
Var 3—dark-adapted plants. HSI 1–4—plant HSI; LC 0–2—light conditions; Rp 1–2—repetition of
the experiment.

The experimentally calculated light stress index (LSI), was tested with RF against
125 spectral bands (SB) and 80 vegetation indices (VIs) for the mean decrease Gini and the
mean decrease accuracy.

Statistical and mathematical analyses of the obtained results were carried out using
the R environment [27].

Detailed information on these 80 VIs can be found in the work of Dmitriev et al. [28].

3. Results
3.1. Selection of the Most Informative SB for Identification of Light Stress
3.1.1. Selecting SB Using t-Test

To select the most informative spectral ranges, the values of the SB of the same ranges
were compared between different lighting conditions (LC 2) using a t-test. The comparison
results are presented in Supplementary Table S1 and Figure 4. For some compared bands,
the level of significance (p) is lower than 0.0001. This did not allow for representing the
dynamics of the significance level visually and proportionally in the form of a curve in
the figure imposed over the entire spectrum. Therefore, the significance level values were
converted to the negative decimal logarithm (–log10p). The dynamics of –log10p over SB
are shown in Figure 4.
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Figure 4. The −log10p values, depending on the SB, when comparing variants (Var. 1, Var. 2, Var. 3;
LC 2) by pairs. (A)—t-test (HSI 3); (B)—t-test (HSI 5).

The first zone in which significant differences are observed according to the variants in
both repetitions of the experiment lies in the range of 498–610 nm. The peak of significance
of the difference between the variants, in terms of the values of the SB, falls at 680–690 nm,
i.e., the zone of chlorophyll fluorescence.

3.1.2. Selection of SBs by Their Contribution to Mean Decrease Accuracy and Mean
Decrease Gini Based on the Results of RF Pixel-Based Classification

Next, the RF classification was used to select spectral ranges. It was applied to classify
spectral profiles belonging to different lighting conditions (LC 2).

The SBs that have the greatest impact on Mean Decrease Accuracy and Mean Decrease
Gini are shown in Figure 5.
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Summarizing the results, the most important SB for mean decrease accuracy and mean
decrease Gini for the two repetitions of the experiment lie in the ranges of 662–690 nm
and 522–554 nm. Thus, in the process of identifying different lighting conditions, the RF
pixel-based classification method revealed a significant effect of chlorophyll fluorescence in
the red zone of the spectrum.

3.1.3. Selection of SBs by Searching for Their Optimal Combinations for RF
Pixel-Based Classification

Spectral bands were selected according to their contribution to the OOB estimate
of the error rate. A simple selection algorithm has been chosen that does not require
significant computing resources. First, the pair of SBs that produced the smallest OOB
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estimate of the error rate was selected. Next, a third band was selected for this SB pair,
which, in combination with the first pair, gave the lowest error, and so on. The number of
combinations of SBs (Y) is determined by the following equation:

Y = n × (n − 1) + ∑n−2
X=1 X (1)

where n—number of bands.
The comparison was carried out for all pairs of variants (Var. 1 and Var. 2; Var. 1

and Var. 3; Var. 2 and Var. 3;) under different light conditions (LC 2) for HSI 3 and HSI 5.
Spectral bands were ranked by their contribution to the OOB estimate of the error rate
(Supplementary Table S2). Based on the pairs of SBs that make the greatest contribution to
the decrease in the OOB estimate of the error rate, two spectral ranges were determined:
522–594 nm and 666–682 nm (Figure 6).
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3.2. Comparison of a Simple Ratio of the Detected Spectral Ranges for the Identification of
Light Stress

Three variants of significant spectral ranges were selected:

• using a t-test (682–690 nm and 498–610 nm);
• by the contribution of SBs to the mean decrease accuracy and the mean decrease Gini

according to the results of RF pixel-based classification (662–690 nm and 522–554 nm);
• by selecting the optimal combinations of SBs according to the value of the OOB

estimate of the error rate of RF pixel-based classification (666–682 nm and 522–594 nm).

Further, based on the spectral ranges established for the identification of light stress,
their simple ratios were calculated and tested.

Light-stress index 1: LSI 1 = mean(R682:690)/mean(R498:610)

Light-stress index 2: LSI 2 = mean(R662:690)/mean(R522:554)

Light-stress index 3: LSI 3 = mean(R666:682)/mean(R522:594)

A comparison of boxplots of three variants (Var.1, Var.2, and Var.3) based on the
results of HSI 3 and HSI 5 allows us to make a preliminary conclusion that LSI 3 is more
informative for detecting light stress than LSI 1 and LSI 2 (Figure 7).

3.2.1. Comparison of LSI 1, LSI 2, and LSI 3 with SBs for the Identification of Light Stress

Classification of the state of ficus plants was carried out using RF pixel-based classifica-
tion, according to values of the SB and LSI 1, LSI 2, and LSI 3. According to the classification
results, LSI 3 has the largest contribution to the mean decrease accuracy and the mean
decrease Gini values (Figure 8).
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Boxplots of the LSI 3 values of three LC 2 variants (Var. 1, Var. 2, and Var. 3), according
to the results of HSI 3 and HSI 5, compared to values of the SB 674 nm, 682 nm and 554 nm,
are shown in Figure 9.
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3.3. Light-Stress Index (LSI)

The LSI 3 values of the three LC 2 variants (Var. 1, Var. 2, and Var. 3), obtained
according to the results of HSI 3 and HSI 5, were distributed under a normal law (Figure 12).
This allows for the use of both parametric and nonparametric methods of statistical analysis
when working with LSI 3.

It has been found that there is a linear relationship between the average values of the
spectral ranges 666–682 nm and 522–594 nm (Figure 13). Therefore, a specific range of
LSI 3 values may be applied to identify and evaluate the magnitude of light stress. It was
preliminarily found that the LSI 3 threshold, which separates light stress from other plant
states, is 1.17. Additional studies are needed to develop and verify the LSI 3 scale, which
would allow for the light history of plants to be considered.
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4. Discussion

Light stress [29–31], just like other types of stress [10–14], is known to be accompanied
by a decrease in chlorophyll, which has two absorption maxima in the blue and red bands.
On this basis, one would expect that, in response to light, the most pronounced changes in
the reflectance spectra of the leaves would be an increase in the reflectance in these bands
and possibly a slight increase in the reflectance in the green band. In addition, the far-red
light range (680–740 nm) which corresponds to the chlorophyll fluorescence emission may
be a stress-sensitive area, considering that it is inversely dependent on the photosynthesis
rate [32]. However, studies have shown that light stress resulted in an increase in reflection
in the yellow–green range and a decrease in reflection in the red range. In addition, the
t-test and RF methods used in the experiments allowed for the of revealing three pairs of
the most relevant ranges for light stress. They are 682–690 nm and 498–610 nm; 662–690 nm
and 522–554 nm; and 666–682 nm and 522–594 nm. These ranges do not coincide with
the sensitive ranges known for other types of stress. Thus, Navarro et al. [33] showed
that ranges 492–504 and 540–568 nm of visible light; 712–720 nm of far-red light; and 855,
900–908, and 970 nm of near-infrared light had the best sensitivity to pathogen-induced
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stress occurring in Diplotaxis tenuifolia plants. In several studies, other reflectance spectral
ranges indicative of different types of stress (not related to photoinhibition) have been
proposed, 850, 630, 535, and 465 nm [15]; 500–660 nm [34]; and 690 and 702 nm [9].

Light stress and light history had the most influence on the SB 690–700 nm and
730–750 nm [35], which is not consistent, but also not contradictory, with our data. The use
of the three light-stress-sensitive ranges identified in our work makes it possible to increase
the sensitivity and reliability of the indication of this type of stress.

The causes of the detected stress-induced increase in reflectance in the yellow–green
range and the drop in reflectance in the red range are not clear. Possible reasons for this
could be:

1. Changes in pigment concentrations—decrease in carotenoids, which absorb well in the
yellow–green range and do not absorb in the red range and increase in chlorophyll a,
which, being a component of light-harvesting complexes (LHC) 1 and LHC 2, absorbs
well in the 666–682 nm range, but does not absorb in the yellow-green range [36];

2. Light-induced rearrangements of chloroplast localization, which can lead to shifts in
light absorption by the pigments without changing their concentration [37].

However, irrespective of their cause (which is beyond the scope of this study), the
observed shifts can serve as indicators of light stress and can be taken into account when
calculating VIs. The light-stress index (LSI = mean(R666:682)/mean(R522:594) calculated on
the basis of these ranges appeared to be the most sensitive to light stress compared to the
SB and 80 VIs [28] selected for testing. If it is possible to develop and verify a scale for LSI,
it would be possible to significantly simplify the identification of light stress.

In addition, the results of the study confirm the need for remote spectral monitoring
of vegetation, taking into account its light history, which was previously pointed out by
other authors [38–41].

In general, it can be said that the combination of the technical capabilities of a hy-
perspectral camera, with the method of machine learning [8,42,43] in the processing of
hyperspectral data, opens up great prospects for the early diagnosis of plant stress.

5. Conclusions

The study performed in this work showed that the previous history of the illumination
of leaves has a significant impact on their spectral characteristics. It has been established
that two spectral ranges are significant for the identification of light stress. Intense artificial
lighting leads to an increase in reflection in the range of 552–594 nm and a decrease in
reflection in the range of 666–682 nm. Based on empirical data, the light stress index
(LSI) = mean(R666:682)/mean(R552:594) was calculated and tested. LSI allows more accurate
identification of the state of light stress compared to the SB and 80 VIs tested in the study.
The LSI values are distributed according to the normal law, which makes it possible to use
parametric statistics when working with it. It has been preliminarily established that the
LSI threshold separating light stress from the normal state of the plant is 1.17. The results
obtained indicate the possibility of identifying light stress in plants using spectral sensors
that detect passive reflection. In addition, the results of the study confirm the need to take
into account the light history in the remote spectral monitoring of vegetation.

The result of the study was reproduced in time in two repetitions. If this result is
confirmed on other plant objects, then this may be of practical importance for monitoring
the light stress of plants by means of remote sensing.
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23. Lingvay, M.; Akhtar, P.; Sebők-Nagy, K.; Páli, T.; Lambrev, P.H. Photobleaching of chlorophyll in light-harvesting complex II
increases in lipid environment. Front. Plant Sci. 2020, 11, 849. [CrossRef] [PubMed]

24. Strizh, K.; Neverov, V. Photoinhibition of photosystem II in vitro: Spectral and kinetic analyses. Russ. J. Plant Physiol. 2007, 54,
439–449. [CrossRef]

25. Bareth, G.; Aasen, H.; Bendig, J.; Gnyp, M.L.; Bolten, A.; Jung, A.; Michels, R.; Soukkamaki, J. Low-weight and UAV-based
hyperspectral full-frame cameras for monitoring crops: Spectral comparison with portable spectroradiometer measurements.
Photogramm. Fernerkund. Geoinf. 2015, 1, 69–79. [CrossRef]

26. Aasen, H.; Burkart, A.; Bolten, A.; Bareth, G. Generating 3D hyperspectral in-formation with lightweight UAV snapshot cameras
for vegetation monitoring: From camera calibration to quality assurance. JPRS 2015, 108, 245–259. [CrossRef]

27. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria,
2022. Available online: https://www.R-project.org/ (accessed on 1 September 2023).

28. Dmitriev, P.A.; Kozlovsky, B.L.; Kupriushkin, D.P.; Dmitrieva, A.A.; Rajput, V.D.; Chokheli, V.A.; Tarik, E.P.; Kapralova, O.A.;
Tokhtar, V.K.; Minkina, T.M.; et al. Assessment of Invasive and Weed Species by Hyperspectral Imagery in Agro-cenoses
Ecosystem. Remote Sens. 2022, 14, 2442. [CrossRef]

29. Zhou, R.; Yu, X.; Li, X.; dos Santos, T.M.; Rosenqvist, E.; Ottosen, C.-O. Combined high light and heat stress induced complex
response in tomato with better leaf cooling after heat priming. Plant Physiol. Biochem. 2020, 151, 1–9. [CrossRef] [PubMed]

30. Agathokleous, E.; Feng, Z.Z.; Peñuelas, J. Chlorophyll hormesis: Are chlorophylls major components of stress biology in higher
plants? Sci. Total Environ. 2020, 726, 138637. [CrossRef]

31. Mendoza, F.; Berry, C.; Prestigiacomo, L.; Van Hoewyk, D. Proteasome inhibition rapidly exacerbates photoinhibition and
impedes recovery during high light stress in Chlamydomonas reinhardtii. BMC Plant Biol. 2020, 20, 22. [CrossRef]

32. Lysenko, V.; Rajput, V.D.; Kumar Singh, R.; Guo, Y.; Kosolapov, A.; Usova, E.; Varduny, T.; Chalenko, E.; Yadronova, O.; Dmitriev,
P.; et al. Chlorophyll fluorometry in evaluating photosynthetic performance: Key limitations, possibilities, perspectives and
alternatives. Physiol. Mol. Biol. Plants 2022, 28, 2041–2056. [CrossRef]

33. Navarro, A.; Nicastro, N.; Costa, C.; Pentangelo, A.; Cardarelli, M.; Ortenzi, L.; Pallottino, F.; Cardi, T.; Pane, C. Sorting biotic and
abiotic stresses on wild rocket by leaf-image hyperspectral data mining with an artificial intelligence model. Plant Methods 2022,
18, 45. [CrossRef]

34. Wang, S.; Zhang, X.; Ma, Y.; Li, X.; Cheng, M.; Zhang, X.; Liu, L. Detecting Sulfuric and Nitric Acid Rain Stresses on Quercus
glauca through Hyperspectral Responses. Sensors 2018, 18, 830. [CrossRef] [PubMed]

35. Zarco-Tejada, P.J.; Miller, J.R.; Mohammed, G.H.; Noland, T.L.; Sampson, P.H. Estimation of chlorophyll fluorescence under
natural illumination from hyperspectral data. Int. J. Appl. Earth Obs. Geoinf. 2001, 3, 321–327. [CrossRef]

36. Laisk, A.; Oja, V.; Eichelmann, H.; Dall’Osto, L. Action spectra of photosystems II and I and quantum yield of photo-synthesis in
leaves in State 1. Biochim. Biophys. Acta 2014, 1837, 315–325. [CrossRef] [PubMed]

37. Baránková, B.; Lazár, D.; Nauš, J. Analysis of the effect of chloroplast arrangement on optical properties of green tobacco leaves.
Remote Sens. Environ. 2016, 174, 181–196. [CrossRef]

38. Kohzuma, K.; Tamaki, M.; Hikosaka, K. Corrected photochemical reflectance index (PRI) is an effective tool for detecting
environmental stresses in agricultural crops under light conditions. J. Plant Res. 2021, 134, 683–694. [CrossRef] [PubMed]

39. Atherton, J.; Olascoaga, B.; Alonso, L.; Porcar-Castell, A. Spatial variation of leaf optical properties in a boreal forest is influenced
by species and light environment. Front. Plant Sci. 2017, 8, 309. [CrossRef] [PubMed]

40. Gamon, J.A.; Berry, J.A. Facultative and constitutive pigment effects on the Photochemical eflectance Index (PRI) in sun and
shade conifer needles. Isr. J. Plant Sci. 2012, 60, 85–95. [CrossRef]

41. Schmiege, S.C.; Griffin, K.L.; Boelman, N.T.; Vierling, L.A.; Bruner, S.G.; Min, E.; Maguire, A.J.; Jensen, J.; Eitel, J.U.H. Vertical
gradients in photosynthetic physiology diverge at the latitudinal range extremes of white spruce. Plant Cell Environ. 2022, 46,
45–63. [CrossRef]

https://doi.org/10.1007/s10812-021-01218-z
https://doi.org/10.1111/j.1399-3054.2009.01312.x
https://doi.org/10.1186/s12870-014-0242-2
https://doi.org/10.1104/pp.16.00246
https://doi.org/10.3389/fpls.2020.00849
https://www.ncbi.nlm.nih.gov/pubmed/32670321
https://doi.org/10.1134/S1021443707040024
https://doi.org/10.1127/pfg/2015/0256
https://doi.org/10.1016/J.ISPRSJPRS.2015.08.002
https://www.R-project.org/
https://doi.org/10.3390/rs14102442
https://doi.org/10.1016/j.plaphy.2020.03.011
https://www.ncbi.nlm.nih.gov/pubmed/32179467
https://doi.org/10.1016/j.scitotenv.2020.138637
https://doi.org/10.1186/s12870-020-2236-6
https://doi.org/10.1007/s12298-022-01263-8
https://doi.org/10.1186/s13007-022-00880-4
https://doi.org/10.3390/s18030830
https://www.ncbi.nlm.nih.gov/pubmed/29522488
https://doi.org/10.1016/S0303-2434(01)85039-X
https://doi.org/10.1016/j.bbabio.2013.12.001
https://www.ncbi.nlm.nih.gov/pubmed/24333386
https://doi.org/10.1016/j.rse.2015.12.011
https://doi.org/10.1007/s10265-021-01316-1
https://www.ncbi.nlm.nih.gov/pubmed/34081252
https://doi.org/10.3389/fpls.2017.00309
https://www.ncbi.nlm.nih.gov/pubmed/28352274
https://doi.org/10.1560/IJPS.60.1-2.85
https://doi.org/10.1111/pce.14448


AgriEngineering 2023, 5 2265

42. Sonobe, R.; Hirono, Y.; Oi, A. Non-Destructive Detection of Tea Leaf Chlorophyll Content Using Hyperspectral Reflectance and
Machine Learning Algorithms. Plants 2020, 9, 368. [CrossRef]

43. Zubler, A.V.; Yoon, J.-Y. Proximal Methods for Plant Stress Detection Using Optical Sensors and Machine Learning. Biosensors
2020, 10, 193. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/plants9030368
https://doi.org/10.3390/bios10120193

	Introduction 
	Materials and Methods 
	Results 
	Selection of the Most Informative SB for Identification of Light Stress 
	Selecting SB Using t-Test 
	Selection of SBs by Their Contribution to Mean Decrease Accuracy and Mean Decrease Gini Based on the Results of RF Pixel-Based Classification 
	Selection of SBs by Searching for Their Optimal Combinations for RF Pixel-Based Classification 

	Comparison of a Simple Ratio of the Detected Spectral Ranges for the Identification of Light Stress 
	Comparison of LSI 1, LSI 2, and LSI 3 with SBs for the Identification of Light Stress 
	Comparison of LSI 1, LSI 2, and LSI 3 with VIs for the Identification of Light Stress 

	Light-Stress Index (LSI) 

	Discussion 
	Conclusions 
	References

