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Abstract: A lightweight strawberry detection and localization algorithm plays a crucial role in
enabling the harvesting robot to effectively harvest strawberries. The YOLO model has often been
used in strawberry fruit detection for its high accuracy, speed, and robustness. However, some
challenges exist, such as the requirement for large model sizes, high computation operation, and
undesirable detection. Therefore, the lightweight improved YOLOv5s-CGhostnet was proposed to
enhance strawberry detection. In this study, YOLOv5s underwent comprehensive model compression
with Ghost modules GCBS and GC3, replacing modules CBS and C3 in the backbone and neck.
Furthermore, the default GIOU bounding box regressor loss function was replaced by SIOU for
improved localization. Similarly, CBAM attention modules were added before SPPF and between
the up-sampling and down-sampling feature fusion FPN–PAN network in the neck section. The
improved model exhibited higher mAP@0.5 of 91.7% with a significant decrement in model size by
85.09% and a reduction in GFLOPS by 88.5% compared to the baseline model of YOLOv5. The model
demonstrated an increment in mean average precision, a decrement in model size, and reduced
computation overhead compared to the standard lightweight YOLO models.
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1. Introduction

Strawberries are one of the most cherished fruits in the world. The popularity of
the fruit is attributed to its nutritional value, vibrant texture, succulent taste, and sweet
aroma. These distinct characteristics position strawberries as vital cash crops and contribute
significantly to worldwide production. Within the Asia Pacific (APAC) region, South Korea
was the second-highest strawberry production country, with an annual production of
192.85 thousand metric tons in 2021 [1]. With massive strawberry production, the produc-
tion process is labor-intensive and expensive, particularly during harvesting. Harvesting
is predominantly carried out by the farmer and seasonal manual labor. Studies reveal
that harvesting costs constitute a substantial portion, ranging from 73–80%, of the total
strawberry cultivation and production expense [2]. Furthermore, the harvesting period
is short and requires timely harvesting; otherwise, fruit will be overripe and soft. This
makes fruit prone to mechanical damage and fungal infection. Therefore, harvesting robots
are of utmost importance in addressing labor shortages, minimizing harvesting costs, and
increasing fruit shelf-life. In recent years, researchers have focused on designing and
implementing prototype strawberry harvesting robots. The harvesting robots consist of
an autonomous driving mechanism, a manipulator to pick ripe strawberries, and a vision
system to navigate, recognize, and localize ripe strawberries in real field environments.
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Thus, for proper resource management in harvesting robots, a primary requirement is a
lightweight and efficient machine vision algorithm.

Traditionally, harvesting robots use computer vision systems with machine learning
algorithms to extract features such as the shape, size, color, and texture of targeted straw-
berries. The extracted features are used with spatial information to identify the location of
strawberries and ripeness levels. Xu et al. [3] proposed detection of strawberries in two
steps, first detecting strawberry-like regions from HSV color information, then processing
its HoG descriptor using an HoG/SVM classifier. Lim et al. [4] suggested an algorithm
to detect separate strawberries based on their color threshold. Similarly, Karki et al. [5]
utilized different machine learning models to identify strawberry ripeness levels using
different color spaces (RGB, HLS, CIELab, and YCbCr) and biometrical characteristics. The
results showed that a feed-forward artificial neural network (ANN) with CIELAB color
space achieved the highest accuracy. While studies have utilized image attributes with
machine learning to predict fruits’ physical and chemical characteristics, their methods
have several limitations. These include susceptibility to noise, the requirement for a con-
trolled experimental setup, specialized equipment, reliance on trained experts to handcraft
features, and time-consuming processes. In addition, when these machine learning models
are implemented in open fields, they provide poor performance due to differences in
lighting, occlusion, and complex plant canopies.

In contrast to traditional machine learning, convolution-neural-network-based deep
learning (CNN-DL) has made significant progress in image processing. The ability to extract
features of target objects automatically, resilience toward noise, high generalization, and
robustness have allowed CCN-DL to be widely utilized in various agricultural applications.
This includes plant disease classification, crop/plant recognition, flower/fruit counting,
harvesting, and yield prediction. Narayanan et al. [6] introduced a hybrid CNN architecture
designed to classify four banana diseases, achieving a remarkable performance accuracy
of 99%. Similarly, Yu et al. [7] proposed Mask-RCNN, a two-stage detection model, for
instance segmentation of strawberry fruit and identification of a picking point for harvesting
robot. Additionally, Liu et al. [8] utilized a circular bounding box in place of a rectangular
bounding box to reduce box loss and minimize Intersection over Union (IoU) to accurately
detect tomatoes in You Look Only Once (YOLO) version 3, a one-stage model. Although
the CNN-DL algorithm has achieved notable performance, it has a larger network size,
higher computational cost, and slower response time. This requires a lot of resources in
terms of memory, computation operation, and power to run CNN-DL and also hinders the
real-time response. These characteristics challenge modifying present CNN-DL architecture
to realize the lightweight CNN-DL algorithm for harvesting robots.

Recently, studies have focused on developing lightweight CNN-DL models with
smaller network sizes, fewer weight parameters, and lesser computation effort. The
lightweight model is realized using techniques such as low-rank decomposition of dense
convolution kernels, model pruning, knowledge distillation, and parameter quantifica-
tion [9]. Wang et al. [10] proposed an improved YOLOv3 model with detailed semantic
features extraction to classify different fruit maturities and a modified loss function to
detect small-size fruits. The detection model displayed improvement in mAP and F1-score
by 9.83% and 6.49%, respectively, over the YOLOv5 base model. He et al. [11] suggested a
YOLOv4-tiny model to detect different maturity levels of strawberries that outperformed
the standard YOLOv4 model with an increment in mAP by 5.77% and a decrease in in-
ference time of 51.01 ms. Ge et al. [12] developed an improved YOLOv5s model named
YOLO-DeepSort that replaces the original backbone with a shufflenetv2 and added an
attention module to better identify and count flowers, green tomatoes, and red tomatoes
during growth phases. The improved model outperformed base YOLOv5 in precision in
identifying flower, green, and red tomatoes by 17%, 2%, and 2.3%, respectively, with a
decreased model size of 10.5 MB. Fang et al. [13] suggested an improved YOLOv3 model
to detect ginger shoots and seeds in real-time, which significantly compresses network
size and improves inference time by pruning redundant channels and network layers. The
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results suggest a decrement in model size by 87.2%, an increase in detection speed by 85%,
and mAP lagging slightly by 0.1%. Feng et al. [14] proposed knowledge distillation as a
means of knowledge transfer method to initiate the training weight from a large pre-trained
network for lesser training time and faster convergence. In prevalent research work, YOLO
one-stage models are widely adopted due to their high accuracy, small size, and high-speed
detection compared to two-stage models. Therefore, in this research, YOLOv5s was taken
as the base model for improvement. In YOLOv5, most target detection models emphasize
modifying the backbone network to improve model parameters such as model accuracy,
size, processing requirement, and inference time. However, a notable research gap exists in
addressing the comprehensive network compression, introducing better loss function, and
addition of attention modules for performance enhancement, appreciable model size, and
decrement in computation requirement.

Therefore, the primary goal of this research is to modify the YOLOv5s object detection
model for better overall network compression, reduced computational requirement, in-
creased accuracy, and improved real-time detection. These characteristics would contribute
to developing a lightweight object detection model for ripe strawberries using resource-
constrained harvesting robots. Hence, the specific research objectives for this study are
to:

1. Prepare a home-grown greenhouse strawberry dataset.
2. Improve YOLOv5s by replacing base CBS and C3 modules on the backbone and

neck using the Ghost module, modify box loss regressor functions, and add an
attention module.

3. Compare the improved model named YOLOv5s-CGhostnet with standard lightweight
YOLO models (YOLOv3-tiny, YOLOv4-tiny, YOLOv5s, and YOLOv5s6) and relative
research works.

2. Materials and Methods
2.1. Plant Materials and Image Acquisition

Strawberry cultivar Seolhyang (Fragaria × ananassa Duch.) seedlings were transplanted
and grown in the greenhouse at Gyeongsang National University, Smart Farm Systems
Laboratory, Jinju, Republic of Korea from September 2022 to March 2023. The greenhouse’s
temperature, humidity, and carbon dioxide levels were monitored using a MCH 383SC
sensor system manufactured by Lutron Electronics, Taipei, Taiwan, and controlled by a
Farm Link controller system (Farm Link v 3.0 UBN, Jinju, South Korea). Bio plus compost
soil served as the growing medium for five hundred strawberry plants cultivated in a
bench-type configuration with five rows. The composition of Bio plus consists of cocopeat,
peat moss, perlite, and zeolite in proportions of 68.7%, 11.0%, 11.0%, and 9.0%, respectively.
Hoagland solution was provided, and the plants were irrigated daily with a volume ranging
from 20 to 50 mL per plant throughout their growth period.

RGB images were acquired from November 2022 to January 2023 as strawberries
entered the first batch of fruiting stage. This stage consists of fruits divided into mature,
transition, and immature according to the maturity level, as illustrated in Figure 1a–c. The
maturity level of the strawberry was categorized based on the amount of redness on the
strawberry. In the study, Basak et al. [15] categorized the maturity level of strawberries
according to different growth stages: whiting, turning red, three-quarter red, bright red,
and dark red. In reference to that study, the ripeness level of strawberries was categorized
as white-green to green as immature, turning red up to three-quarter red as transition, and
above three-quarters red to dark red as mature. The RGB camera used for image acquisition
was the Sony Cyber-shot DSC-RX100 VII, equipped with optical image stabilization and
autofocus. The captured images had a 5472 × 3648 pixels resolution, with exposure set in
auto mode.
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Figure 1. Three different strawberry maturity levels: (a) Mature; (b) Transition; (c) Immature.

The generalization ability and robustness of deep learning models increase with
diversity in the training images. Therefore, strawberry images were captured under
various lighting conditions at different times of the day (morning = 5000, midday = 22,000,
and noon = 12,000 lumens, on average), and the distance between the camera and the
target object was kept within 40 to 60 cm since the row spacing between the beds was one
meter. Additionally, images were acquired with dense fruition, occlusion caused by plant
canopy, overlapping strawberry fruits with different maturity and sizes, and variations in
camera orientation.

2.2. Dataset Construction and Preprocessing

In total, 2000 images were acquired to prepare a homegrown dataset; each image
consists of five to eight strawberry samples, on average, having different maturity lev-
els. Specifically, samples with immature, transition, and mature stages were 5000, 1250,
and 4200, respectively. According to the defined maturity criteria, the acquired images
were annotated using bounding boxes with annotation software Label-studio version 1.8.0
as ground truth. The label dataset images were divided into training, test, and valida-
tion sets, with a ratio of 80:10:10. The validation dataset was used to cross-validate the
trained models.

Furthermore, to facilitate better feature extraction, dataset enhancement, and model
robustness and performance, labeled images were augmented by employing techniques
following the guidance provided in the Ultralytics documentation under ‘Train Setting’—
‘Augmentation settings and hyperparameters’ [16]. As indicated for the YOLO series, the
data augmentation configuration file (hyp.scratch-low.yaml) was set with the following
augmentation parameters: HSV augmentation (hsv_h: 0.015, hsv_s: 0.7, hsv_v: 0.4), rotation
(degrees: 15), translation (translate: 0.1), scaling (scale: 0.5), flipping (flip left and right
fliplr: 0.5), mix-up (mixup: 0.8), and mosaic augmentation (mosaic: 1.0). By introducing
controlled variation in training data, the model gained generality by handling different
types of image input.

2.3. Strawberry Detection Methodologies
2.3.1. YOLOv5 Object Detection Network

YOLOv5 is a prevalent one-stage target detection model proven for its small size,
quick training time, and fast detection speed [17]. Depending upon the YOLO model
configuration set for the depth of the network and channel width, the model has five
variants: YOLOv5n (nano), YOLOv5s (small), YOLOv5m (medium), YOLOv5l (large), and
YOLOv5x (extreme large). According to the model’s varying network depth and feature
width, model size, performance, and detection speed also vary. Therefore, YOLOv5 models
serve as benchmark models for developing lightweight strawberry detection algorithms
for harvesting robots.

YOLOv5s architecture comprises an input, backbone, neck, and detection head, as
shown in Figure 2a. The input block includes mosaic data augmentation [18], adaptive
image scaling [3], and adaptive anchor frame [19]. Mosaic data augmentation blends
multiple images with random image transformation functions like cropping and scaling.
This process enhances dataset diversity, particularly addressing small targets, and con-
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tributes to the accelerated training speed of the network. Adaptive image scaling ensures
optimal handling of varying image sizes. Similarly, an adaptive anchor frame functions to
dynamically calculate the optimal anchor frame value within the training sets during each
training iteration.

AgriEngineering 2024, 6 966 
 

 

YOLOv5s architecture comprises an input, backbone, neck, and detection head, as 
shown in Figure 2a. The input block includes mosaic data augmentation [18], adaptive 
image scaling [3], and adaptive anchor frame [19]. Mosaic data augmentation blends mul-
tiple images with random image transformation functions like cropping and scaling. This 
process enhances dataset diversity, particularly addressing small targets, and contributes 
to the accelerated training speed of the network. Adaptive image scaling ensures optimal 
handling of varying image sizes. Similarly, an adaptive anchor frame functions to dynam-
ically calculate the optimal anchor frame value within the training sets during each train-
ing iteration. 

 
(a) 

  

(b) (d) 

 
(c) 
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Figure 2. YOLOv5s structure and component model: (a) Architecture with input data augmentation,
backbone, neck, and head section; (b) CBS module; (c) C3 module; (d) SPPF module.

Following the input is the backbone block, which serves as a primary block. The
function of the block is to convert the original input image into multiple feature maps that
are vital for subsequent object detections. The backbone structure includes convolution
block (CBS), Cross-Stage Partial layer (C3), and Spatial Pyramid Pooling Function (SPPF)
modules. Figure 2b shows the CBS module; it is the basic module used in a convolution
neural network comprised of the convolution layer, batch normalization (BN) layer, and
Sigmoid weighted linear unit (SiLU) activation function. The activation function is a non-
linear unit providing non-linear transformation capability to neural networks. The BN layer
function is to normalize the convolution layer. This helps to accelerate the training process,
improves model generalizability, and makes the model invariant to input initialization.

The C3 module fundamentally increases the network depth and receptive field, ab-
stracting the global information related to the object and enhancing the extraction of
features, as shown in Figure 2c. The C3 module is represented as CSP1_x in the backbone,
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whereas CSP2_x is in the neck block. CSP1_x consists of a Resnet unit, a transition layer,
and a dense layer. The Resnet unit is composed of two convolutional layers and a shortcut
connection. The transition layer is a convolutional layer that reduces the number of chan-
nels by half. The dense layer is a concatenation of the output of the transition layer and
the shortcut connection. CSP2_x is like CSP1_x; the only difference is that two CBL units
replace the Resnet unit.

The SPPF module functions fundamentally as a pooling unit that applies different
sizes of receptive fields to capture features of different scales from the same input image,
as shown in Figure 2d. This helps the SPPF module to achieve spatial and positional
invariance of input data and improve the network’s recognition ability for different scales
of target objects.

The neck block enhances object detection accuracy through multi-scale feature fusion
using the feature pyramid network + pyramid aggregation network (FPN–PAN) structure.
It employs up-sampling and down-sampling operations to create a multi-scale feature
pyramid, merging features from different levels for improved localization. The top–down
and bottom–up segments, respectively, combine features through up-sampling and convo-
lutional layers, reinforcing localization information. The head block is the final module,
consisting of three different detectors to detect large, medium, and small target objects
using grid-based anchors.

2.3.2. Improved YOLOv5s-CGhostnet Network

In this study, YOLOv5s was customized to improve performance and named YOLOv5s-
CGhostnet, as shown in Figure 3. Similar architecture compression with the attention
module was observed in vehicle detection technology [20]. The YOLOv5s architecture
implements the lightweight Ghost module and channel block attention module (CBAM)
to accomplish a lightweight and efficient model to localize and detect different mature
strawberry fruits in a greenhouse environment.
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Figure 3. The proposed YOLOv5s-CGhostnet network with Ghostnet module: Ghost operation
(GCBS), GhostBottleneck, and Ghost C3(GC3). The labels a, b, c, and d denote the network layers
where feature maps were visualized in Section 3.1.

Ghostnet Network

This study implemented the Ghost module as a lightweight neural network [21]. The
principle of the Ghost module is based upon depth-wise convolution (DWC) operation,
which serves as a cheap linear transformation. This significantly reduces the complexity of
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operations and increases speed. Figure 4a illustrates the realization of the Ghost module
operation for generating the final ‘ghost feature map’ from the input feature map that
resembles the baseline feature map as obtained from ordinary convolution. The generation
of a ‘ghost features map’ involves the serialization of two operations. In the first operation,
an ordinary convolution operation is performed in input features with fewer filters to
generate a smaller number of intrinsic feature maps. Then, the features map obtained from
the first section is further transformed using the ‘s’ number of cheap linear operations to
generate intermediate ghost feature maps. Finally, a ‘ghost feature map’ that resembles the
output of an ordinary convolution is obtained by concatenating the first and second section
feature maps.
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Operation details regarding ordinary convolution and Ghost module with parameter 
and FLOPS saving can be calculated as (Equations (1)–(5)): 

Input feature map tensor = ℎ × 𝑤 ×  𝑐 (1) 

Output feature map tensor = ℎ′ × 𝑤′ ×  𝑛 (2) 

In ordinary convolution: 

No. of Flops operation = 𝑛 × ℎ′ × 𝑤′ ×  𝑐 × 𝑘 × 𝑘  (3)

In Ghost convolution: 

No. of Flops operation =   ×  ℎ × 𝑤 ×  𝑐 × 𝑘 × 𝑘 + (𝑠 − 1) ×  × ℎ × 𝑤 × 𝑑 × 𝑑 (4) 

From Equations (3) and (4): 

Theoretical ratio of ordinary convolution to Ghost module convolution 𝑠 (5) 

where, h = height of input feature map, w = width of the input feature map, c = no of the 
channel, k = size of filter kernel, h’ = height of output feature map, w’ = width of the output 
feature map, n = no of filters, d = size of the kernel for linear cheap operations with similar 
magnitude as k, and s = the number of cheap transformation operations. 
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Operation details regarding ordinary convolution and Ghost module with parameter
and FLOPS saving can be calculated as (Equations (1)–(5)):

Input feature map tensor = h × w × c (1)

Output feature map tensor = h′ × w′ × n (2)

In ordinary convolution:

No. of Flops operation = n × h′ × w′ × c × k × k (3)

In Ghost convolution:

No. of Flops operation =
n
s
× h × w × c × k × k + (s − 1)× n

s
× h′ × w′ × d × d (4)

From Equations (3) and (4):

Theoretical ratio of ordinary convolution to Ghost module convolution ≈ s (5)

where, h = height of input feature map, w = width of the input feature map, c = no of the
channel, k = size of filter kernel, h’ = height of output feature map, w’ = width of the output
feature map, n = no of filters, d = size of the kernel for linear cheap operations with similar
magnitude as k, and s = the number of cheap transformation operations.

Equation (5) suggests that the floating-point operation related to Ghost modules is ‘s’
times more efficient than ordinary convolution operations. Similarly, the number of param-
eters needed for operation also resembles FLOPs. Therefore, it can also be approximated
to be decreased with ‘s’ ratio. This shows computational superiority in the computation
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cost of the Ghost module. Therefore, Ghost operation (GCBS), Ghost Bottleneck, and Ghost
C3 (GC3) are structured based on the Ghost module, as shown in Figure 4b–d. These new
structures can reduce the computation costs and compress the model size by replacing the
CBS and C3 structures in the original YOLOv5s model.

CBAM

The mechanism of the attention module in computer vision is inspired by human
vision. This allows one to selectively focus on a specific target object against all the unim-
portant objects and backgrounds. The CBAM is a widely used lightweight attention module
due to its ability to adaptively recalibrate features maps by capturing both channel-wise
and spatial-wise attention, enabling more effective and context-aware feature extraction.
The structure of CBAM contains two sequential blocks stacked one after another, first
the channel attention module (CAM) and then the spatial attention module (SAM), as
shown in Figure 5 [22]. The CBAM attention module provides “refined feature maps”
from “input intermediate feature maps” in convolution neural networks. The feature maps,
input, and output in convolution layers are represented as tensors with 3-dimensional
metrics c × h × w. The operation of the CBAM module produces refined feature maps as
mentioned in the following calculations (Equations (6)–(11)).

Input Intermediate feature map : F ∈ RC×H×W (6)

Output feature map after first block : F′ = Mc(F)⊗ F (7)

CA : Mc(F) =σ
(

W1

(
W0

(
Fc

avg

))
+ W1(W0(Fc

max))
)

(8)

Input feature map on sec ond block : F′ (9)

Final output feature map : F′′ = Ms
(

F′)⊗ F′ (10)

SA : Ms(F) = σ
(

f 7×7
[

Fs
avg ; Fs

max

])
∈ RH×W (11)

where σ = sigmoid activation function, W1, W0 = weight of multilayer perception, Fc
avg,

Fc
max = channel average polled feature and max polled feature, Fs

avg , Fs
max = spatial average

polled feature and max pooled feature, and f 7×7 = filter size of 7 × 7
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SIOU Loss Function

In YOLOv5s, loss functions consist of three losses: confidence loss (Iobj), classification
loss (Icls), and position loss of the target box represented by prediction box loss (Ibox). The
loss equation is as follows:

Loss = Iobj + Icls + Ibox (12)

In YOLOv5s, the Generalized Intersection over Union (GIoU) loss function is the
default bounding box regression loss (Ibox) function [23]. Compared to the IoU loss function
regressor, GIoU solves differentiability issues when the prediction box and target box do
not intersect, i.e., IoU = 0, and when the intersection of two prediction boxes has the same
size and same IoU. However, GIoU cannot solve the problem with the prediction box
being inside the target box, and in this circumstance, GIoU performance is the same as IoU.
Therefore, the SCYLLA-IoU (SIoU) loss function regressor was implemented in this study
to improve the Ibox loss function, since the SIoU loss function takes account of angle cost,
distance cost, shape cost, and IoU cost collectively to calculate a more precise bounding
box localization [24].

2.4. Test Platform and Parameter Setting

The models employed in the study were trained, validated, and inferred using a
computer with an Intel Core i7-10700 CPU @ 2.90 GHz, 16 GB RAM, graphic card, NVIDIA
GeForce RTX 2060 with dedicated 6 GB memory, and Microsoft Windows 10 Pro operating
system. The widely used PyTorch framework facilitated the training and inference of object
detection models. Transfer learning and fine-tuning strategies were applied to expedite
model training. During the model training phase, all models’ iteration batch size was set to
16 with a default decay coefficient of 0.0005, initial learning rate of 0.01, and total number
of iterations of 100.

2.5. Evaluation of Model Performance

This experiment uses the following metrics to evaluate the performance of object
detection models: precision (P), recall (R), F1-Score, and mean average precision (mAP@0.5).
Simultaneously, the network parameters, model size, and detection speed were used to
analyze the network architecture, model size, and inference time.

Precision (P) =
True Positive

True Postive + False Positive
(13)

Recall (R) =
True Positive

True Postive + False Negative
(14)

F1 − Score =
2 × (Precision × Recall)

Precison + Recall
(15)

Mean Avg. Precision =
∑N

1 Avg. Precision o f kth class
True Number o f k class (N)

(16)

Precision and recall assess the model’s proficiency in detecting and localizing fruit
classes. The F1-score provides a balanced assessment of the model’s classification perfor-
mance by harmonizing precision and recall. Additionally, map@0.5 calculates the average
precision at different confidence levels for predicted bounding boxes, considering an IoU
threshold more significant than 0.5 with the ground truth. In Equations (13)–(16), True
Positive represents correctly detected strawberry classes, False Positive accounts for falsely
detected strawberry classes, and False Negative indicates the number of missed detections.

3. Results and Discussion

The improved YOLOv5s-CGhostnet proposed by this study has a series of modifi-
cations and incorporated an attention module into the baseline YOLOv5s model. These
enhancements aimed to improve the strawberry fruit detection model’s performance, op-
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timize size, and reduce computational requirements. To assess the effectiveness of these
modifications, YOLOv5s-CGhostnet was compared with several lightweight YOLO detec-
tion models, namely YOLOv3-tiny, YOLOv4-tiny, YOLOv5s, and YOLOv5s6.

3.1. Test Results on Fruit Detection

The overall performance of each algorithm was evaluated using metrics, including
precision, recall, F1-score, and mAP@0.5, as presented in Table 1. Notably, the improved
YOLOv5s-CGhostnet demonstrated superior detection accuracy compared to all other mod-
els, achieving F1-score and mAP@0.5 values of 90.1% and 91.7%, respectively. Compared
to YOLOv5s, YOLOv5s-CGhostnet improved 0.12% in F1-score and 0.98% in mAP@0.5.
Furthermore, the improved YOLOv5s-CGhostnet achieved the highest accuracy with 88.1%
precision and 87.7% recall. The results illustrate the enhanced performance of YOLOv5s-
CGhostnet regarding overall detection accuracy.

Table 1. The comparative results of the different algorithms.

Algorithm Precision (%) Recall (%) F1-Score (%) mAP@0.5 (%)

YOLOv3-tiny 85.7 84.9 85.3 90.1
YOLOv4-tiny 83 83.7 83.4 89.8
YOLOv5s6 86.3 86.9 86.6 91.1
YOLOv5s 87.4 85.8 86.6 90.7
YOLOv5s-CGhostnet 88.1 87.7 87.9 91.7

The target detection performance of YOLOv5s-CGhostnet against lightweight standard
models is presented in Figure 6. The YOLOv5s-CGhostnet model exhibited high confidence
in identifying various ripeness classes under diverse conditions, including intense and low-
light images, dense fruition with different sizes, and occlusion levels. In contrast, the models
YOLOv3-tiny, YOLOv4-tiny, and YOLOv5s reveal instances of missing fruit detection and
false positives, indicated by black boxes as shown in Figure 6b–d. These issues significantly
impacted the overall performance and accuracy of these detection models. The confidence
level in strawberry fruit detection was notably low. Similarly, YOLOv5s6 exhibited a
detection and confidence level comparable to the improved YOLOv5s-CGhostnet model.
This can be attributed to the higher depth and width of the model network. In summary,
the YOLOv5s-CGhostnet model presents a viable solution to challenges faced by other
lightweight models, addressing issues such as low confidence in detection, missing fruit,
false positives, and occlusions in the detection of various classes of fruits.

While the evaluation of a deep learning model’s performance through metrics is
crucial, obtaining a comprehensive understanding of the inner workings, often concealed
within the ‘black box’, is equally essential for effective optimization and refinement. In
recent years, researchers have adopted feature visualization techniques, converting features
from various convolution and network output layers into visual representations to uncover
and understand the complexity of these models. In order to demonstrate the efficacy of the
YOLOv5s-CGhostnet algorithm, four randomly selected greenhouse strawberry images
underwent feature visualization at different stages of the network as labeled a, b, c, and d
in Figure 3, and depicted in Figure 7.

During the initial phase, the layers extracted shallow features that detect the target
strawberries and the features and texture of the background environment consisting of
plant canopy. However, as the depth of the layer increases, the feature maps become more
abstracted, focusing on retaining and enhancing the strawberry fruit information with high
dimensional deep semantic features. This high dimensional feature map is further passed
through the FPN–PAN network to find the spatial location of the targeted strawberries in
the image. The localization of features can be seen in the last feature map visualization,
Figure 7d. The feature visualization exhibits that the improved model has higher feature
extraction capability and refines the feature information, focusing on the desired classes of
strawberries. This further justifies the detection model’s accuracy and effectiveness.



AgriEngineering 2024, 6 972AgriEngineering 2024, 6 972 
 

 

 
(a) YOLOv5s-CGhost 

 
(b) YOLOv3-tiny 

 
(c) YOLOv4-tiny 

 
(d) YOLOv5s 

 
(e) YOLOv5s6 

Figure 6. Comparison of the strawberry fruit detection results in various conditions with different 
algorithms. 

While the evaluation of a deep learning model’s performance through metrics is cru-
cial, obtaining a comprehensive understanding of the inner workings, often concealed 
within the ‘black box,’ is equally essential for effective optimization and refinement. In 
recent years, researchers have adopted feature visualization techniques, converting fea-
tures from various convolution and network output layers into visual representations to 
uncover and understand the complexity of these models. In order to demonstrate the ef-
ficacy of the YOLOv5s-CGhostnet algorithm, four randomly selected greenhouse straw-
berry images underwent feature visualization at different stages of the network as labeled 
a, b, c, and d in Figure 3, and depicted in Figure 7. 

 
Figure 7. Strawberry detection feature maps. Label a, b, c, and d are different stages of network 
depicted in Figure 3. 

Figure 6. Comparison of the strawberry fruit detection results in various conditions with different
algorithms.

AgriEngineering 2024, 6 972 
 

 

 
(a) YOLOv5s-CGhost 

 
(b) YOLOv3-tiny 

 
(c) YOLOv4-tiny 

 
(d) YOLOv5s 

 
(e) YOLOv5s6 

Figure 6. Comparison of the strawberry fruit detection results in various conditions with different 
algorithms. 

While the evaluation of a deep learning model’s performance through metrics is cru-
cial, obtaining a comprehensive understanding of the inner workings, often concealed 
within the ‘black box,’ is equally essential for effective optimization and refinement. In 
recent years, researchers have adopted feature visualization techniques, converting fea-
tures from various convolution and network output layers into visual representations to 
uncover and understand the complexity of these models. In order to demonstrate the ef-
ficacy of the YOLOv5s-CGhostnet algorithm, four randomly selected greenhouse straw-
berry images underwent feature visualization at different stages of the network as labeled 
a, b, c, and d in Figure 3, and depicted in Figure 7. 

 
Figure 7. Strawberry detection feature maps. Label a, b, c, and d are different stages of network 
depicted in Figure 3. 

Figure 7. Strawberry detection feature maps. Label a, b, c, and d are different stages of network
depicted in Figure 3.

3.2. Analysis of Class-Wise Strawberry Fruit Detection Algorithms

The detection results across various maturity levels of strawberries highlight the
model’s proficiency in extracting and distinguishing target features. Table 2 presents
the mAP@0.5 for class-wise fruit detection of different algorithms, affirming the model’s
overall accuracy. Notably, the proposed YOLOv5s-CGhostnet model exhibited superior
performance, achieving the highest mAP@0.5 for mature, transition, and immature classes
at 97.2%, 86.8%, and 91.2%, respectively. The model improvements over YOLOv5s for
mature, transition, and immature classes are 0.1%, 2.8%, and 0.6%, respectively. However,
it trails slightly behind YOLOv5s6, which attains a 97.4% mAP for mature fruits.
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Table 2. The comparative results on mAP@0.5 for different algorithms on different strawberry
maturity classes.

Maturity
Classes YOLOv3-Tiny YOLOv4-Tiny YOLOv5s YOLOv5s6 YOLOv5s-

CGhostnet

Mature 96.4 96.5 97.1 97.4 97.2
Transition 85.7 83.4 84 85.2 86.8
Immature 88.2 89.5 91.1 90.6 91.2

The slightly lower detection accuracy for the immature class than the mature class can
be attributed to the fact that mature strawberries have similar sizes and textures. However,
immature fruits vary in size and texture due to different growth stages. In addition, the
small size of immature fruits poses challenges in distinguishing them from the background
plant canopy. Furthermore, annotating the mature strawberries is easier, but immature fruit
at the budding stages was not annotated and was not included in the dataset. Similarly, the
transient maturity class exhibits the least mAP value due to the wide feature space between
immature and mature classes, compounded by the limited number of data samples in the
dataset. A similar observation was observed in the studies of SDNet [25] and DSE-YOLO
model [10].

3.3. Analysis of Model Size and Computational Cost Requirement of Different Algorithms

In detection algorithms, the model’s lightweight is crucial beyond excelling in target
detection and accuracy of the model, as it influences the ease of implementation in devices
with limited resources. Therefore, the model parameters, model size, and computational
requirements for the improved YOLOv5s-CGhostnet were compared comprehensively
against standard YOLO models. Table 3 summarizes network parameters, memory size,
and GFLOPS for each model.

Table 3. The comparative result on the network parameters, memory size, and computation require-
ment (GFLOPS) for different algorithms.

Models Parameter (106) Model Size (MB) GFLOPS

YOLOv3-tiny 8.8 17.02 13.2
YOLOv4-tiny 6.06 11.3 16.2
YOLOv5s6 7.2 14.03 16.4
YOLOv5s 12.6 24.47 16.8
YOLOv5s-CGhostnet 6.02 9.4 9.8

Among all the models considered, YOLOv5s-CGhostnet exhibited the most efficient
utilization of resources, requiring the lowest parameters, memory size, and computational
operation with values of 6.02 × 106, 9.4 MB, and 9.8 GFLOPS, respectively. This marks a
substantial improvement over the reference model, YOLOv5s, with reductions in model
parameters, memory size, and computational operation of 46.18%, 49.25%, and 67.35%,
respectively. The improvement of YOLOv5s-CGhostnet against models YOLOv3-tiny,
YOLOv4-tiny, and YOLOv5s6 on model size reductions was 81.06%, 20.21% and 160.32%,
respectively, whereas model GFLOPS reduction was 34.69%, 65.31%, and 71.43%, respec-
tively. This remarkable compression underscores the model’s efficiency and suitability
for deployment in resource-constrained environments. This thorough evaluation rein-
forces YOLOv5s-CGhostnet as an optimal choice for strawberry detection, demonstrating
exceptional efficiency in model size and computational demands.

3.4. Ablation Experiment

Ablation study serves as a methodology to interpret the specific contributions of vari-
ous components integrated into the original model. This approach involves systematically
adding and removing individual components to evaluate their impact on the overall perfor-
mance of the improved model. In our investigation, we applied ablation study techniques
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to the YOLOv5s model, introducing modifications such as dataset enhancement (DEH)
and replacing baseline detection model modules with Ghostnet modules. Specifically, the
standard CBS and C3 modules in the backbone and neck section were replaced by the
GCB and GC3 block, respectively. The SIoU box loss function replaced the GIoU box loss
function. Further experimentation includes the addition of the CBAM before the SPPF
module and placing CBAM in sections between FPN and PAN at the neck block of YOLO.
This exploration aimed to identify the optimal improved architecture termed YOLOv5s-
CGhostnet. The detailed structures of the models for the ablation experiment are outlined
in Table 4.

Table 4. Model structures of ablation experiments.

Models Structure
Input Backbone Neck

CBAM + SIOU
DEH CBS C3 SPPF CBS C3

YOLOv5s Yes CBS C3 SPPF CBS C3 -
YOLOv5s-Ghostnet without
DEH (A1) No GCBS GC3 SPPF GCBS GC3 -

YOLOv5s-Ghostnet with
DEH (A2) Yes GCBS GC3 SPPF GCBS GC3 -

YOLOv5s-CGhostnet (A3) Yes GCBS GC3 SPPF GCBS GC3 With CBAM
YOLOv5s-CGhostnet with
SIOU (A4) Yes GCBS GC3 SPPF GCBS GC3 With CBAM + SIOU

Furthermore, Table 5 presents the quantitative results for each structure, evaluating
the performance metrics related to mAP@0.5, size, GFLOPS, and inference time.

Table 5. Results of ablation experiments.

Performance/Model Yolov5s
YOLOVv5s-

Ghostnet without
DEH (A1)

YOLOv5s-
Ghostnet with

DEH (A2)

YOLOv5s-
CGhostnet (A3)

YOLOv5s-
CGhostnet with

SIOU (A4)

mAP@0.5 0.907 0.824 0.849 0.895 0.917
Size (MB) 14.1 7.8 7.8 9.1 9.4
GFLOPS (106) 15.8 8.1 8.1 9.1 9.8
Inference (ms) 3.4 3.4 3.9 4.1 5

The results show that the A1 model structure underwent replacing all the network
structures of the YOLOv5s benchmark model with Ghostnet without dataset enhancement.
This resulted in a reduction in the model’s accuracy, mAP@0.5, by 9.15%. However, there
was a significant reduction in the model’s size and computation operation by 44.68% and
95.06%. In the A2 structure, data enhancement was introduced to enhance the dataset
through flip, scale, mosaic, and mix-up augmentation. This did not affect the model size
and computation operation, but the prediction accuracy mAP@0.5 value increased by 0.25.
In the A3 structure, the CBAM was introduced to the A2 model; this further improved
the model accuracy mAP@0.5 value by 0.046 with further increments of model size and
computation operation by 13.26% and 10.99%, respectively. Finally, introducing A4 with
loss function SIoU further enhanced the model accuracy mAP@0.5 value by 0.022 with
slight increments in size and computation operation by 3.19% and 7.14%, respectively. The
final improved model A4, YOLOv5s-CGhostnet, surpassed the baseline model YOLOv5s
accuracy mAP@0.5 by 0.01 with a significant reduction in model size and computational
operation and a comparable inference time of 5 ms, which is enough for the real-time
detection of the strawberry fruit. These results justify the data enhancement, modification
of structure, loss function, and addition of attention module for the improved models.
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3.5. Real-Time Detection and Counting

In this study, the improved YOLOv5s-CGhostnet was analyzed on performance met-
rics and compared with the standard detection model and recent relevant studies, ablation
experiments, and feature visualizations. However, the quantification information is also
essential to determine yield and helps to count the number of ripe fruits in the image.
Therefore, to identify and quantify different classes, real-time detection and counting of
the fruits is visualized using an autonomous program developed by modifying inherent
capability of detect.py source code in YOLOv5, as recommended in a prior study [25]. The
result of fruit detection and counting is shown in Figure 8. The figure shows the frame rate
in the top left corner, reaching an average of 64 frames per second (FPS), and fruit counts in
the bottom left corner for the respective image frame. This scouting method can estimate
the strawberry yields and probable harvesting cycle.
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3.6. Comparison with Relevant Studies

Our aim in improving the YOLOv5s-CGhostnet network was to design a lightweight
model that could perform real-time detection with comparable accuracy in a field straw-
berry cultivation environment. To achieve this, we analyzed several existing studies on
strawberry detection and localization models for comparison: SDNet, DSE-YOLO, and
YOLOv8 fused with LW-Swin Transformer. SDNet was chosen for its high accuracy in
object detection with a YOLOx model, NAM attention module, and latest loss function.
DSE-YOLO was chosen for its emphasis on compact model size using pointwise and dilated
convolution to extract semantic features in horizontal and vertical dimensions. Finally,
YOLOv8 with fused LW-Swin Transformer was taken to represent the application of recent
advancements in object detection. It is worth noting that the models’ architectures and
the field environment used in those studies varied, making it challenging to attain the
same level of accuracy on our dataset. Nonetheless, we can analyze these models based
on their accuracy, network size, and frame rate. Table 6 shows the performance metric
mAP@0.5, model size, and FPS of three strawberry detection models with our model
YOLOv5s-CGhostnet. Among the compared object detection models, SDNet [25] stands
out with the highest mAP@0.5 of 94.26, showcasing commendable accuracy. However, its
larger model size at 54.6 MB and a moderate FPS of 30.5 are of concern. Conversely, the
DSE-YOLO model [10] exhibits the lowest accuracy with a mAP@0.5 of 86.58, accompanied
by a smaller model size of 22.39 MB but a slower FPS of 18.20. YOLOv8, incorporat-
ing the fused LW-Swin Transformer [26], demonstrates competitive performance with a
mAP@0.5 of 94.4 and a significantly reduced model size of 13.42 MB, albeit at a lower FPS
of 19.23. Noteworthy is our improved model, YOLOv5s-CGhostnet, which shines with
its lightweight model size of 9.4 MB and a remarkable FPS of 64, despite not securing the
highest accuracy, registering a mAP@0.5 of 91.7. The study shows that the improved model
YOLOv5s-CGhostnet has comparable accuracy to previous research studies and significant
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advantages in model size and real-time detection, suggesting a viable model to implement
on resource-constrained devices.

Table 6. Comparative studies with recent research works.

Model mAP@0.5 Model Size (MB) FPS

SDNet 94.26 54.6 30.5
DSE-YOLO 86.58 22.39 18.20
YOLOv8 with fused LW-Swin Transformer 94.40 13.42 19.23
YOLOv5s-CGhostnet (Ours) 91.7 9.4 64

4. Conclusions

The present study successfully exhibits an improved YOLOv5 model named YOLOv5s-
CGhostnet for detecting and localizing strawberries at different maturity stages. The base
YOLOv5 model had a comprehensive change in structure in the backbone and neck part
with the replacement of CBS and C3 with the Ghost module, supplemented by CBAM and
SIoU box loss function. The model performance was evaluated with a prepared dataset
and compared with standard lightweight YOLO models. Furthermore, an ablation study
was done to justify data enhancement, replacing the base module with the Ghost module,
adding SIOU box loss function, and integrating the attention module. The results show that
YOLOv5s-CGhostnet achieved the highest performance score with 91.7% mAP@0.5, 5 MB
model size, and 9.8 GFLOPS of computation requirement. The comprehensive performance
evaluation and comparison with the standard lightweight model show that the improved
model has a compact structure, lower complexity, higher detection accuracy, and real-time
detection capability. The inference time of 5 ms was slightly higher than the YOLO tiny
model and YOLOv5s models; however, the achieved inference time is enough for real-time
detection purposes. In future enhancements, the focus would be to deploy the improved
model to resource-constrained devices such as Raspberry Pi and develop the platform for
scouting and harvesting robots. Additionally, the transformer model for vision processing
would be explored using images acquired with an RGB depth camera to enhance further
detection algorithms with compact size, improved computation operation, high accuracy,
and real-time operation. Specifically, transformer-based architectures will be investigated
to determine whether they can outperform YOLOv5s-CGhostnet for strawberry detection
on a resource-constrained device, employing model pruning techniques with parameter
quantification for size reduction.
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