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Abstract: With climate change and intensification of the hydrological cycle, the stationarity of
hydrological variables is becoming questionable, requiring appropriate flood assessment models.
Frequency analysis is widely used for flood forecasting. This study aims to determine the most
suitable models (stationary and non-stationary) for estimating the maximum flows observed at
some stations spread across West Africa. A statistical analysis of the annual maximum flows in
terms of homogeneity, stationarity, and independence was carried out through the Pettitt, modified
Mann–Kendall, and Wald–Wolfowitz tests, respectively, to identify the stations whose flows are
non-stationary. After that, the best-correlated climate covariates with the annual maximum flows of
the non-stationary stations were determined. The covariates explored are the climatic indices of sea
surface temperatures (SST). Finally, different non-stationary GEV models were derived by varying the
scale and position parameters of the best-correlated index for each station. The results indicate that
56% of the annual maximum flow series are non-stationary. As per the Bayes information criterion
(BIC) values, the performance of the non-stationary models (GEV, generalized extreme values) is
largely greater than that of the stationary models. These good performances of non-stationary models
using climatic indices open perspectives for the prediction of extreme flows in the study area.

Keywords: annual maximum flows; covariates; non-stationarity; GEV; West African basins

1. Introduction

Controlling rainfall extremes is a major challenge of our century. Every year, these
extremes cause damage in the world in general and in West Africa in particular. The damage
to the socio-economic level is very important as evidenced by several reports such as that
of the post-disaster needs assessment produced by the National Agency for Civil Protection
(ANPC) of Benin, which indicates that in 2010, floods caused about fifty-three billion two
hundred and ninety-five million (53,295,000,000) XOF in losses, 27 deaths, 317,576 people
affected, and many hectares of crops washed away [1]. Following the evolution of these
extremes under the influence of factors such as climate change, one would expect more
frequent events in the future. Frequency analysis is a privileged tool for predicting extreme
floods. It consists of studying past events, characterizing a given hydrological process, in
order to define the probabilities of future appearance.

In several frequency analysis studies, non-stationarity has not been considered [2–6]
mainly in West Africa. However, with global changes including climate change, several
authors have indicated that stationarity is “dead” [7]. Very few studies have examined the
non-stationary issues in West Africa [8] while there has been an effort of exploring the non-
stationarity in flood frequency in South Africa [9] and other parts of the world [10–15]. For
instance, Hounkpè et al. [8] made a non-stationary frequency study of flows in the Ouémé
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basin in West Africa. To our knowledge, there are no studies focused on non-stationary
frequency analysis on the scale of West Africa. Detecting the presence and attributing
the source of non-stationarity in hydroclimatic extremes is vital to understanding and
managing water resources in a changing world [16]. It is, therefore, necessary to take into
account non-stationarity in the data in any frequency analysis.

Non-stationary flood frequency analysis is performed when the assumption of station-
arity in hydrologic extremes values used for infrastructure design and others (independent
and identically distributed time series of extreme flow data) is no longer valid. This implies
that the process of flood generation may depend on other variables (named covariates) such
as time, climate indexes, and soil moisture. By taking into account these covariates, many
authors have improved the performance of flood frequency analysis [8,10–15]. Considering
a stationary distribution for analyzing a non-stationary variable would necessarily increase
the uncertainties in the frequency analysis. Some causes of non-stationarity in recorded
data include climate change, land use change, and anthropic activities.

Non-stationary frequency analysis takes into account covariates representing spa-
tial and temporal non-stationarities in the data. Several covariates—whether climatic or
hydrological—can be explored to develop better frequency models. This study aims to
develop non-stationary flood frequency models of the annual maximum flows of major
rivers in West Africa for future exploration of flood forecasting. Specifically, it will evaluate
the homogeneity, stationarity, and independence of the maximum annual flow data of
the study area; explore possible climatic covariates for annual maximum flows indicating
non-stationarity; and perform non-stationary flood frequency analysis for stations with
good correlation with climate covariates for hydrological forecasting. This study is among
the first of its kinds to perform the non-stationary flood frequency analysis on the scale of
West Africa by exploring many climate indexes that could be correlated with the annual
maximal discharge data across the study area.

2. Materials and Methods
2.1. Description of the Study Area

West Africa has wet and dry seasons resulting from the interaction of two migrating air
masses. Where these two air masses meet is a belt of varying width and stability called the
Intertropical Convergence Zone (ITCZ) [17]. The northern and southern migrations of the
ITCZ, which follows the apparent movement of the sun, control the climate of the region.

The lowland climates of West Africa are characterized by uniformly high sunshine
and high temperatures throughout the year with annual means usually above 18 ◦C. In the
Sahel, maximum temperatures can reach above 40 ◦C [18]. Not only scarcity of rainfall but
also its variability and unpredictability become more significant with latitude [18].

Other features of West Africa’s rainfall include frequent and short-term heavy rains
that cause severe soil erosion, particularly on cleared and bare croplands; the emergence of
a bimodal rainfall belt at some distance inland from the coast to eastern Sierra Leone to
Nigeria, and the variability in the amount, timing, duration, and cessation increasing from
the wettest to the driest areas. In coastal areas, the percentage of annual variability varies
from 10 to 20 percent, while near the Sahara in the Sahel, it can exceed 40 percent. Three
(03) climatic zones are observed in the region [19]:

- The arid zone or Sahel Zone includes the Sahel or the Sahelian zone and has up to
750 mm of rainfall in a single short rainy season with an extended dry season of up
to 10 months. The dry season sometimes extends into years causing severe droughts.
This area includes parts of northern Senegal, parts of Mali, Burkina Faso, and Niger.

- The semi-arid zone or Guinea Savanna Zone includes approximately the southern
Sahel and covers the southern parts of Mali, Burkina Faso, Niger, Chad and the upper
parts of Guinea-Bissau, Guinea, Togo, northern Benin, Nigeria, Cameroon, and the
Central African Republic. The average annual rainfall, from 750 mm to 1250 mm, falls
in one season followed by a 7- to 8-months-long dry season.
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- The subhumid zone or Equatorial Forest Zone includes southern Guinea-Bissau,
the upper parts of Guinea, the southernmost parts of Mali and Burkina Faso and the
southern parts of Ghana, Côte d’Ivoire, Cameroon, Sierra Leone, Benin, and the central
parts of Nigeria. The average annual rainfall is between 1250 mm and 1500 mm in
one season.

River basins as well as the stations considered in this study are displayed in Figure 1.
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2.2. Data Collected

The discharge data of forty-six (46) stations in West African countries were obtained
through the Global Runoff Data Center [20]. These data were available from 1948 to 2013 for
most stations. However, the period between 1948 and 1979 has a large number of missing
data. The SST climate indices were downloaded on 1 September 2021, as indicated below:

- Tropical North Atlantic Index (TNAI) and TSAI (Tropical South Atlantic Index): These two in-
dices are located in the tropical Atlantic. TNAI SSTs range from 5.5◦ N/23.5◦ N–15◦ W/57.5◦ W
and TSAI from 0/20◦ S–10◦ E/30◦ W. These data are from the NOAA CPC archives [21].
These data downloaded are from 1948 to 2020 and are available on www.esrl.noaa.
gov/psd/data/correlation/tna.data (accessed on 1 September 2021) and www.esrl.
noaa.gov/psd/data/correlation/tsa.data (accessed on 1 September 2021).

- Dipole Mode Index East (DMIE): The DMIE is located in the Indian Ocean in the
range 10 S–10 N, 50 E–70 E [22]. These downloaded data are from 1870 to 2020 on
https://psl.noaa.gov/gcos_wgsp/Timeseries/Data/dmieast.had.long.data (accessed
on 1 September 2021).

- Dipole Mode Index West (DMIW): The DMIW is located in the Indian Ocean in
the range 10 S: 0.90 E–110 E [22]. These data downloaded are from 1870 to 2020 on

www.esrl.noaa.gov/psd/data/correlation/tna.data
www.esrl.noaa.gov/psd/data/correlation/tna.data
www.esrl.noaa.gov/psd/data/correlation/tsa.data
www.esrl.noaa.gov/psd/data/correlation/tsa.data
https://psl.noaa.gov/gcos_wgsp/Timeseries/Data/dmieast.had.long.data
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https://psl.noaa.gov/gcos_wgsp/Timeseries/Data/dmiwest.had.long.data (accessed
on 1 September 2021).

- Dipole Mode Index (DMI): The DMI is calculated from the difference between the
two East and Ouest indices located in the Indian Ocean [22]. The SSTs of the DMI are
between the difference 10 S: 10 N, 50 E–70 E and 10 S: 0.90 E–110 E. It is available on
https://psl.noaa.gov/gcos_wgsp/Timeseries/Data/dmi.had.long.data (accessed on
1 September 2021). These data downloaded are from 1870 to 2020.

- MEI (Multivariate ENSO Index): It is calculated from the values of the six variables
(surface pressure, zonal and meridian component of the surface wind, sea surface
temperature, surface air temperature and cloud cover) [23]. Available on https://
www.psl.noaa.gov/enso/mei (accessed on 1 September 2021), the MEI is part of the
Pacific Ocean indices. This is a bimonthly index; these downloaded data are from 1979
to 2020.

- ONI (Oceanic Nino Index): obtained on https://origin.cpc.ncep.noaa.gov/products/
analysis_monitoring/ensostuff/ONI_v5.php (accessed on 1 September 2021), this
index is also part of the indices of the Pacific Ocean [21]. This trimonthly index was
downloaded from 1950 to 2020.

2.3. Methods
2.3.1. Data Quality Assessment

For the construction of a good-quality data series, the following steps were considered:

- delete stations with less than thirty (30) years of data available from at least 1980 to
recent period.

- determine the maximum flow values for each year at each station: the maximum per
block (per year) approach is adopted [24]

- delete the years whose maximum discharge value does not fall within the peak of
rainy season (between June and November).

- remove stations having less than twenty (20) years of continuous data.
- remove outliers of annual maximum data obtained via the boxplot. By comparing the

maximum values with the limit value corresponding to the station for the correspond-
ing boxplot, we eliminated those below the limit value.

2.3.2. Data Processing

Verification of data consistency, stationarity, and independence: The Pettitt test [25], a
nonparametric test, was used to test a shift in the central tendency of time series. The null
hypothesis H0 of no change is tested against the alternative hypothesis HA of a change
at the significance level of 5%. The modified Mann–Kendall test [26] was used to test the
stationarity of the data while the Wald–Wolfowitz Independence test [27] was considered
for checking the independence of the data. For the Mann–Kendall test, the null hypothesis
of no trend is tested against the alternative hypothesis of trend existence at significance
level of 5%. The Wald–Wolfowitz Independence test evaluates the null hypothesis of
independence in the data against the dependence in the data at 5% significance level.

Covariates selection: Possible covariates were determined by computing the correlations
between the annual maximum flows of each station and the covariates of each month (or
each combination of monthly indices for the MEI and ONI indices) for the eight (8) SST
indices. The index yielding the highest absolute correlation value with a significant p-value
(less than or equal to 0.05) is considered for each station. We then categorize the p-values
obtained by stations (and the corresponding covariates) according to three (3) ranges:
p-values between 0.05 and 0.01; p-values between 0.01 and 0.001; p-values below 0.001.

Frequency analysis: a stationary frequency analysis was applied for stations whose data
were found stationary upon the application of the homogeneity, stationarity and indepen-
dence tests. However, data from stations for which at least one of the tests is not verified
are considered non-stationary and non-stationary frequency analysis is applied to them.

https://psl.noaa.gov/gcos_wgsp/Timeseries/Data/dmiwest.had.long.data
https://psl.noaa.gov/gcos_wgsp/Timeseries/Data/dmi.had.long.data
https://www.psl.noaa.gov/enso/mei
https://www.psl.noaa.gov/enso/mei
https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php
https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php
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For this non-stationary analysis, the generalized extreme values distribution (GEV), a
flexible three-parameter model that combines the Gumbel, Fréchet, and Weibull extreme
value distributions, was used. Its cumulative distribution function is presented as follow:

f (x) = exp

(
−
(

1 − k
σ
(x − µ)

) 1
δ

)
, −∞ < x < +∞

with µ, σ, and δ the position, scale, and shape parameters of the GEV distribution.
The non-stationary frequency analysis consists in considering the position, scale,

and/or shape parameters of the GEV distribution as functions of one or more covariates.
Two (2) covariates were selected for the non-stationary frequency analysis such as the
best-correlated covariate of the station under consideration; and the temporal iterations
(1, 2, 3, etc. . .) for each station (Table 1). To choose the best distribution, we considered the
BICs. The distribution with the minimum BIC is chosen the best.

Table 1. Model types developed with Cov(t) covariate and t time.

Models
Parameters

Position Scale Shape

GEV0 µ = cste log(σ) = cste δ = cste

GEV1 µ = µ0 + µ1 ∗ Cov(t) log(σ) = cste δ = cste

GEV2 µ = cste log(σ) = σ0 + σ1 ∗ Cov(t) δ = cste

GEV3 µ = µ0 + µ1 ∗ t log(σ) = cste δ = cste

GEV4 µ = cste log(σ) = σ0 + σ1 ∗ t δ = cste

GEV5 µ = µ0 + µ1 ∗ Cov(t) + µ2 ∗ t log(σ) = cste δ = cste

GEV6 µ = cste log(σ) = σ0 + σ1 ∗ Cov(t) + σ2 ∗ t δ = cste

GEV7 µ = µ0 + µ1 ∗ Cov(t) log(σ) = σ0 + σ1 ∗ Cov(t) δ = cste

GEV8 µ = µ0 + µ1 ∗ t log(σ) = σ0 + σ1 ∗ Cov(t) δ = cste

GEV9 µ = µ0 + µ1 ∗ Cov(t) + µ2 ∗ t log(σ) = σ0 + σ1 ∗ Cov(t) δ = cste

GEV10 µ = µ0 + µ1 ∗ Cov(t) log(σ) = σ0 + σ1 ∗ t δ = cste

GEV11 µ = µ0 + µ1 ∗ t log(σ) = σ0 + σ1 ∗ t δ = cste

GEV12 µ = µ0 + µ1 ∗ Cov(t) + µ2 ∗ t log(σ) = σ0 + σ1 ∗ t δ = cste

GEV13 µ = µ0 + µ1 ∗ Cov(t) log(σ) = σ0 + σ1 ∗ Cov(t) + σ2 ∗ t δ = cste

GEV14 µ = µ0 + µ1 ∗ t log(σ) = σ0 + σ1 ∗ Cov(t) + σ2 ∗ t δ = cste

GEV15 µ = µ0 + µ1 ∗ Cov(t) + µ2 ∗ t log(σ) = σ0 + σ1 ∗ Cov(t) + σ2 ∗ t δ = cste

3. Results
3.1. Homogeneity, Stationarity, and Independence of the Annual Maximum Flow Data in the
Study Area

Table 2 shows the p-values of the homogeneity, stationarity, and independence tests
for each station as well as the significance levels. According to this table, the p-values
of, respectively, 39%, 57%, and 22% of the stations are less than 5% for the homogeneity,
stationarity, and independence tests implying statistically significant change in the annual
maximal discharge (AMD) of these stations. The AMD from the stations of Dire, Garbe
Kourou, Jidere Bode, Kakassi, Ke-Macina, Koulikoro, Mopti, Ahlan, and Sabari Oti are
heterogeneous at alpha significance level of 5%. Data from the stations of Dire, Garbe
Kourou, Jidere Bode, Kakassi, Ke-Macina, Koulikoro, Mopti, Nawuni, Ahlan, Atchakpa,
Beterou, Kaboua, and Sabari Oti have statistically significant trends and, therefore, not
stationary at 5% level. Similarly, Dire, Kakassi, Garbe Kourou, Ke-Macina, and Mopti are
non-independent at 5% level and can be considered as non-stationary. The data of a station
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are considered statistically non-stationary if at least it has a significant non-homogeneity, a
significant trend, or a significant independence at 5%. Following this rule, on one hand,
the annual maximal data of the 13 stations (Dire, Garbe Kourou, Jidere Bode, Kakassi,
Ke-Macina, Koulikoro, Mopti, Nawuni, Ahlan, Atchakpa, Beterou, Kaboua, Sabari Oti) can
be used for non-stationary frequency analysis. On the other hand, the data from 10 stations
(Alcongui, Banankoro, Baro, Lokoja, Markudi, Nasia Nasia, Atchérigbé, Bonou, Domè, and
Pwalugu) will be used for the development of stationary models.

Table 2. p-value of the Pettitt homogeneity test of valid stations.

Stations Homogeneity Stationarity Test Independence
Conclusion

p-Value Signifi. Level p-Value Signifi. Level p-Value Signifi. Level

Alcongui 0.17 0.12 0.40 Stationary

Banankoro 0.19 0.57 0.08 Non-stationary

Baro 0.45 0.41 1.00 Non-stationary

Dire 0.0004 *** 1.0 × 10−4 *** 1.1 × 10−4 *** Stationary

Garbe Kourou 0.007 ** 1.1 × 10−3 ** 0.01 * Stationary

Jidere Bode 0.007 ** 9.44 × 10−15 *** 0.70 Stationary

Kakassi 0.05 * 2.15 × 10−5 *** 0.04 * Non-stationary

Ke-Macina 0.001 ** 9.2 × 10−3 ** 1.7 × 10−3 ** Stationary

Koulikoro 0.001 ** 1.4 × 10−2 * 0.08 Non-stationary

Lokoja 0.19 0.07 1.00 Stationary

Makurdi 0.18 0.19 0.69 Non-stationary

Mopti 0.002 ** 0.01 * 2.9 × 10−3 ** Non-stationary

Nasia Nasia 0.08 0.14 0.66 Non-stationary

Nawuni 0.33 0.04 * 0.71 Non-stationary

Ahlan 0.03 * 0.02 * 0.14 Non-stationary

Atchakpa 0.10 2.0 × 10−3 ** 0.49 Non-stationary

Atcherigbe 0.66 0.40 0.71 Stationary

Beterou 0.06 0.01 ** 0.51 Stationary

Bonou 0.79 0.56 1.00 Non-stationary

Dome 0.29 0.15 1.00 Stationary

Kaboua 0.21 0.04 * 0.42 Non-stationary

Pwalugu 0.64 0.96 0.19 Stationary

Sabari Oti 0.001 ** 9.94 × 10−5 *** 0.05 Non-stationary

Signifi.: significance. * represents p-values between 0.05 and 0.01; ** represents p-values between 0.01 and 0.001;
and *** represents p-values below 0.001.

Figure 2 shows the spatial distribution of the stations indicating stationarity and non-
stationarity in their AMD. Most of the stations on the Ouémé basin (in Benin republic)
and on the upper Niger (in Guinea and Mali) show non stationarity in the AMD while the
stations located in Nigeria on the Niger river indicated stationarity in their AMD. For the
remaining stations, no clear pattern can be found.
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3.2. Identification of Climatic Covariates for AMD Indicating Non-Stationarity

The analysis of Table 3 shows good and statistically significant correlation between
the climate indices and the AMD of non-stationary stations. The MEI index has an inverse
impact proportional to the evolution of the stations’ annual maximum flows. The DMI
index with its two variants (DMI: mean annual values, DMIW: mean annual values in
the western part) appears to be significantly correlated with most of the stations (7/13)
implying its high influence on rainfall which generated the discharge.

Table 3. Best covariates and correlations of each station.

Stations Correlation p-Value Covariate

Ahlan −0.63 0.00015 MEI-AS

Atchakpa 0.68 0.000011 TSAI-M5

Beterou 0.55 0.00033 TSAI-M5

Dire 0.65 0.0026 TNAI-M9

Garbe Kourou −0.57 0.00078 MEI-YY

Jidere Bode 0.68 0.000048 DMIW-M7

Kaboua 0.58 0.0014 DMIW-M1

Kakassi 0.5 0.01 DMIW-M1

Ke-Macina 0.36 0.04 DMI-M3

Koulikoro 0.34 0.05 DMI-M3

Mopti 0.48 0.0063 DMI-M4

Nawuni 0.59 0.00067 TSAI-M5

Sabari Oti 0.52 0.0042 DMI-M3
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3.3. Non-Stationary Frequency Analysis of Flows for Stations with Good Correlation with
Climatic Covariates

Table 4 presents a ranking of the different models developed. These models are
classified according to sixteen (16) slots; 1 being the best model. The notation “ns” (not
significant) indicates the stations in which the stationary GEV model is more efficient than
the non-stationary models considered. The analysis of this table reveals that despite the
non-stationarity of the data, the stationary GEV model performs better for the Ke-Macina,
Koulikoro, and Nawuni stations. None of the non-stationary models can be considered a
general model for all the stations. However, the best results are obtained when the model
integrates a linear relation of the covariate(s) in the position parameter. The GEV2, GEV4,
GEV6, GEV7, GEV10, GEV11, GEV13, and GEV14 models are not among the best. In
particular, the GEV6 model was not significant for any station.

Table 4. Ranking of developed models.

Stations
Models

GEV0 GEV1 GEV2 GEV3 GEV4 GEV5 GEV6 GEV7 GEV8 GEV9 GEV10 GEV11 GEV12 GEV13 GEV14 GEV15

Ahlan 12 3 10 ns 11 1 ns 6 9 2 5 ns 4 8 ns 7

Atchakpa 12 3 ns 9 10 8 ns 5 ns 1 7 11 2 6 ns 4

Beterou 13 1 ns 7 ns 2 ns 3 8 5 4 11 6 9 12 10

Dire 14 4 12 10 13 2 ns 5 9 7 11 6 1 ns 8 3

Garbe
Kourou 13 9 ns 3 ns 1 ns 7 8 2 10 6 4 12 11 5

Jidere
Bode 6 ns 5 3 ns ns ns ns ns ns ns 4 2 ns ns 1

Kaboua 10 2 9 7 ns 1 ns 3 8 5 4 ns 6 ns ns ns

Kakassi 11 ns 7 6 ns 10 ns 5 1 2 ns 8 ns 9 3 4

Ke-
Macina 1 ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns

Koulikoro 1 ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns

Mopti 5 ns ns 4 ns 1 ns ns 2 ns 3 ns ns ns ns ns

Nawuni 1 ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns

Sabari
Oti 6 ns ns 1 ns 4 ns 3 5 ns ns ns ns 2 ns ns

A comparison of the stationary model (GEV0) BICs and the best model BIC for each
station was performed (Table S1). The deviations between the BICs are used to determine
the significance of the models relative to the stationary model based on (Nolet-gravel,
2019). The BIC of the model chosen for the Mopti station is not significant (deviation
less than 2). One would, therefore, prefer the stationary model—due to its number of
parameters (03)—to the non-stationary model previously indicated (five parameters). This
is the principle of parsimony, obtaining the simplest model that explains as much as possible
the variation of the data. The addition of one or more parameters should be justified in
terms of performance and accuracy in describing the variations of the data compared to the
model with fewer parameters [28]. Non-stationary models for other stations are significant
for use in predicting extreme flows. The summary of the selected parameters for each
station for the non-stationarity is provided in Table S2.

The scale parameters of the non-stationary stations are all less than 0 except those of
the models for Garbe Kourou and Kakassi. These two stations are, therefore, subject to
maximum flows that can grow substantially but with very low probabilities of occurrence.
The other stations such as Ahlan, Beterou, Jidere Bode, Kaboua, Ke-Macina, Koulikoro,
Mopti, Nawuni, and Sabari are bounded by maximums that will not be exceeded. A larger
absolute value of the parameter of shape corresponds to a higher extreme flow [8]. In
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this sense, Nawuni could be the station that presents the most risk of evolution of the
maximum flow.

For the position parameters (Figure 3), the averages of the stations of Atchakpa,
Beterou, Garbe Kourou, and Kaboua gradually increase with some sudden changes as in
the case of the Ahlan station. They could, therefore, present a high risk of flooding. The
averages of the stations at Dire and Jidere Bode show few minor changes, but a priori
should increase more and more over time. Linear growth is also observed at the Sabari Oti
and Kakassi stations. The stations of Nawuni, Ke-Macina, Mopti, and Koulikoro are not
expected to show any changes to their respective averages.
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There is a relatively small positive evolution in the general trend of variance at Jidere
Bode and higher upward trends at Atchapka and Kakassi stations. These stations would,
therefore, be subject to an increase in extremes over time. In addition, there is a great
variability in variance, which would reflect a recurrence of extreme flows at these stations.
The station of Dire should a priori experience a gradual decrease of extremes over time. As
for the other stations, their variances should be constant.

Table 5 presents the parameters of the stationary models developed for stations found
stationary. According to this table, the shape parameters of stationary models are negative
except that of Markudi, which tends to be zero. In addition, the BIC of the model of this
station is very large (BIC of 4.6 × 10286). The distribution law used (GEV law) for this
station is, therefore, not suitable. A Gumbel distribution would be more suitable given the
trend of the shape parameter.

Table 5. Parameters of stationary models developed.

Stations
Parameters

Criterion (BIC)
Position Log (Scale) Shape

Alcongui 191.12 4.56 −0.39 306.16

Atcherigbe 311.44 5.26 −0.37 435.49

Banankoro 2646.87 7.00 −0.61 570.39
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Table 5. Cont.

Stations
Parameters

Criterion (BIC)
Position Log (Scale) Shape

Bar 3762.53 7.57 −0.17 444.40

Bonou 799.65 5.41 −0.77 456.12

Dome 123.93 2.87 −0.76 242.72

Makurdi 9865.04 2.02 0.00 4.6 × 10286

Nasia Nasia 126.19 3.84 −0.04 246.80

Pwalugu 669.51 6.00 −0.92 315.85

4. Discussion

Data from the Atchérigbé, Bonou, and Domè stations located in the Ouémé basin are
found stationary in this study. This is opposed to Hounkpè et al. [8] who concluded that
the data from these stations are non-stationary. This discrepancy in the results is due to the
difference in the time series used in the period of data used.

The climatic indices have a good correlation with the maximum flows, ranging from
0.34 (Koulikoro) to 0.68 (Savè) in absolute terms. Generally, non-stationary models perform
better than stationary models. This result is consistent with previous studies. However,
the models with covariates in the scale parameter only are insignificant for all stations
studied. Two stations were used by Hounkpè et al. [8], namely the Beterou and Savè.
In this study, the models used for these stations are more efficient than those developed
in their study mainly linked to the difference in climatic indices used in both studies.
Knowing that discharge data are tributary of rainfall, it can be concluded that the good
correlation obtained between extreme discharge and climate indices is in line with the
good correlations between some oceanic modes of variability (North Atlantic Oscillation,
Atlantic Multidecadal oscillation, Indian Ocean Dipole, Pacific Decadal Oscillation, etc.)
and rainfall variability in West Africa [29]. It is known that African rainfall is teleconnected
with modes of variability in the Atlantic, Pacific, and Indian oceans [29].

It can be seen that the non-stationary models have not performed better for some
stations. This is the case for the stations of Ke-Macina, Koulikoro, and Nawuni, despite
significant correlations of 0.51, 0.51, and 0.59, respectively, with the climatic indices. Similar
results were obtained in the Himalayan sub-basin [30]. This could be because when
estimating parameters, the shape parameter was assumed to be constant. The shape
parameter of the simulated GEV model for the Markudi station data tends to 0. The
distribution of these data is that of Gumbel. The simulated model has a BIC value that is
far too large. The GEV law is, therefore, not suitable for these data. Gumbel’s law would be
more appropriate.

5. Conclusions

The objective of this study was, therefore, to determine the most suitable model for
estimating the maximum flows observed at stations distributed in West African countries
based on the climate indices of sea surface temperature (SST). To do this, we performed
statistical tests to test homogeneity (Pettit test), stationarity (modified Mann–Kendall test)
and independence (Wald–Wolfowitz test). Data from stations that did not pass at least
one of the three (3) tests were considered for non-stationary analysis. The others were
used for the development of stationary models. The covariates highly correlated with the
maximum annual flows were determined. Various non-stationary GEV models have been
developed with parameter estimation by the maximum likelihood method. The model with
the minimum BIC is the best model. It appears that 56% of stations are non-homogeneous,
non-independent, and/or non-stationary. The climate indices have a strong correlation with
maximum flows. Non-stationary models generally show better performance than stationary
models. Especially, non-stationary models have been shown to perform better when the
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position parameter—at least—is a linear relation of covariate(s). The incorporation of
covariates in the shape parameter improves non-stationary models, all of which have been
shown to perform worse than stationary models for some stations. They are Ke-Macina,
Koulikoro, and Nawuni. The different models thus developed could be used to estimate
the return periods of the observed maximums. Despite an overall satisfactory study, several
ideas to improve this work can be explored. As the study is based on West Africa, the Gulf
of Guinea index could also be explored for the development of non-stationary models. The
track of non-stationary quadratic models could also bring its share of potentially more
efficient models than those developed in this study. Again, in this sense, we could use
several distributions and compare them to determine the best model.
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