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Abstract: Estimation of so-called return levels for environmental extremes is of importance for risk
assessment. A particular challenge is to find estimates corresponding to long return periods, as
uncertainties in the form of confidence intervals became too wide for practical use when applying
conventional methodology where large portions of data are not used. A recently proposed technique,
the Average Conditional Exceedance Rate (ACER), makes effective use of all available data. For risk
analysis related to nuclear infrastructure, usually located along a coastline, extreme sea levels are of
concern. We demonstrate, for measurements of the sea level along the Swedish coast at locations close
to nuclear power plants, that the methodology results in considerably shorter confidence intervals
compared to conventional approaches.
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1. Introduction

In statistical risk analysis in the geosciences, estimation of return levels is often of im-
portance. In particular, the uncertainties of the estimates are crucial. Statistically speaking,
these are quantiles, which are estimated from data by maximum-likelihood (ML) tech-
niques or, particularly in hydrological applications, methodologies based on moments [1,2].
Typically in applications, arguments from extreme-value theory lead to quantile computa-
tions from a particular family of distributions. For instance, employing the conventional
methodology of block maxima, the Generalised Extreme Value (GEV) distribution is the
case. The estimates of the return levels are closed-form expressions involving estimates of
the three parameters (location, scale and shape) in a GEV distribution [3,4].

In risk and safety analysis, estimating return levels for longer periods is intricate,
not least assessing the related uncertainties. Several alternatives to block maxima exist,
e.g., threshold-based methods like Peaks Over Thresholds (POT), or Bayesian frameworks.
The latter approach has proven to be successful, see, e.g., [5]. Still another alternative is
Average Conditional Exceedance Rate (ACER), presented by Naess and coworkers [6–8].
An application to extreme sea levels is given in [8], where return levels of extreme sea levels
along the Norwegian coast are estimated with ACER and compared to other approaches,
e.g., block maxima and POT, for return periods up to 200 years. Moreover, the ACER
method has been used by Norwegian authorities for analysis of sea-level change [9].

In this paper, the ACER method is applied to measurements of sea levels along the
Swedish coast. The stations considered are located close to nuclear power plants. Hence,
local studies are performed. As a further extension to previous works, we here study
relatively long return periods, as is of interest in risk analysis for nuclear safety. We
consider return periods from 103 years up to 106 years. The latter return period is of
concern in some Swedish regulations for nuclear safety. Comparison is made here to the
traditional block-maxima methodology only, as Skjong et al. in [8] found that, e.g., the POT
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method resulted in considerably larger uncertainty for return-level estimates compared
to ACER.

The paper is structured as follows. In Section 2, a description of the data and the
climatological conditions in the Baltic Sea are given. Moreover, reviews of conventional
trend analysis and classical extreme-value theory are provided, including estimation of
return levels. Next, the ACER methodology is described. The results of these methods for
long return periods, as mentioned above, are presented in Section 3. Finally, in Section 4, a
summary and discussion is found. Mathematical details of the ACER method are found in
Appendix A.

2. Material and Methods
2.1. Data Sets and Their Origins

In this subsection, we commence with a brief review from a climatological point of
view concerning sea levels in the Baltic, in particular extremes. This is followed by a
description of the data sets, which form the basis for the analysis of extremes in the sequel
of the paper.

2.1.1. Sea Levels in the Baltic Sea

Sea levels in the Baltic Sea have been registered since the 18th century, with the
series for Stockholm commencing already in 1774 [10]. Regarding changes in extreme sea
levels along European coasts in general, Weisse et al. found that extreme sea levels show
variability related to seasonal and nodal tidal cycles [11]. Moreover, long-term trends are
mostly associated with corresponding mean sea level changes. Waves and storm surge
climate do not show substantial long-term trends.

In a work oriented towards the Baltic Sea region, Weisse et al. state that over approx-
imately the past 50 years, the Baltic absolute mean sea level has risen at a rate slightly
larger than the global average [12]. However, in the northern parts of the Baltic Sea, due
to vertical land movements, relative mean sea level has decreased. The phenomenon of
land uplift has been known for some time. As early as in the 18th century, it was observed
that the Earth’s surface was rising in the Nordic area. For instance, the famous Swedish
geologist and polar researcher A.E. Nordenskiöld presented results of calculations [13].
Postglacial land uplift means the return of the earth crust to its state of equilibrium after
having been heavily loaded by the kilometre-thick ice during the last Ice Age. The last ice
disappeared from Scandinavia about 10,000 years ago.

A recent review on extreme events in the Baltic Sea region, not limited to sea level, is
given in [14]. In the Baltic Sea, extreme sea levels could be caused by wind, air pressure
(inverse barometric effect), and seiches. The amplitude of the internal tides is a few
centimetres in most places, due to the Danish straits preventing the entrance of tidal waves
into the Baltic Sea. Moreover, in the studies of observed extreme sea levels, no significant
trends in extremes exceeding mean sea level rise have been found, except for the Gulf
of Bothnia.

2.1.2. Measurements of Sea Level

Data in this study are hourly measurements of sea level (in cm) from recordings
provided by the Swedish Meteorological and Hydrological Institute (SMHI). The sea levels
are presented in relation to the zero level in the National Height System called RH2000. For
the sake of simplicity, the RH2000 values were kept in the statistical analyses—the main
objective is to compare statistical estimation techniques. However, the observations can be
corrected for relative sea-level change (i.e., isostasy and eustasy). In the document [15] from
SMHI, formulae are provided for such corrections. See [16], Section 2.3, for an example.

Two stations were considered, Forsmark and Oskarshamn, both located near to
Swedish nuclear power plants. Table 1 gives a summary including, e.g., the lengths
of records. Further, the locations are shown on the map of Scandinavia in Figure 1. Data
quality was overall decent, in the sense of few major portions missing. Concerning ex-
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tremes, the winter season (from November to February) yields more extreme observations
and need extra care in examination. The most serious example was Oskarshamn, with
the period 27 January 1980 to 7 April 1980 missing in its entirety, but comparison with a
neighbouring station (Ölands norra udde) showed that values were not extreme during
that period. More precisely, the observations at Ölands norra udde during the gap period
were all less than the 10 largest annual maxima during 1980 from Oskarshamn. Time series
of annual maxima for the two stations are shown in Figure 2.

Figure 1: Map over Scandinavia with the locations of measurement stations indi-

cated. F: Forsmark. O: Oskarshamn.

Figure 2: Time series, annual maxima of sea level at the two locations under study.
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Figure 1. Map over Scandinavia with the locations of measurement stations indicated. F: Forsmark.
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Table 1. Stations considered in the study.

Station Latitude/Longitude Period

Forsmark (60.41, 18.21) 1976–2022
Oskarshamn (57.28, 16.48) 1961–2022

For these locations, we recall from Section 2.1.1 that the influence of tide could be
neglected [14]. Furthermore, no significant trends in extremes exceeding mean sea level
rise are of concern, since these data do not origin from the Gulf of Bothnia.

2.2. Statistical Methodology
2.2.1. Tests of Trend

In analysis of environmental data, a common non-parametric test of trend is the Mann–
Kendall test (for a review, see, e.g., [17]). For a time series {xt}, t = 1, 2, . . . , N, the test
statistic is given by

S =
N−1

∑
k=1

N

∑
j=k+1

sgn (xj − xk),

where

sgn(x) =


1, if x > 0,
0, if x = 0,

−1, if x < 0.

For large N, the statistic S is approximately normally distributed. The sign of the test
statistic indicates the tendency of trend; a negative sign is related to a negative slope, and
vice versa. The implementation in the R package ’trend’ was used [18].

Occasionally, when the Mann–Kendall test results show a significant trend, it is of
interest to follow up with an analysis of possible changepoints. The non-parametric
approach of Pettitt is commonly applied to detect a single changepoint in, e.g., hydrological
series [19]. This tests the null hypothesis that the variables follow distributions that have
the same location parameter (no change), against the alternative that a changepoint exists.

2.2.2. Extreme-Value Analysis and the GEV Distribution

Statistical extreme-value analysis can be said to concern the tails of distributions. The
common approach is to fit a generalised extreme-value (GEV) distribution to a sample of
independent annual maxima (“block maxima”). This then serves as the limiting distribution
of independent maxima. The distribution function for the GEV distribution is given as

P(X ≤ x) = exp

{
−
[

1 + ξ

(
x − µ

σ

)]−1/ξ
}

, (1)

defined on {x : 1 + ξ(x − µ)/σ > 0}, and where µ, σ > 0 and ξ are the location, scale and
shape parameters, respectively.

The GEV distribution unifies three limiting distribution and the shape parameter ξ
is related to the nature of the tail. If ξ < 0, the upper tail is bounded (reversed Weibull
distribution); if ξ = 0, the tail decays exponentially (Gumbel distribution); if ξ > 0, the
tail decays as a power function (Fréchet distribution). In the case ξ < 0, the upper limit is
given by µ − σ/ξ.

When fitting a conventional GEV distribution to data, estimation is often performed
using the ML method. When −1 < ξ ≤ −0.5, the ML estimate exists, but does not have the
standard asymptotic properties. Often in practice, ξ > −0.5 (cf. [1]), which is also the case
in this study. For the numerical work in this paper. an implementation in R was used [20],
as provided in the package ’eva’ [21].
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2.2.3. Return Levels

The T-year return level, corresponding to a return period T, is often defined as the
high quantile for which the probability that the annual maximum exceeds this quantile
is 1/T. In the stationary case, the return level can be interpreted in two ways: that the
expected waiting time until the next exceedance is T years, or that the expected number of
events in T years is 1. For details and arguments, see [3].

For a GEV distribution, the return level follows from closed-form expressions as
quantiles in the distribution:

yT =

{
µ − σ

ξ [1 − (− ln(1 − 1/T))−ξ ], ξ ̸= 0,
µ − σ ln[1 − ln(1 − 1/T)], ξ = 0.

(2)

Estimates of return levels are obtained by in Equation (2) by simply plugging in
the ML estimates of the parameters µ, σ and ξ. The uncertainty of the return level is of
interest to assess in risk analysis, and statistical procedures are, e.g., the delta method or
profile likelihood. Usually, the profile-likelihood approach is preferred, as the delta method
results in symmetric intervals [1]. The likelihood function is then reparameterised, and
maximisation is carried out numerically with respect to two parameters, σ and ξ.

2.2.4. The ACER Method

The ACER method was introduced in [6], with further examples presented in [7].
In this section, the method is briefly introduced. Mathematical details are given in
Appendix A.

Denote the variable of interest (in this paper, sea level) with η. At the heart of the
method is the so-called ACER function ϵk(η), which can be interpreted as the rate at which
the threshold η is crossed, given the k − 1 previous non-exceedances. It is defined by

ϵk(η) = qk(η) exp(−ak(η − bk)
ck ) (3)

where ak > 0, bk > 0, ck > 0, and the function qk(η) is slowly varying compared to
the exponential function exp(−ak(η − bk)

ck ). In particular, the values ck = qk(η) = 1
correspond to the asymptotic Gumbel distribution.

In practice, the choice of k needs to be addressed. The conditional upcrossings are
assumed to be independent for high enough values of k. The case k = 1 corresponds to the
case of independent observations. Typically, through visualisations, a proper value of k
is obtained; the ACER function is computed and drawn for different values of k, and one
notes the value of k for which convergence is attained. Estimation of the parameters ak, bk,
ck and qk in Equation (3) is then performed. Return levels corresponding to return period T
can be computed by

yT = bk +

[
1
ak

(
ln(qk N)− ln(− ln(1 − 1/T))

)]1/ck

(4)

where N is the average number of peaks in the data during one year. In this work, the
implementation in the R package ‘acer’ was employed.

Furthermore, a so-called tail marker, η0, needs to be specified in the algorithms. This
corresponds to the place where the function starts to behave like the form in Equation (3),
with a constant qk(η) = qk. See Section 3.3 for further discussion and numerical example.

3. Results
3.1. Trend Analysis

In Table 2, the results of the tests in form of p-values are presented. Recall from
elementary statistics that given a significance level (usually 0.05), the null hypothesis is
rejected if the p-value resulting from the test is less than the significance level. Thus, from
the table, the test results in a trend for Forsmark. The value of S is negative (S = −292), and
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hence a negative slope. This seems reasonable when studying the times series of annual
maxima in Figure 2 and could possibly be explained by land uplift in that part of the Baltic.

Table 2. Results of Mann–Kendall test for trend. Null hypothesis: no trend present. Two-sided
alternative hypothesis (data follow a monotonic trend).

Station: Forsmark Oskarshamn

p-value: 7.6 × 10−3 8.4 × 10−1

Following up with Pettitt’s test for Forsmark, results in the p-value 0.052, which
corresponds to year 2007. The possible suggestion of a shift here might be due to the
somewhat higher observed maximum this year, compared to years before and after, cf.
Figure 2.

In the sequel, we apply the ACER methodology. As pointed out in [6], this technique
is applicable to non-stationary time series.

3.2. Estimation of Return Levels: Comparisons

A comparison of the conventional method of block maxima (BM) and the ACER
methodology is the main aim of this paper. We present in Figure 3 the resulting estimates
of return levels (for return periods in years 103, 104, 105, 106) along with related 95%
confidence intervals. In the case of block maxima, confidence intervals were computed
by profile likelihood. We now describe the findings; first the point estimates, then the
uncertainties of estimates in form of confidence intervals.

Point estimates. ACER estimates tend to be higher than those resulting from BM, the
longer the return period. The difference is, however, in all cases less than 2 dm. Recall from
Section 2.2.2 that a negative shape parameter implies an upper bound for a GEV distributed
random variable. The maximum-likelihood estimates are for Forsmark and Oskarshamn
−0.23 and −0.17, respectively. Simple Wald tests result in rejection of the null hypothesis
with ξ = 0 for these stations.

Confidence intervals. It is clear from Figure 3 that the uncertainties are considerably
reduced with the ACER methodology. For both methodologies under study, the intervals
become wider with increasing return period, but more notably so for the conventional BM
approach. One may note that the confidence intervals by ACER are skewed to the left. This
phenomenon is found also in other applications of the method, e.g., in the report [9].

Figure 3: Estimated return levels with related confidence intervals (delta method).

Figure 4: Illustrations for Forsmark. Left panel: Plot of the estimated ACER

function ϵ̂k(η) (for k = 2) for assessing a proper value of the tail marker η0. Right

panel: Stability of return-level estimates. Choice by the author: η0 = 38.

14

Figure 3. Estimated return levels with related confidence intervals (profile-likelihood method).
Left panel: Forsmark. Right panel: Oskarshamn.

In the study [8] of extreme sea levels along the Norwegian coast, intervals with return
period 200 years were compared and the same features as in the present paper were found;
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compared to a BM approach, minor differences in point estimates, but less wide confidence
intervals for return levels.

3.3. Notes on the ACER Methodology

Recall from Section 2.2.4 that k = 1 corresponds to the case of independent observa-
tions. To apply the algorithms, a proper k value needs to be chosen for estimation of return
levels (as well as value of the tail marker η0). An introductory ACER plot resulted for all
stations in the choice k = 2; the same choice was made in [8] for data of similar character.

Turning to the selection of the tail marker η0, a plot of the ACER function ϵk(η) can
assist. One should try to find where the ACER function seems to behave regularly. Choosing
a higher value would increase the variance of the estimate (the number of observation
points decreases). In Figure 4, outcomes for Forsmark station are shown as an example.
Judging from the left panel, a value less than 50 seems to be the case. In addition one could,
as pointed out in [8], check the stability of return-level estimates for a range of tail markers.
This is shown for the situation with return period 1000 years in Figure 4, right panel. In
this particular case, η0 = 38 was chosen.

Figure 3: Estimated return levels with related confidence intervals (delta method).

Figure 4: Illustrations for Forsmark. Left panel: Plot of the estimated ACER

function ϵ̂k(η) (for k = 2) for assessing a proper value of the tail marker η0. Right

panel: Stability of return-level estimates. Choice by the author: η0 = 38.

14

Figure 4. Illustrations for Forsmark. Left panel: Plot of the estimated ACER function ϵ̂k(η) (for k = 2)
for assessing a proper value of the tail marker η0. Right panel: Stability of return-level estimates.
Choice by the author: η0 = 38.

4. Summary and Discussion

Estimation of return levels for long return periods (longer than 1000 years, say) is a
non-trivial task, since uncertainties typically become large. We have demonstrated that the
confidence intervals are considerably shorter with the ACER approach, compared to the
classical block-maxima method (Figure 3). More precisely, for Forsmark station, the ratio of
interval lengths ranged from 2.3 to 3.7 (return periods 103 up to 106), while for Oskarshamn,
the ratios ranged from 1.1 to 2.1 for the same choice of return periods investigated. The
methodology has also proven useful for series coming from heavy tailed distributions [22].

Skjong et al. compared the ACER methodology to three other techniques (block-
maxima with Gumbel or GEV; POT, revised joint probabilities method), and found for three
locations along the Norwegian coast that the ACER in all cases resulted in the shortest
confidence intervals [8]. Return periods up to 200 years were considered. Still, alternative
procedures exist. Rydén and Freyland investigated the performance of the so-called r
largest-maximum approach for the same Swedish locations as in the present paper [23].
Comparing with block-maximum (with GEV), that approach resulted in shorter confidence
intervals. However, for return periods longer than 10,000 years, intervals became too wide
for practical use.

The sign of the shape parameter could be crucial due to its relationship with a
possible upper bound [24]. Similarly to the present paper, Skjong et al. found nega-
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tive estimates of the shape parameter along the Norwegian coast, ranging from −0.28 to
−0.09 [8]. The question on sign of shape parameter has been discussed for other quantities
as well, e.g., maximum daily rainfall. For this quantity, Papalexiou and Koutsoyiannis
investigated an impressive number of 15,137 records from all over the world, fitting GEV
distributions [25]. They found that when the effect of the record length was corrected,
the shape parameter ξ varied in a narrow range; moreover, an influence of geographical
location on the value of ξ. A variability in sign of ξ was found, but in the majority of cases
(about 80%), ξ > 0.

From a climatology point of view, when discussing extreme sea levels along the
Scandinavian coastlines, one might refer to recent research reported in [26]. Six sites along
the Swedish coast were then investigated using a so-called flood-risk simulation framework.
The general conclusion was for longer planning periods, the risk of flooding is dominated
by high sea-level rise. This is in line with statements found in [11].

Finally, there are several other approaches for estimation of return levels of environ-
mental extremes. For instance, in [27] is suggested a procedure that like the ACER method
makes use of the complete time series. A Bayesian framework is another option, as stated
in [5]: “Thus, where feasible, we propose a Bayesian estimation strategy for optimal return
level inference”.
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Appendix A

Appendix A.1. Framework. Conditioning Approximations

Consider random variables X1, . . . , XN . Of interest is to study the distribution of
MN = max(X1, . . . , XN), and we introduce P(η) = P(MN ≤ η):

P(η) = P(XN ≤ η, . . . , X1 ≤ η)

= P(XN ≤ η|XN−1 ≤ η, . . . , X1 ≤ η)× P(XN−1 ≤ η, . . . , X1 ≤ η)

=
N

∏
j=2

P(Xj ≤ η|Xj−1 ≤ η, . . . X1 ≤ η)× P(X1 ≤ η)

In the situation of statistically independent variables X1, . . . , XN , it follows that

P(η) =
N

∏
j=1

P(Xj ≤ η). (A1)

Now, the idea is to introduce a cascade of conditioning approaches. Then, P(η) is
expressed as

P(η) =
N

∏
j=k

P(Xj ≤ η|Xj−1 ≤ η, . . . , Xj−k+1 ≤ η)

×
k−1

∏
j=2

P(Xj ≤ η|Xj−1 ≤ η, . . . , X1 ≤ η)

×P(X1 ≤ η).
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Define
α1j(η) = P(Xj > η), 1, . . . , N

and, more generally,

αkj(η) = P(Xj > η|Xj−1 ≤ η, . . . , Xj−k+1 ≤ η), j ≥ k ≥ 2. (A2)

The quantity αkj(η) denotes the exceedance probability conditional on the k − 1 pre-
vious non-exceedances. Then, Equation (A1), the case of independent variables, can be
formulated as

P(η) ≈ P1(η) =
N

∏
j=1

(1 − α1j(η))

and, in the more general case with k ≥ 2, and assuming that in most practical applications
N ≫ 1, the following approximation can be shown to hold:

P(η) ≈ Pk(η) = exp

(
−

N

∑
j=k

αkj(η)

)
. (A3)

Appendix A.2. The ACER Function

Recall Equation (A3). The ACER function ϵk(η) of the order k is defined as

ϵk(η) =
1

N − k + 1

N

∑
j=k

αkj(η), k = 1, 2, . . . . (A4)

Estimation of the ACER functions in Equation (A4) is described in [6]. An assumption
is made that the tail of the ACER function can be modelled on the form in Equation (3).
Based on the parametric class of functions introduced in Equation (3), return levels and
associated confidence intervals can be computed; see [6].
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