
����������
�������

Citation: Chen, N.; Chen, B.

Defending against OS-Level Malware

in Mobile Devices via Real-Time

Malware Detection and Storage

Restoration. J. Cybersecur. Priv. 2022,

2, 311–328. https://doi.org/

10.3390/jcp2020017

Academic Editor: Hossein Saiedian

Received: 10 April 2022

Accepted: 22 May 2022

Published: 26 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Cybersecurity 
and Privacy

Article

Defending against OS-Level Malware in Mobile Devices via
Real-Time Malware Detection and Storage Restoration †

Niusen Chen and Bo Chen *

Department of Computer Science, Michigan Technological University, Houghton, MI 49931, USA;
niusenc@mtu.edu
* Correspondence: bchen@mtu.edu; Tel.: +1-906-487-3149
† This Manuscript is an Extended Version of our Conference Paper Published in Applied Cryptography and

Network Security Workshops, Kamakura, Japan, 21–24 June 2021.

Abstract: Combating the OS-level malware is a very challenging problem as this type of malware
can compromise the operating system, obtaining the kernel privilege and subverting almost all the
existing anti-malware tools. This work aims to address this problem in the context of mobile devices.
As real-world malware is very heterogeneous, we narrow down the scope of our work by especially
focusing on a special type of OS-level malware that always corrupts user data. We have designed
mobiDOM, the first framework that can combat the OS-level data corruption malware for mobile
computing devices. Our mobiDOM contains two components, a malware detector and a data repairer.
The malware detector can securely and timely detect the presence of OS-level malware by fully
utilizing the existing hardware features of a mobile device, namely, flash memory and Arm TrustZone.
Specifically, we integrate the malware detection into the flash translation layer (FTL), a firmware
layer embedded into the flash storage hardware, which is inaccessible to the OS; in addition, we
run a trusted application in the Arm TrustZone secure world, which acts as a user-level manager
of the malware detector. The FTL-based malware detection and the TrustZone-based manager can
communicate with each other stealthily via steganography. The data repairer can allow restoring
the external storage to a healthy historical state by taking advantage of the out-of-place-update
feature of flash memory and our malware-aware garbage collection in the FTL. Security analysis and
experimental evaluation on a real-world testbed confirm the effectiveness of mobiDOM.

Keywords: OS-level malware; data corruptions; detection; recovery; mobile devices; TrustZone; flash
translation layer

1. Introduction

We have been witnessing a surge of malware on mobile devices in the past few
years [1]. The malware intrudes into a victim’s mobile device, stealing personally private or
even mission-critical data, corrupting the local storage [2], or controlling the victim’s entire
device. In particular, there is one type of strong malware that is able to compromise the
entire operating system of the device, obtaining the kernel privilege. This type of “OS-level”
malware is extremely difficult to combat, since it can easily subvert any traditional anti-
malware software or tools running in the user/kernel space [3–8] by leveraging its high
privilege. It would be challenging or even impossible to design a common defense strategy
that can combat any OS-level malware as the malware today is highly heterogeneous. In
this work, we focus on a special type of OS-level malware that always corrupts data stored
in the victim mobile device, i.e., the data corruption malware. This type of malware includes
ransomware that encrypts the user data, making it inaccessible to the user, or any computer
virus, trojan horse, etc., which first steals the user data by retrieving it from the victim
device and sending it to a remote server, and then deleting it from the device. The data
corruption malware we consider here is assumed to be able to obtain the kernel privilege
by compromising the OS.

J. Cybersecur. Priv. 2022, 2, 311–328. https://doi.org/10.3390/jcp2020017 https://www.mdpi.com/journal/jcp

https://doi.org/10.3390/jcp2020017
https://doi.org/10.3390/jcp2020017
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jcp
https://www.mdpi.com
https://orcid.org/0000-0001-9173-156X
https://orcid.org/0000-0001-9372-9607
https://doi.org/10.3390/jcp2020017
https://www.mdpi.com/journal/jcp
https://www.mdpi.com/article/10.3390/jcp2020017?type=check_update&version=2


J. Cybersecur. Priv. 2022, 2 312

To combat the data corruption malware in the mobile devices, one strategy would be
ensuring that the data being corrupted are always recoverable after the malware attack.
To achieve this guarantee, our design contains two components: (1) a malware detection
component (i.e., malware detector), which can detect the presence of data corruption malware
timely, and (2) a data recovery component (i.e., data repairer), which can restore the external
storage to a good historical state once the malware is detected and removed. The design
rationale of each component is as follows:

Malware detector. To enable malware detection, we can monitor the system activities
in real-time, and once abnormal activities happen, the malware detection will make a
decision and inform the user (e.g., via a manager at the user level) if it reaches a “malware
detected” decision. It turns out that the malware detection cannot simply run in the
normal execution environment of the device to avoid being compromised by the OS-level
malware. In addition, the user-level manager, which interacts with both the end users
and the malware detection, should not be compromised by the OS-level malware either.
Therefore, a key idea for a secure malware detector design is to place both the malware
detection and the manager in an execution environment that is isolated from the regular
OS and, hence, the OS-level malware.

Compared to traditional personal computers, mobile computing devices today are
equipped with unique hardware features: (1) They usually use ARM processors that
have reduced circuit complexity and low power consumption. ARM processors have an
integrated TrustZone, which is a hardware security feature in any Cortex-A processor (built
on the Armv7-A and Armv8-A architecture) and Cortex-M processor (built on the Armv8-
M architecture). TrustZone enables the establishment of a trusted execution environment
that is hardware separated from the normal insecure execution environment. (2) They
typically use flash storage media instead of hard disk drives (HDD) for external storage.
For example, smartphones, tablets, and IoT devices extensively use microSD, eMMC, or
UFS cards. Different from HDDs, flash memory exhibits different physical nature and
traditional file systems built for HDDs cannot directly be used on them. To bridge this gap,
a new flash translation layer (FTL) is usually incorporated into the flash storage media to
transparently handle the unique nature of flash, exposing an HDD-like interface externally.

Leveraging the unique hardware features of mobile devices, our design of the malware
detector is: first, we integrate the malware detection into the FTL. Such a design is advanta-
geous because: (1) the OS-level malware will not be able to subvert the malware detection
located in the FTL, which is isolated by the flash storage hardware and remains transparent
to the OS; and (2) the data corruption malware usually needs to perform I/Os on the
external storage, and such I/Os may exhibit some unique behaviors that can be observed
in the FTL as confirmed in our experiments using real-world malware samples. Second, to
prevent the user-level manager from being subverted by the OS-level malware, we separate
its functionality and move the critical component into the “trusted execution environment”
(i.e., a secure world) established by TrustZone. In this way, the manager is secure and is
able to work with the malware detection in the FTL correctly. In addition, to prevent the
malware from noticing the communication between the malware detection (in the FTL)
and the manager (in the TrustZone), we leverage steganography so that the manager and
the malware detection can communicate stealthily via the regular I/Os performed on the
external storage.

Data repairer. To enable restoration of external storage after malware attacks, a key
question would be finding out those original data before the malware corrupts them. Our
observation is that: the flash memory performs an out-of-place update [9], and therefore,
any delete/overwrite operations issued by the malware will not immediately delete data
from the underlying flash memory; instead, the data will just be invalidated and removed
later by a garbage collector running in the FTL. This observation makes it possible to enable
data recovery after malware attacks by extracting the invalidated data from the raw flash
memory. However, the garbage collector will eventually reclaim the flash memory space,
which stores the invalidated data, and once this happens, the original data deleted by the



J. Cybersecur. Priv. 2022, 2 313

malware will be irrecoverable. To resolve this challenge, we take advantage of the designed
malware detector. Specifically, we divide the time into epochs, and if the malware detector
does not detect any malware by the end of an epoch, it will inform the garbage collector
to reclaim the flash memory space that holds invalid data (i.e., the garbage collector will
not reclaim the flash memory space until the end of each epoch and after being notified of
no malware); if the malware detector detects any malware, the garbage collector will be
frozen immediately, and the invalid data (which have not yet been deleted by the garbage
collector) will be extracted from the flash memory to restore the external storage.

The resulted system design, mobiDOM, is the first full-fledged defense for mobile
devices that can combat the data corruption malware even if the malware can compromise
the entire OS. Compared to our conference version [10], the major differences are: (1)
We have incorporated a malware-aware garbage collector that only reclaims flash mem-
ory space occupied by the invalid data if the malware is not detected. On the contrary,
reference [10] uses the original garbage collector incorporated with the FTL, which may
delete the data invalidated by the malware and, hence, cannot ensure data recovery after
malware detection. (2) We have proposed the first complete framework that can defend
against the OS-level data corruption malware. The framework includes both a malware
detection and a data repairer component. Especially, the data repairer component allows
restoring the external storage back to a good historical state after detecting the malware. On
the contrary, reference [10] only supports malware detection, lacking the capability of data
restoration. (3) We have provided experimental results for the newly added component.

Contributions. We made the following contributions in this work:

• We have proposed the first framework that can combat the OS-level data corruption
malware for mobile computing devices. Our framework contains a malware detector
and a data repairer.

• Our malware detector can securely detect the malware even if it can obtain the kernel
privilege. This is feasible by utilizing both the isolation environments (i.e., Arm
TrustZone and FTL) provided by mainstream mobile computing devices as well as a
novel steganography technique.

• Our data repairer can restore the external storage to a healthy historical state. This is
feasible by leveraging the out-of-place-update feature of flash memory and modifying
the existing garbage collection in the FTL.

• We have analyzed the security of mobiDOM. In addition, we have implemented a
prototype of mobiDOM and ported it to a real-world testbed to assess its performance.

2. Background
2.1. Flash Memory

Flash memory includes NAND flash and NOR flash. Especially NAND flash has
been extensively used as mass storage (e.g., SD/miniSD/microSD cards, MMC cards, UFS
cards) due to its cheap price. Compared to conventional hard disk drives (HDD), the flash
memory is electrically erasable and re-programmable and does not rely on mechanical
components. Therefore, it usually has much higher I/O throughput and much lower noise
compared to HDDs. The NAND flash is organized into blocks, each of which is typically
a few hundred kilobytes in size. A flash block consists of pages, each of which is a few
kilobytes in size. Typically, the I/O operations are performed on the basis of pages, while
the erase operations are performed on the basis of blocks.

Compared to traditional mechanical disk drives, NAND flash is different in nature:
First, it uses an erase-then-write design, i.e., a flash memory cell needs to be erased first
before it can be re-programmed. Therefore, to modify the data stored in a page, we need
to erase the entire encompassing block. This, however, requires copying out valid data
stored in this block, erasing the block, and writing the data back, leading to significant
write amplification. To mitigate the write amplification, the flash memory typically uses
an out-of-place update strategy (see Figure 1), i.e., when the OS performs an overwrite
operation, the old data will be temporarily preserved in the flash memory, and the new data



J. Cybersecur. Priv. 2022, 2 314

will be written to new locations. The data repairer component of our design will utilize
this feature to restore external storage to a good historical state after malware detection.
Second, each flash block only allows a limited number of program-erase (P/E) cycles,
and if a flash block is programmed/erased too frequently, it will turn “bad” and is not
able to reliably store data anymore. Therefore, to prevent a single flash block from being
erased/programmed too frequently, wear leveling is introduced to distribute P/Es evenly
across the entire flash. Third, reading/writing a flash memory cell too frequently may flip
the bits stored in its nearby cells of the same block, leading to read/write disturb errors.

Figure 1. The out-of-place update in flash memory. When data A is overwritten by data B in the file
system, data B will be placed on another flash page, and data A will be invalidated without actually
being deleted from its holding flash page.

2.2. Flash Translation Layer (FTL)

To manage the special hardware nature of flash memory, a flash storage medium
typically incorporates a flash translation layer (FTL), which can handle the unique charac-
teristics of NAND flash internally, exposing a block access interface externally (Figure 2).
Therefore, block-based file systems (e.g., EXT, FAT, NTFS, etc.) that have been designed
for HDDs can be deployed on top of a flash storage medium. The FTL implements four
key functions: address translation, garbage collection, wear leveling and bad block man-
agement. Address translation manages mappings between the block addresses and the
flash memory addresses so that I/Os performed on the block addresses can be translated
to I/Os performed on the flash memory. Due to the out-of-place update feature, the data
stored in flash blocks may be invalidated over time. Garbage collection is used to periodi-
cally reclaim those invalid blocks. Wear leveling ensures that programs/erasures can be
distributed evenly across the flash to prolong the service life of flash memory. Unavoidably,
“bad” blocks will be generated over time, and bad block management is used to handle
those bad blocks, preventing them from being used again.

The FTL stays inside a flash storage device and is isolated from any external entities
(e.g., the OS) using the device. Leveraging this hardware-level isolation, our design will
integrate the malware detection into the FTL. The benefit is it would not be possible for the
malware to subvert our malware detection, even if the malware can compromise the OS.

2.3. ARM TrustZone

A trusted execution environment (TEE) is part of the main processor, which provides
an isolated environment to protect both the confidentiality and the integrity of code/data
loaded inside. TrustZone is a TEE implementation of Arm processors, available in ARM
Cortex-A processors (or processors built on the Armv7-A and Armv8-A architecture), as
well as ARM Cortex-M processors (built on the Armv8-M architecture). The idea of Trust-
Zone is to create two execution environments that run simultaneously on a single processor:
a secure execution environment (i.e., a secure world), which runs sensitive applications, and



J. Cybersecur. Priv. 2022, 2 315

a non-secure execution environment (i.e., a normal world), which runs non-sensitive applica-
tions. Each world operates independently when using the same processor, and switching
between them is orthogonal to all other capabilities of the processor. Memory/peripherals
will be aware of the corresponding world of the core, and applications running in the
normal world cannot access the memory space of the secure world. Therefore, critical
applications can be run in a secure world, and their confidentiality and integrity cannot be
compromised even if the adversary can compromise the OS. Leveraging TrustZone, our
design will run a user-level manager of the malware detector in the TrustZone secure world
to avoid being compromised by the OS-level malware.

Figure 2. Flash translation layer (FTL).

2.4. Steganography

Steganography allows a sender to send a seemingly innocuous cover message to
a receiver that conceals some critical message. In this way, the critical message can be
delivered to the receiver without the adversary being aware by staying in the middle.
Compared to cryptography, which protects the content of a critical message (e.g., encryption
transform the message to some random format based on secret keys so that the plaintext of
the message can be concealed), steganography is more advantageous as it not only hides
the content of the message but also essentially hides the fact that the message exists. Our
design will leverage the steganography technique to hide the communication between
the user-level manager running in the TrustZone secure world and the malware detector
running in the FTL.

3. System and Adversarial Model
3.1. System Model

We consider a low-power mobile computing device that is equipped with an ARM
processor (with TrustZone support) and a flash-based block device as external storage (e.g.,
a miniSD/microSD card, an eMMC card, or a UFS card). This type of mobile device can be
found broadly in the real world, including smartphones, tablets, wearable devices, as well
as the ever-growing Internet of Things (IoT) devices. A general architecture of this type
of device is shown in Figure 3. Leveraging TrustZone, we can create a secure world that
runs trusted applications (TA) on top of a small trusted OS and a normal world that runs
untrusted applications on top of a regular insecure OS. The flash-based block device has a
built-in FTL, which transparently handles the unique nature of NAND flash and exposes a
block access interface. We assume there are N data blocks on the block layer that are usable
by the OS, and the size of a data block is assumed to be equal to the size of a flash page for
simplicity. For example, if the flash page size is 2 KB, each data block can be viewed as a
collection of four 512-byte sectors.



J. Cybersecur. Priv. 2022, 2 316

Figure 3. The architecture of a mobile device.

3.2. Adversarial Model

We consider high-privileged OS-level malware that is able to compromise (the malware
usually starts from a user-level privilege and gradually escalates itself to the OS privilege
by exploiting various system vulnerabilities.) the regular insecure operating system of a
victim’s mobile device. After having compromised the OS, the malware would be able
to subvert any malware detection tools running in the insecure OS. Our design relies on
a few assumptions: First, the malware is not able to compromise the trusted OS and the
TAs running in the TrustZone secure world. This is a general assumption in the domain of
TrustZone technologies [9]. The malware is not able to hack into the FTL. This is a reasonable
assumption, as a flash storage device only provides limited access interfaces to the OS,
and we have not been aware of any attacks that can take advantage of these interfaces to
compromise the FTL. Second, we assume that the malware will not perform DoS attacks.
Specifically, it will neither block regular (or seemingly regular) communications between
the TAs running in the TrustZone secure world and the applications running in the normal
world, nor block I/Os performed by TAs on the external storage. This assumption is
reasonable, as otherwise, the TAs in the secure world can easily detect such blocking and
inform the user of the potential presence of malware. However, the malware may try to
view, modify or replay the communicated messages without being detected. Third, we
consider data corruption malware, which always needs to perform I/Os on the external
storage. This type of malware is commonly found in practice, e.g., a piece of ransomware
that encrypts user data and asks for ransom or a trojan which first steals user data, and
then corrupts them locally.

4. mobiDOM Design

mobiDOM aims to combat the data corruption malware that can compromise the
operating system of a victim’s mobile device. Our key idea towards the defense is to ensure
that the external storage corrupted by the malware can be restored after the malware attacks.
Therefore, mobiDOM continuously monitors the system in real-time, and once the presence
of the malware is detected, the user will be informed (step 1); then, the malware will be
quarantined and removed by the user (step 2); last, the external storage will be restored
(step 3). Step 2 is pretty common in any anti-virus or anti-malware tools, and therefore,
mobiDOM will focus on step 1 and step 3. Correspondingly, mobiDOM mainly consists of
a malware detector, which is responsible for detecting the malware and informing the
user, and a data repairer, which is responsible for restoring the external storage to a good
historical state after the malware is detected and removed. The design of our malware
detector and our data repairer will be elaborated on in Sections 4.1 and 4.2, respectively.



J. Cybersecur. Priv. 2022, 2 317

4.1. Malware Detector

Detecting the OS-level malware is a very challenging task, as the malware can com-
promise the operating system and subvert any malware detectors running at either the
user level or the kernel level. To prevent the malware detector from being compromised by
the malware, our key idea is to run it in an environment isolated from the OS. In this way,
even if the OS is compromised, the malware detector can still function correctly. We intro-
duce TApp, a trusted application running in the TrustZone secure world, and MDetector, a
malware detector running in the FTL that has been isolated from the OS. The TApp acts as
a trusted controller of the MDetector. To facilitate the communication between the TApp
and the MDetector, we introduce a client application (CA) in the normal world, which acts
as a communication proxy. Note that: (1) The OS-level malware will not block regular
communications and I/Os to avoid being aware by the user (Section 3.2), and therefore,
the CA will always provide this proxy service correctly. (2) Enabling the TApp to directly
read/write the external flash storage via the trusted OS running in the TrustZone is not a
good alternative, as it requires adding a lot of extra software components (i.e., disk drivers
and other necessary components in the storage path) to the small trusted OS, imposing a
lot of extra burden on the small trusted OS. Furthermore, accessing the external storage
directly in the TrustZone secure world is rarely supported [11]. As the communication
proxy (i.e., the CA) is running in the insecure normal world, the malware may detect
the communications between the TApp and the MDetector and can simply disturb their
communications (Section 3.2). We, therefore, utilize steganography so that the CA and
the MDetector can communicate stealthily without being detected by the malware. An
overview of our designed malware detector is shown in Figure 4.

Figure 4. The design overview of our malware detector.

4.1.1. Enabling Stealthy Communications between The TApp and MDetector

The TApp and the MDetector will communicate with each other through the CA
stealthily. In particular, the TApp will issue commands, and the MDetector will execute the
commands and send back responses. For simplicity, we define three basic commands for
the TApp to control the MDetector:

• START: This command will request the MDetector to start the malware detection process.
• STOP: This command will request the MDetector to stop the malware detection process.
• QUERY: This command is used by the TApp to check whether there is any malware

detected by the MDetector. It will be performed by the TApp periodically.



J. Cybersecur. Priv. 2022, 2 318

Note that: (1) Each command is a collection of s bits determined during the initializa-
tion, which is only known to the TApp and the MDetector, and s should be large enough to
prevent brute-force attacks, e.g., 128 bits. (2) Our design can be easily extended to support
extra commands.

To send a command stealthily to the MDetector, the TApp will leverage steganography.
The TApp and the MDetector will share a secret key during the initialization. Each time
upon sending a command, the TApp will use a pseudo-random function to select a random
portion of bits from a cover message based on the secret key, encode the command into
the selected bits (i.e., we simply replace the selected bits with the bits corresponding
to a command), and convey the modified cover message (denoted as stegDATA) to the
MDetector through a regular write request. The write request will be forwarded to the flash
storage medium via the CA. Upon receiving the write request, the MDetector can extract
the command from the stegDATA via the secret key. By observing the stegDATA, the
adversary will not be able to know there is a secret command embedded because: (1) The
adversary cannot compromise the TrustZone secure world and does not have access to
both the original cover message and the encoding process. (2) Compared to the size of a
regular write request (typically a few KBs), the size of the command is small (only 100+
bits). It is unlikely for the adversary to be aware of such a tiny modification of the original
cover message. A concrete example of sending a secret command from the TApp to the
MDetector is provided in Figure 5.

Figure 5. A concrete example of propagating a secret command 010 via steganography.

Each time after finishing handling a command, the MDetector should send back a
response to the TApp stealthily. Each response is usually a binary value. For example, 1
indicates that the START or STOP command is successfully executed, while 0 indicates a
failure; 1 indicates that the malware is detected, while 0 indicates no detection has been
detected. To send back such a binary response in a stealthy manner, our strategy is to utilize
the delay of read requests performed on the flash storage. Specifically, after the TApp sends
the secret command to the MDetector by encoding it into a regular write request on a disk
location, the TApp will read the same location immediately. A normal return without extra
delay will indicate value 0 while a return with artificial delay will indicate value 1. Note
that: (1) For the security concern, the delay value should be a secret and dynamic value.
It can be set by the TApp when sending a secret command each time, and this value can
also be encoded into the cover message stealthily. (2) The artificial delay should be small
enough to avoid being noticed by the adversary. In addition, the artificial delay will be
added only after the MDetector has successfully started/stopped the malware detection
process or detected the malware. All of them happen rarely and can be reasonably denied
as the system delay.



J. Cybersecur. Priv. 2022, 2 319

4.1.2. Real-Time Malware Detection in The FTL

The MDetector is implemented in the flash translation layer so that even if the malware
can compromise the operating system, it cannot subvert the MDetector. We only consider
the data corruption malware (Section 3.2), which will always create issues with I/Os on
the external storage in order to corrupt user data. Our intuition is that special behaviors of
malware at upper layers will eventually cause special access patterns [12] on underlying
flash memory, and by capturing and extracting those patterns in the FTL, it is possible to
detect the malware. To function correctly, the MDetector relies on a classifier, which is able to
classify any I/Os as malicious and non-malicious in real-time. The classifier can be trained
using the I/Os generated by running a set of pre-collected malware (Section 6.1). Once the
classifier has been trained and loaded, MDetector will monitor all the I/O requests issued
from the upper layers, analyze them in real-time, and decide whether there is malware
present. If any malware is detected, the MDetector will work with the TApp to get the user
aware of the instance (i.e., via the QUERY command issued by the TApp periodically).

The design details of the classifier. Each malware/software may generate a sequence
of I/Os in the FTL. Each I/O typically contains the following information: (1) a flag
indicating whether this I/O is corresponding to a read or a write operation, (2) the address
of this I/O, and (3) the data length of this I/O. Our objective is to differentiate the I/O
sequence of the malware from that of the regular software. To achieve this objective, we
use k-Nearest Neighbors [13] (kNN), a non-parametric supervised learning algorithm. We
choose the sequence of fixed-length I/Os captured for each software/malware sample
as the feature. An important step for kNN is to measure the distance between any two
software/malware samples. However, it is challenging to measure the distance between
two I/O sequences. To address this challenge, we utilize the dynamic time warping
algorithm [14], which has been designed to measure the similarity between two temporal
sequences. Given two sequences S1 and S2, we compute its distance following these steps:

1. We view each sequence as a collection of points, and each point corresponds to an
I/O of this sequence. We also initialize empty queues Q.

2. For S1, we compute the euclidean distance from its first point to each of the points
in S2. The minimal distance will be used as the distance between the first point to S2
and added to Q.

3. We repeat Step 2 for each of the remaining points in S1.
4. For S2, we compute the minimal distance between each of its points to S1 by repeating

Step 2 and 3.
5. The distance between S1 and S2 will be the sum of all the values in Q.

4.2. Data Repairer

The OS-level malware may corrupt data stored in the victims mobile device. For
example, it can overwrite the local data with garbage data or simply delete them. However,
the delete operation [15] in the system level usually only leads to the deletion of the
corresponding metadata in the file system and the actual data are not deleted. Therefore,
a reliable manner for the malware to corrupt data would be overwriting the data with
something else. Towards data restoration after malware attacks, our key observation is that
the mobile device usually uses flash storage, which follows a unique out-of-place update
strategy; due to the out-of-place update, the original data corrupted by the malware would
be temporarily preserved in the flash memory and could be extracted for data recovery after
attacks. Especially, the FTL usually maintains a table keeping track of mappings between
data stored in the flash memory and that viewed by the OS. For example, in Figure 6a, for
data D, the FTL maintains a mapping p between its address in the OS and its address in the
flash memory. After the malware corrupts data D by overwriting it with garbage data D′,
the garbage data D′ will be stored in a new flash memory address due to the out-of-place
update feature, and the FTL will change the mapping from p to p

′
(Figure 6b). Therefore, if

we can restore the current mapping p
′

to the old mapping p, the data “corrupted” by the
malware can be restored.



J. Cybersecur. Priv. 2022, 2 320

There are three issues that need to be addressed toward a robust data recovery after
the malware attack: (1) After the malware corrupts data at the OS level, the data (e.g.,
D) stored at the flash blocks will be invalidated, and the garbage collection (GC) [16,17]
may reclaim those blocks, rendering the data irrecoverable. (2) The old mapping p may be
deleted by the FTL before the data recovery is performed. (3) The user stays at the user
level, and may not be able to control the data repairer upon data recovery. In the following,
we will discuss our strategies to address each of the three issues.

Figure 6. Mappings between the OS view and the flash memory view.

Malware detection-aware garbage collection. To prevent the GC from reclaiming
those flash blocks that store the data invalidated by the malware, we utilize a malware
detection-aware GC strategy (Figure 7). Especially, we divide the time into epochs, and
the GC will be performed periodically at the end of each epoch; before the GC functions
and reclaims flash blocks filled with invalid data, it will first check with the malware
detector, and the flash blocks will be reclaimed only if there is no malware detected at this
point (otherwise, the GC will be frozen until the data recovery is invoked and successfully
conducted). Another issue is that when the malware starts to function, the malware detector
may not be able to detect it instantly. Therefore, there is a potential detection delay. To
compensate this delay, the GC on a flash block should be delayed accordingly. Fortunately,
in our malware detection experiments (Section 6.1), the detector can detect the malware
after around 30 I/Os, which indicates that the delay is very subtle.

Figure 7. Malware detection-aware garbage collection.



J. Cybersecur. Priv. 2022, 2 321

Ensuring recoverability of the old mappings. As the flash storage performs the
out-of-place update, an immediate strategy is to prevent the GC from reclaiming flash
blocks storing invalid mappings so that after the malware attacks, the old mapping p
can be extracted from the flash memory. This solution ensures the recoverability of old
mappings, but localizing the old mappings corresponding to a certain historical version
would be difficult. In addition, retaining all the historical mappings may incur a large
storage overhead. Another strategy is to back up the most recent version of the mappings
at the end of an epoch if the malware detector does not detect any malware (Figure 8). In
this way, upon detecting any malware and restoring the system, the most recent version of
the mappings can be retrieved for data recovery. Note that: (1) The flash blocks that store
the backup of mappings should be invisible to the upper layers. (2) Only the most recent
version of the mappings is needed to be backed up (in case there is any malware detection
delay, storing 2–3 most recent versions is always preferred, which does not require too
much extra storage), which does not incur a large storage overhead as the size of mappings
is significantly smaller than that of the data.

Figure 8. Mappings backup and restoration.

Invoking the data repairer at the user level. We define a new command REPAIR,
which is a collection of s bits determined during the initialization and is only known to the
user and the data repairer in the FTL. To invoke the data repairer after the malware has
been detected and cleared, the user can write the REPAIR command to a reserved block
address. The data repairer, which is running in the FTL, will monitor the reserved block
address, and once the REPAIR command is received, it will start to restore the data. Note
that: (1) as the data repairer is invoked only after the malware has been removed, the user
can simply stay in the normal world. (2) The REPAIR is a secret command with s bits (s is
typically large enough); therefore, the malware, as well as regular applications will not be
able to invoke the data repairer accidentally.

5. Discussion and Analysis
5.1. Discussion

Security of TrustZone. mobiDOM relies on an implied assumption that TrustZone
itself is secure. This seems to be a widely acceptable assumption in the domain of TrustZone-
based solutions [9]. However, there have been various attacks against TrustZone, e.g.,
side-channel attacks [18,19], CLKSCREW attacks [20], hardware-fault injection attacks [21],
etc. Enhancing the security of TrustZone has been actively taken care of in the literature [22]
and is not the focus of this work.



J. Cybersecur. Priv. 2022, 2 322

Defending against other types of OS-level malware. mobiDOM can only combat the
OS-level data corruption malware that causes I/Os to the external storage. For other types
of OS-level malware, a potential solution is to run the malware detector in an isolated
execution environment, which will then access the main memory of the normal world
periodically (e.g., via direct memory access) in order to identify any misbehavior.

Towards making mobiDOM more practical. One practical issue is to keep the FTL
lightweight, since it is a thin firmware layer managed by less powerful processors and
RAM. When integrating the malware detector into the FTL, a significant concern lies in the
performance of ML-based detection. An option for improving the performance would be
conducting a model pruning [23], which can help increase inference speed and decrease
the storage size of the ML model; additionally, upon initializing mobiDOM, the ML model
can be loaded into the RAM for malware detection later. Another practical issue is to
manage interference of I/Os among regular software as well as multiple malware, which
may perform I/Os simultaneously. Our experimental results in Section 6 only capture the
scenario in which there is only one piece of malware running in the system. We will further
investigate such interference in our future work.

Handling false positives and false negatives of the malware detector. Malware
detection relies on the AI model, which typically suffers from false positives and false
negatives. If there is a false positive, the user will be falsely notified of a malware de-
tected event. To mitigate this false alarm, the user is recommended to double confirm the
attacks manually before further action is taken. If there is a false negative, the GC may
have reclaimed some of the invalid flash blocks that store original data. Fortunately, our
experimental results (Section 6.1) show that the false negatives are rare. The false negative
issue will be investigated further in our future work.

Malware detection delay. Our malware detection aware GC strategy relies on the
timely detection of the malware. An extreme case is when the malware starts to compromise
data, but the malware detector has not yet detected it due to the detection delay. This
is right at the end of an epoch, and the GC will check with the malware detector. As no
malware has been detected yet, the GC will reclaim invalid blocks that have been just
invalidated by the malware. A remediation strategy is that the GC should avoid reclaiming
those flash blocks that have been invalidated recently. This will also help mitigate the false
negative issue mentioned before.

5.2. Security Analysis

mobiDOM contains both a malware detector and a data repairer component. The data
repairer component does not have any security concerns as it runs after the malware has
been detected and removed. Therefore, we focus on the security analysis over the malware
detector component in the following.

There are three major components in the malware detector: the TApp, the MDetector
and the communication messages between the TApp and the MDetector (Via the CA). The
security of the TApp is ensured by ARM TrustZone secure world. Without being able to
compromise the TrustZone, the adversary is not able to compromise the TApp even if it can
compromise the OS. In addition, the adversary will not be able to identify the existence of
the TApp in the TrustZone secure world, since the TApp simply writes/reads data to/from
the external flash storage (via the CA), which is pretty regular for any trusted applications
running in the TrustZone. The security of the MDetector is ensured by the FTL. Due to the
isolation of the FTL at the hardware level, the adversary will not be able to compromise the
FTL, even if it can compromise the OS. Therefore, the malware will not be able to notice the
existence of MDetector let alone compromise it.

The communication messages between the TApp and the MDetector can be protected
as analyzed in the following. First, their confidentiality can be ensured by staying hidden
among regular I/Os via steganography. Specifically, the secret command messages from the
TApp to the MDetector (START, STOP, QUERY) are hidden in the regular write requests on
the external storage, which will be invisible to and, hence, unnoticeable by the adversary. In



J. Cybersecur. Priv. 2022, 2 323

addition, the response messages are conveyed back from the MDetector to the TApp via read
delays, and since the delay time is a one-time secret value, the adversary cannot interpret
anything from such delays, which can be plausibly denied as occasional system delays
(considering the delays in mobiDOM only happen when starting/stopping the malware or
having detected the malware). In addition, the existence of CA will not give the adversary
any advantage of inferring the existence of mobiDOM since it is pretty common for the
TrustZone-based applications to have CAs running in the normal world to communicate
with TAs located in the TrustZone secure world. Second, the integrity of the communication
messages can be ensured. If the adversary modifies or replays the messages sent from
the TApp to the MDetector, the MDetector can easily detect it since the secret command
messages cannot be extracted successfully; if the adversary delays the communication
messages sent from the TApp to the MDetector or the read responses from the MDetector to
the TApp, the TApp can notice it considering the actual delay time in mobiDOM is a one-time
secret value. Note that we do not consider DoS attacks in which the adversary blocks the
communication messages or I/Os.

6. Experimental Evaluation

To construct a mobile computing device following the architecture in Figure 3, we used
two electronic development boards to build the testbed: (1) a Raspberry Pi [24] (version 3
Model B, with Quad Core 1.2 GHz Broadcom BCM2837 64 bit CPU, 1 GB RAM), which is
used as the host computing device, and (2) a USB header development prototype board
LPC-H3131 [25] (with ARM9 32-bit ARM926EJ-S 180 Mhz, 32 MB SDRAM, and 512 MB
NAND flash), which is used as the external flash storage. The LPC-H3131 is connected to
the Raspberry Pi via a USB2.0 interface. We have ported OP-TEE (Open Portable Trusted
Execution Environment) [11] to the Raspberry Pi to facilitate the development of TrustZone
applications. The TApp has been implemented into the TrustZone secure world as a trusted
application (TA). In addition, we have ported [26] an open-source flash controller (FTL)
OpenNFM [27] to LPC-H3131, and after OpenNFM has been ported, the LPC-H3131 can be
used as a flash-based block device by the host computing device via the USB2.0 interface.
We have modified OpenNFM to support the communication between the TApp and the
MDetector via steganography. In addition, a client application (CA) has also been built that
runs in the normal world as a proxy for communication. For a pseudo-random function,
we used HMAC-SHA1, in which the size of the output hash value is 160-bit, and the key
size is 128-bit. The size of a command is 128-bit.

We also modified the OpenNFM so that after the malware has been detected, the
external storage can be restored to a good historical state. Periodically at the end of each
epoch, the flash controller retrieves the current version of the mapping table, and stores it
elsewhere in the flash memory if there is no malware found by the MDetector. Note that
the garbage collection will be performed at the end of each epoch only when no malware is
detected at that point. After the MDetector has detected the malware, the user will be aware
of this attack by issuing a QUERY message via the TApp. The user can then block and
remove the malware. Finally, the user will invoke the data repairer in the flash controller
by issuing the REPAIR message on the reserved block address. Note that the malware has
been eliminated at this point, and the user can invoke the data repairer in the normal world.
The flash controller will restore the mapping table by retrieving the most recent mapping
table from the flash memory.

6.1. Experimental Results for The Malware Detector

Evaluating the communication between the TApp and the MDetector. We have tested
four different cases to evaluate the communication between TApp and MDetector: (1) no
extra delay is added; (2) 2-s delay is added; (3) 3-s delay is added; (4) 5-s delay is added.
We have collected 20 data points and the results are shown in Figure 9. We have the
following observations: (1) Without additional delay, 5 s are needed to execute a command
with normal return. The overhead mainly includes: encoding a secret command into the



J. Cybersecur. Priv. 2022, 2 324

stegDATA (in the TrustZone secure world), writing the stegDATA to a flash page (in the
normal world), extracting the secret command from the stegDATA (in the FTL), and reading
the stegDATA from the flash page (in the normal world). A major time consumption comes
from the Raspberry Pi since it significantly slows down when reaching 75 ◦C. (2) With the
additional delay, TApp can successfully differentiate the responses from the normal return.
This justifies the effectiveness of mobiDOM in conveying a response from the MDetector
back to the TApp stealthily by adding extra delays.

Figure 9. Time for executing a command (START, QUERY, STOP) with/ without adding delays. The
CPU temperature is around 75 ◦C.

Evaluating the effectiveness of malware detection in the FTL. To understand the ef-
fectiveness of detecting malware in the FTL, we have collected 96 malware samples (mainly
from VirusTotal [28]) and 36 benign software samples (including compression/encryption/
deletion software, etc., which will cause I/Os to the external storage). For each sample,
we manually ran it in a computer, which was connected to the LPC-H3131 via the USB,
and collected the I/O trace records in the FTL into a trace file. Note that after running each
malware sample, we need to restore the entire system to the initial clean state. Each I/O
trace record consists of a flag (e.g., 0 indicates a read operation while 1 indicates a write
operation), starting logical page address for this I/O, length of consecutive pages being
read/written in this I/O. A snapshot of the trace records is shown in Figure 10, and each
record is formatted as < f lag, startingaddress, length >. All the trace files—each stores the
I/O trace records captured for each software/malware sample in our experiment—are pub-
licly available in [29]. We used kNN to process the I/O traces. Our training set includes I/O
traces of 80 malware samples and 30 benign software samples, and our test set includes I/O
traces of 16 malware samples and 6 benign software samples. For each software/malware
sample, we selected the first 30 I/O trace records from the corresponding trace file, and
used this sequence of 30 I/Os as the feature of each sample. The dynamic time warping
algorithm was used to calculate the distance between the two sequences (Section 4.1.2).

To detect the malware in real-time, the detection should be as fast as possible. A small
k with a good accuracy could achieve a good tradeoff for our application scenario. When
choosing k as 1, we can achieve some good accuracy and the corresponding detection
results, as shown in Table 1. The detection accuracy is 91%. This confirms the effectiveness
of our FTL-based malware detector. In addition, the false positive rate and the false negative
rate are 33% and 0%, respectively. The low false negative rate indicates that our malware
detector does not miss any malware if present. The false positive rate seems a little high.
The reason is that, we have deliberately chosen those benign software samples which



J. Cybersecur. Priv. 2022, 2 325

exhibit some similar patterns to the collected malware in the experiments. However, in
practice, most of the benign software may not exhibit such similar patterns.

Figure 10. A snapshot of the captured I/O trace records.

Table 1. The detection results using real-world malware samples.

Accuracy False Negative Rate False Positive Rate

91% 0% 33%

6.2. Experimental Results for Data Repairer

Evaluating the overhead for data repairing. To support repairing after malware is
detected, mobiDOM needs to back up the mappings periodically. We, therefore, assess the
time needed for backing up the mappings at the end of each epoch by varying the size of
the external storage, i.e., 1, 5, 10, 50, and 100 M. The results are shown in Table 2. We can
observe that: (1) The time for backing up the mappings is almost constant, regardless of the
size of the storage. This is because the flash controller usually maintains a mapping table
of fixed size based on the storage capacity, regardless of the size of the data stored. (2) The
time needed for backing up the mappings is small, as the size of each mapping is much
smaller compared to that of the data. To repair the data, mobiDOM only needs to retrieve
the latest version of the mappings and to write it back. We, therefore, also assess the time
needed for repairing by varying the size of the external storage, i.e., 1, 5, 10, 50, and 100 M.
The results are shown in Table 3. We can observe that the time needed for repairing the
external storage is small and does not grow with the size of the data, as mobiDOM only
needs to restore the mapping table, which is small and fixed in size.

Table 2. The time needed for backing up the mappings.

size (MB) 1 5 10 50 100

time (s) 0.520828 0.527504 0.530729 0.531992 0.535536

Table 3. The time needed for restoring the external storage.

size (MB) 1 5 10 50 100

time (s) 0.503691 0.510664 0.519427 0.519476 0.520417

Assessing the recovery rate. We also assess whether mobiDOM can successfully re-
cover the data consisting of different types of files. We have collected 50 sample files, which
cover 5 categories and 20 file types, as shown in Table 4. The experimental results show
that mobiDOM can successfully recover all the sample files, with a recovery rate of 100%.



J. Cybersecur. Priv. 2022, 2 326

Table 4. The file types tested for data recovery.

Category File Type

text files txt, ppt, pdf, rtf
image files jpg, png, psd, tiff
video files 3gp, flv, mkv, mp4
audio files mp3, ogg, wav, wma

others zip, json, html, csv

7. Related Work

Malware detection. Aafer et al. [3] proposed to detect Android malware by relying
on critical API calls, their package level information, and their parameters. Zhang et al. [4]
proposed a semantic-based malware classification to accurately detect both zero-day mal-
ware and unknown variants of known malware families, in which they model program
semantics with weighted contextual API dependency graphs. For ransomware, existing
detection approaches mainly monitor typical file system activities [5–8] or analyze crypto-
graphic primitives [6,8,30]. For example, Unveil [5] generates an artificial user environment
and monitors desktop lockers, file access patterns and I/O data entropy; CryptoDrop [7]
observes file type changes and measures file modifications using a similarity-preserving
hash function and Shannon entropy to detect ransomware. The aforementioned malware
detection mechanisms work under the assumption that the malware cannot obtain the
OS privilege, which is unfortunately not true for the OS-level malware. On the contrary,
mobiDOM specifically targets high-privileged malware that can compromise the operating
system of the victim device.

Secure data recovery in mobile devices. Guan et al. [9] proposed Bolt, which can
allow the system to be restored after bare-metal malware analysis. However, Bolt runs
the malware in a controlled manner (for the analysis purpose), and the system has a clear
knowledge of when the malware starts to function. Therefore, Bolt can simply disable
garbage collection of the flash storage medium so that none of the original data stored
in the flash will be deleted, which enables restoration of the original data later. Different
from Bolt, mobiDOM aims to defend against malware, which is uncontrollable, and the
system has no knowledge of when the malware comes. In addition, the use of TrustZone in
Bolt is to enable restoration of memory state of the system; however, the use of TrustZone
in mobiDOM is to ensure the trusted execution of the user-level manager of the malware
detector (note that mobiDOM does not target restoration of the memory state as it is not
designed for bare-metal malware analysis).

FlashGuard [31], MimosaFTL [32], SSD-Insider [33,34], Amoeba [35] aimed to combat
ransomware by enabling data recovery after the ransomware attacks. The major differences
between them and mobiDOM are: First, mobiDOM targets the general data corruption
malware and is not specific for ransomware. Second, mobiDOM is more practical by
allowing the FTL to securely communicate with the user-level app, which is necessary for
further actions after malware is detected. mobiDOM makes it possible by leveraging both
the ARM TrustZone (ensuring the security of the app) and the steganography (ensuring the
security of the communication between the malware detector and the user app) technique.
On the contrary, the other frameworks [31–35] do not consider interacting with user apps.

8. Conclusions

In this work, we have designed mobiDOM, a novel framework that can combat the
strong OS-level malware by leveraging the existing hardware features of mainstream
mobile computing devices. mobiDOM consists two major components, namely, a malware
detector and a data recovery component. The malware detector is incorporated into the
flash translation layer (FTL), which is isolated from the OS by the flash storage hardware. In
this way, the detector can function correctly even if the OS is compromised by the malware.
The data recovery component will protect the data, preventing them from being removed



J. Cybersecur. Priv. 2022, 2 327

by the OS-level malware, by utilizing the out-of-place-update feature of the flash storage as
well as modifying the existing garbage collector in the FTL. The data recovery component
will work with the malware detector to enable the recovery of the external storage to a good
historical state. Security analysis and experimental evaluation justify both the security and
the effectiveness of our design.

There are some potential issues that should be further addressed next. First, the
framework can only enable the restoration of the storage to a good historical state. However,
data are valuable and it is necessary to restore the storage to the exact point where the
storage is in a good state right before the malware attack. Localizing this exact point
is challenging due to the delay of the malware detection and the mixing of the benign
I/Os and the malware I/Os in the “grey period”. In addition, the user may not have the
necessary expertise to extract the raw data from the flash memory for data recovery, and a
user-friendly tool that runs at the user level can bridge this gap.

Author Contributions: Conceptualization, N.C. and B.C.; methodology, N.C. and B.C.; software,
N.C.; validation, N.C. and B.C.; formal analysis, N.C. and B.C.; investigation, N.C. and B.C.; writing–
original draft preparation, N.C. and B.C.; writing–review and editing, N.C. and B.C.; project adminis-
tration, B.C.; funding acquisition, B.C. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by National Science Foundation under grant number 1938130-
CNS, 1928349-CNS, and 2043022-DGE.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found here: https://snp.cs.mtu.edu/research/drm2/MITON-V0.2.zip (accessed on 20 May 2022).

Acknowledgments: We would like to thank Wen Xie for his contribution in the early stages of
the work.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Statista. Development of New Android Malware Worldwide from June 2016 to March 2020. 2020. Available online: https:

//www.statista.com/statistics/680705/global-android-malware-volume/ (accessed on 20 May 2022).
2. Subedi, K.P.; Budhathoki, D.R.; Chen, B.; Dasgupta, D. RDS3: Ransomware Defense Strategy by Using Stealthily Spare Space.

In Proceedings of the 2017 IEEE Symposium Series on Computational Intelligence (SSCI), Honolulu, HI, USA, 27 November–1
December 2017.

3. Aafer, Y.; Du, W.; Yin, H. Droidapiminer: Mining api-level features for robust malware detection in android. In Proceedings of
the International Conference on Security and Privacy in Communication Systems, Sydney, NSW, Australia, 25–28 September
2013; Springer: Cham, Switzerland, 2013.

4. Zhang, M.; Duan, Y.; Yin, H.; Zhao, Z. Semantics-aware android malware classification using weighted contextual api dependency
graphs. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, Scottsdale, AZ, USA,
3–7 November 2014.

5. Kharraz, A.; Arshad, S.; Mulliner, C.; Robertson, W.; Kirda, E. UNVEIL: A Large-Scale, Automated Approach to Detecting
Ransomware. In Proceedings of the 25th USENIX Security Symposium (USENIX Security 16), Austin, TX, USA, 10–12 August
2016; pp. 757–772.

6. Kharraz, A.; Robertson, W.; Balzarotti, D.; Bilge, L.; Kirda, E. Cutting the gordian knot: A look under the hood of ransomware
attacks. In Proceedings of the International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment,
Milan, Italy, 9–10 July 2015; Springer: Cham, Switzerland, 2015; pp. 3–24.

7. Scaife, N.; Carter, H.; Traynor, P.; Butler, K.R. Cryptolock (and drop it): Stopping ransomware attacks on user data. In Proceedings
of the 2016 IEEE 36th International Conference on Distributed Computing Systems (ICDCS), Nara, Japan, 27–30 June 2016;
pp. 303–312.

8. Continella, A.; Guagnelli, A.; Zingaro, G.; De Pasquale, G.; Barenghi, A.; Zanero, S.; Maggi, F. ShieldFS: A self-healing,
ransomware-aware filesystem. In Proceedings of the 32nd Annual Conference on Computer Security Applications, Angeles, CA,
USA, 5–8 December 2016; ACM: New York, NY, USA, 2016; pp. 336–347.

https://snp.cs.mtu.edu/research/drm2/MITON-V0.2.zip
https://www.statista.com/statistics/680705/global-android-malware-volume/
https://www.statista.com/statistics/680705/global-android-malware-volume/


J. Cybersecur. Priv. 2022, 2 328

9. Guan, L.; Jia, S.; Chen, B.; Zhang, F.; Luo, B.; Lin, J.; Liu, P.; Xing, X.; Xia, L. Supporting Transparent Snapshot for Bare-metal
Malware Analysis on Mobile Devices. In Proceedings of the 33rd Annual Computer Security Applications Conference, Orlando,
FL, USA, 4–7 December 2017; ACM: New York, NY, USA, 2017; pp. 339–349.

10. Chen, N.; Xie, W.; Chen, B. Combating the OS-Level Malware in Mobile Devices by Leveraging Isolation and Steganography. In
Proceedings of the Applied Cryptography and Network Security Workshops, Kanagawa, Japan, 21–24 June 2021.

11. Open Portable Trusted Execution Environment. Available online: https://www.op-tee.org/ (accessed on 20 May 2022).
12. Xie, W.; Chen, N.; Chen, B. Poster: Incorporating Malware Detection into Flash Translation Layer. In Proceedings of the 2020

IEEE Symposium on Security and Privacy Poster Session, Virtual, 18–20 May 2020.
13. Peterson, L.E. K-nearest neighbor. Scholarpedia 2009, 4, 1883. [CrossRef]
14. Müller, M. Dynamic time warping. Inf. Retr. Music Motion 2007, 69–84.
15. Remove(3)—Linux Man Page. Available online: https://linux.die.net/man/3/remove (accessed on 20 May 2022).
16. Chang, L.P.; Kuo, T.W.; Lo, S.W. Real-time garbage collection for flash-memory storage systems of real-time embedded systems.

ACM Trans. Embed. Comput. Syst. 2004, 3, 837–863. [CrossRef]
17. Bux, W.; Iliadis, I. Performance of greedy garbage collection in flash-based solid-state drives. Perform. Eval. 2010, 67, 1172–1186.

[CrossRef]
18. Bukasa, S.K.; Lashermes, R.; Le Bouder, H.; Lanet, J.L.; Legay, A. How TrustZone could be bypassed: Side-channel attacks on

a modern system-on-chip. In Proceedings of the IFIP International Conference on Information Security Theory and Practice,
Heraklion, Greece, 28–29 September 2017; Springer: Cham, Switzerland, 2017; pp. 93–109.

19. Ryan, K. Hardware-backed heist: Extracting ECDSA keys from Qualcomm’s TrustZone. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, London, UK, 11–15 November 2019; pp. 181–194.

20. Tang, A.; Sethumadhavan, S.; Stolfo, S. CLKSCREW: Exposing the perils of security-oblivious energy management. In Proceedings
of the 26th USENIX Security Symposium (USENIX Security 17), Vancouver, BC, Canada, 16–18 August 2017; pp. 1057–1074.

21. Qiu, P.; Wang, D.; Lyu, Y.; Qu, G. Voltjockey: Breaching trustzone by software-controlled voltage manipulation over multi-core
frequencies. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, London, UK,
11–15 November 2019; pp. 195–209.

22. Wan, S.; Sun, M.; Sun, K.; Zhang, N.; He, X. RusTEE: Developing Memory-Safe ARM TrustZone Applications. In Proceedings of
the Annual Computer Security Applications Conference, Austin, TX, USA, 7–11 December 2020; pp. 442–453.

23. Zhu, M.; Gupta, S. To prune, or not to prune: exploring the efficacy of pruning for model compression. arXiv 2017,
arXiv:1710.01878.

24. Raspberry Pi 3 Model B. Available online: https://www.raspberrypi.org/products/raspberry-pi-3-model-b/ (accessed on 20
May 2022).

25. Mantech. LPC-H3131. 2017. Available online: https://www.olimex.com/Products/ARM/NXP/LPC-H3131/ (accessed on 17
May 2019).

26. Tankasala, D.; Chen, N.; Chen, B. A Step-by-step Guideline for Creating A Testbed for Flash Memory Research via LPC-H3131 and
OpenNFM. Available online: https://snp.cs.mtu.edu/research/common/flash-memory-testbed.pdf (accessed on 20 May 2022).

27. Code, G. OpenNFM. 2011. Available online: https://code.google.com/p/opennfm/ (accessed on 17 May 2019).
28. VirusTotal. Available online: https://www.virustotal.com/ (accessed on 17 May 2019).
29. Malware I/O Traces On Nand flash (MITON) V0.2. Available online: https://snp.cs.mtu.edu/research/drm2/MITON-V0.2.zip

(accessed on 20 May 2022).
30. Kolodenker, E.; Koch, W.; Stringhini, G.; Egele, M. PayBreak: Defense against cryptographic ransomware. In Proceedings of the

2017 ACM on Asia Conference on Computer and Communications Security, Abu Dhabi, United Arab Emirates, 2–6 April 2017;
ACM: New York, NY, USA, 2017; pp. 599–611.

31. Huang, J.; Xu, J.; Xing, X.; Liu, P.; Qureshi, M.K. FlashGuard: Leveraging Intrinsic Flash Properties to Defend Against Encryption
Ransomware. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, Dallas, TX,
USA, 30 October–3 November 2017; ACM: New York, NY, USA, 2017; pp. 2231–2244.

32. Wang, P.; Jia, S.; Chen, B.; Xia, L.; Liu, P. MimosaFTL: Adding Secure and Practical Ransomware Defense Strategy to Flash
Translation Layer. In Proceedings of the Ninth ACM Conference on Data and Application Security and Privacy, CODASPY ’19,
Dallas, TX, USA, 25–27 March 2019; ACM: New York, NY, USA, 2019.

33. Baek, S.; Jung, Y.; Mohaisen, A.; Lee, S.; Nyang, D. SSD-insider: Internal defense of solid-state drive against ransomware with
perfect data recovery. In Proceedings of the 38th IEEE International Conference on Distributed Computing Systems, ICDCS 2018,
Vienna, Austria, 2–5 July 2018.

34. Baek, S.; Jung, Y.; Mohaisen, A.; Lee, S.; Nyang, D. SSD-assisted Ransomware Detection and Data Recovery Techniques. IEEE
Trans. Comput. 2020, 70, 1762–1776. [CrossRef]

35. Min, D.; Park, D.; Ahn, J.; Walker, R.; Lee, J.; Park, S.; Kim, Y. Amoeba: an autonomous backup and recovery SSD for ransomware
attack defense. IEEE Comput. Archit. Lett. 2018, 17, 245–248. [CrossRef]

https://www.op-tee.org/
http://doi.org/10.4249/scholarpedia.1883
https://linux.die.net/man/3/remove
http://dx.doi.org/10.1145/1027794.1027801
http://dx.doi.org/10.1016/j.peva.2010.07.003
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.olimex.com/Products/ARM/NXP/LPC-H3131/
https://snp.cs.mtu.edu/research/common/flash-memory-testbed.pdf
https://code.google.com/p/opennfm/
https://www.virustotal.com/
https://snp.cs.mtu.edu/research/drm2/MITON-V0.2.zip
http://dx.doi.org/10.1109/TC.2020.3011214
http://dx.doi.org/10.1109/LCA.2018.2883431

	Introduction
	Background
	Flash Memory
	Flash Translation Layer (FTL)
	ARM TrustZone
	Steganography

	System and Adversarial Model
	System Model
	Adversarial Model

	mobiDOM Design
	Malware Detector
	Enabling Stealthy Communications between The TApp and MDetector
	Real-Time Malware Detection in The FTL

	Data Repairer

	Discussion and Analysis
	Discussion
	Security Analysis

	Experimental Evaluation
	Experimental Results for The Malware Detector
	Experimental Results for Data Repairer

	Related Work
	Conclusions
	References

