
Citation: Spiekermann, D.; Keller, J.

Requirements for Crafting Virtual

Network Packet Captures. J.

Cybersecur. Priv. 2022, 2, 516–526.

https://doi.org/10.3390/jcp2030026

Academic Editors: Mario Antunes

and Carlos Rabadão

Received: 9 May 2022

Accepted: 4 July 2022

Published: 6 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Cybersecurity 
and Privacy

Article

Requirements for Crafting Virtual Network Packet Captures
Daniel Spiekermann 1 and Jörg Keller 2,*

1 Polizeiakademie Niedersachsen, 31582 Nienburg, Germany; daniel.spiekermann@polizei.niedersachsen.de
2 Faculty of Mathematics and Computer Science, FernUniversität in Hagen, 58084 Hagen, Germany
* Correspondence: joerg.keller@fernuni-hagen.de

Abstract: Currently, network environments are complex infrastructures with different levels of
security, isolation and permissions. The management of these networks is a complex task, faced with
different issues such as adversarial attacks, user demands, virtualisation layers, secure access and
performance optimisation. In addition to this, forensic readiness is a demanded target. To cover all
these aspects, network packet captures are used to train new staff, evaluate new security features and
improve existing implementations. Because of this, realistic network packet captures are needed that
cover all appearing aspects of the network environment. Packet generators are used to create network
traffic, simulating real network environments. There are different network packet generators available,
but there is no valid rule set defining the requirements targeting packet generators. The manual
creation of such network traces is a time-consuming and error-prone task, and the inherent behaviour
of virtual networks eradicates a straight-forward automation of trace generation in comparison to
common networks. Hence, we analyse relevant conditions of modern virtualised networks and
define relevant requirements for a valid packet generation and transformation process. From this, we
derive recommendations for the implementation of packet generators that provide valid and correct
packet captures for use with virtual networks.

Keywords: virtual networks; packet generation; packet transformation; network forensic investigation

1. Introduction

Virtual machines, virtual storage and virtual networks are the fundamentals of mod-
ern infrastructures, providing highly flexible applications, services and environments such
as Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS) and Infrastructure-as-a-Service
(IaaS). Cloud environments as well as modern company networks use virtualisation to provide
dynamic, secure and highly customisable environments to internal and external customers.

These environments have to cover various, partly conflicting challenges. Inter-networ-
king and connections to internal and external networks are as important as the isolation
and secure separation of different networks categories such as customers, management
and backup. The implementation of network virtualisation overlay (NVO) is a common
technique to create flexible overlay networks on top of common and hardware-based
underlay networks. The software-based overlay networks use different virtual network
protocols such as VXLAN [1], GENEVE or NVGRE [2] to create a flexible network structure
for the different tenants. These protocols facilitate the separation of different networks
on top of a single and independent underlay network by encapsulating a given network
packet with new protocol information as shown in Figure 1.

The use of encapsulating protocols provides various benefits to the providers. The
encapsulation provides flexibility to static networks by adding new network traffic infor-
mation to a given network packet. The idea of encapsulating network protocols has been
known for a long time and is not limited to Ethernet or IP [3]. In addition to this, encapsu-
lating protocols are not limited to local area networks (LAN), even in wide area networks
(WAN) protocols such as Point-to-Point Protocol (PPP) [4] or ATM (Asynchronous Transfer
Mode) use encapsulation.

J. Cybersecur. Priv. 2022, 2, 516–526. https://doi.org/10.3390/jcp2030026 https://www.mdpi.com/journal/jcp

https://doi.org/10.3390/jcp2030026
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jcp
https://www.mdpi.com
https://orcid.org/0000-0003-4762-6062
https://orcid.org/0000-0003-0303-6140
https://doi.org/10.3390/jcp2030026
https://www.mdpi.com/journal/jcp
https://www.mdpi.com/article/10.3390/jcp2030026?type=check_update&version=1


J. Cybersecur. Priv. 2022, 2 517

Figure 1. Network packet encapsulation.

In modern networks, protocols such as VXLAN use a special field in the header that
identifies an isolated subnet under the administration of a single customer or for a special
purpose. In this way, subnets belonging to the same entity can be spread all over the
physical infrastructure. If a host wants to communicate with a host located in the same
subnet but on a different compute host, the network packet is encapsulated.

The administration of these networks differs from the administration of pure hardware-
based environments. Now, additional attack vectors such as denial-of-service attacks against
network controllers [5], insider attacks against virtualised devices [6] or software crashes
and buffer overflows of the software implementations are gaining increased importance.

To manage the different challenges, modern techniques such as machine learning-
based intrusion detection or network packet classification with deep learning are imple-
mented, but tasks such as prediction occur as well. To train the involved algorithms, a huge
amount of network traffic is needed. A common approach is the use of available datasets,
but this information differs sometimes from the given network environment. To obtain
proper network traffic, [7] describes six different techniques to generate network packets or
traffic collection:

1. Use of real networks,
2. Creation of a honeynet,
3. Use of a network simulator,
4. Existing traffic dumps,
5. Use of network traffic generators,
6. Combining the aforementioned techniques.

The use of real network traffic seems to be a common possibility to get relevant
network traffic, but this traffic lacks in attack-based network traffic or malicious packets.
The creation of a honeynet as well as the network simulator is easier in virtual environments
as in hardware-based environments but still a complex task. The process of implementing
such an environment is done in various steps. In [8], the authors define significant planning
as the first step, along with discussions of trained personnel to preserve the realistic scenario.
The technical implementation is based on the installation and configuration of VMs running
on compute nodes as well as the wanted network structure. If dynamic aspects such as VM
migration have to be covered, a reconfiguration of the entire environment is necessary.

While a huge number of datasets of common networks such as CICDDoS2019 [9],
CSE-CIC-IDS 2018 [10] and INSecS-DCSl [11] exist, to our knowledge, there is no publicly
available data set with different virtual protocols such as VXLAN or GENEVE.

The use of network traffic generators provides various benefits to the provider. By
defining coherent parameters, a packet generator is able to create proper network traffic
which fits the involved network. In [12], the authors define packet generation as

the result of time-stamped series of packets arriving and departing from particular network
interfaces with realistic values.

We define network packet generation as the synthetic creation of network packets
regarding different parameters. These parameters depend on the purpose of the creation
process and cover various fields such as the testing of new implementations [13], trou-
bleshooting [14], education and training [15,16] or advanced aspects such as network
forensic investigation [17,18].

However, ad hoc traffic generation is cumbersome and error-prone and normally
does not take virtualised networks into account. Packet generators are used in various



J. Cybersecur. Priv. 2022, 2 518

fields of network management, security and performance optimisation. In [19], the authors
describe the use of different network packet generators to implement training platforms
for teaching defence techniques against denial of service attacks. With Encapcap [20], we
have presented a first attempt to transform network traces so that they contain virtualised
network traffic for specific scenarios. In the present research, we investigate systematically
the requirements to be met by packet generators for virtualised networks and thus to see
which direction to evolve Encapcap in for use with more general scenarios. We also present
some use cases that illustrate the necessity of these requirements and demonstrate the use
of Encapcap in application scenarios. While those use cases comprise the use of test sets for
virtual networks generated by Encapcap, our goal is not to present a particular test set but
the possibility to generate it.

Our main research contributions are as follows:

• An analysis of relevant features in traffic from virtualised networks and subsequently
the derivation of a set of requirements, which is as complete as possible, as a baseline
for a packet generation process targeted towards virtual environments;

• The extension of the Encapcap tool to meet the above requirements;
• The presentation and evaluation of different use cases with the help of (extended) Encapcap.

The remainder of this article is structured as follows. Section 2 discusses related work
in the fields of virtual networks and packet capture generation. In Section 3, we define
pertinent requirements for a valid packet generation process targeted towards virtualised
networks. Section 4 presents and analyses use cases, while Section 5 presents conclusions
and an outlook to future work.

2. Related Work

The creation of network packets is discussed in various research works. In [21], the
authors propose Moongen as a high-speed packet generator able to saturate a 10GBit/s
connection. Pktgen [22] is another software-based packet generator that aims to cover
high-speed communication. In addition to this, different hardware-based generators such
as [23] exist.

Encapsulating protocols are able to tunnel given protocol information to transfer this
information without any further interaction from a given point in a network to its intended
destination. This is done for security reasons such as IPSec and Encapsulating Security
Payload (ESP) [24], virtual private networks [25] or virtual environments [26]. Virtual
environments such as software-defined networks (SDN), Docker [27] or Kubernetes [28,29]
are heavily based on encapsulating protocols [30]. Network packet captures freeze the
transferred network traffic and, depending on the captured traffic, provide additional
opportunities for training, learning and testing.

The generation of own packet captures is done for various reasons such as testing of
new network protocols, fuzzing, IoT design [31] or security implementations [32]. Because
of this, [33] differentiates application-level, flow-level and packet-level traffic generators.

A common technique is the replay of the network packets inside a virtual environment
with tools such as tcpreplay, TCPivo [34] or OFRewind [35]. The tools provide great flexibil-
ity in repeating captured network traces but focus on the implementation or evaluation of
high-performance networks. In contrast to these, tools with a forensic purpose such as [36]
focus on making the replay as accurately as possible. When crafting network packets with
encapsulation protocols as used in SDN, only Encapcap [20] is available. The definition of
requirements typically depends on the intended purpose of the generator; e.g., in [37], the
authors describe bandwidth, accuracy and precision as relevant requirements for network
packet generators, but this research focuses on the live injection of the crafted network
packets into a network or network analysis tool. In [38], the authors define five require-
ments supporting the reproducible traffic generation. In [39], the authors define seven
requirements in virtual networks, but they focus on benchmarking and measurement.



J. Cybersecur. Priv. 2022, 2 519

3. Requirements

The synthetic creation of valid packet captures, typically stored as pcap files, (https:
//en.wikipedia.org/wiki/Pcap, accessed on 27 June 2022) is complex and faced with
challenges. Errors, misconfigurations or missing considerations of existing standards might
lead to incorrect and futile capture files. To facilitate valid and correct capture files, we
present the following requirements, which help to overcome these challenges. Thus, we
also give recommendations for generators with respect to these requirements.

To ensure a systematic process and achieve a list of requirements that is as complete as
possible, we took software testing as an example and role model [40]. In addition, we used
our multi-year experience in this field. Yet, we are aware that—as always—such a list of
requirements remains a best effort approach. Software testing has to ensure the correctness
of the different algorithms implemented in the software, e.g., in the form of unit tests. IN
addition, the different parts must work together and must be compatible with the outside
world, e.g., checked by integration tests. Testing needs to cover as many program paths as
possible, i.e., to show flexibility to address different circumstances, and need to rerun when
circumstances change, e.g., in regression testing; i.e., they must be adaptable. Tests must be
reproducible, but, e.g., in black-box testing, randomisation is needed. Tests should not only
consider functionality but must also address performance. Especially for embedded and
real-time systems, also predictable and acceptable temporal behaviour like response time
must be checked, which we cover under the term precision. Our last requirement refers to
appropriate use case design: a generator must be aware of virtual networks to address their
specific features.

3.1. Correctness

The correctness of data is a critical aspect in all digital investigation [41] as well as
testing and development. Thus, the correctness of synthetically created network packets is
crucial to the overall process. Incorrect or partial network packet captures are invalid and
should not be used in the further process of analysis. Missing or distorted network packets
have an unpredictable effect on the subsequent steps, which might result in incorrect
or misleading results. Common errors are missing values, incomplete packet flows and
wrong check-sums resulting in new errors when investigating or analysing corrupt data.
Especially in the field of machine learning, the use of valid and appropriate test data is
crucial for the effective detection of unwanted traffic. Neglecting the correctness is possible
if payload content does not matter and only header information is analysed [42].

3.2. RFC Compatibility

The process of generating network packets is mostly done for a specific purpose. As
mentioned in the previous part, the correctness of the packets is a crucial aspect. In addition
to this, the compatibility to the most recent Request-for-Comments (RFC) is important.
These standards define relevant aspects such as protocol structures, valid and invalid
entries, default values and recommendations for processing the information. If these
standards or parts of them get ignored, different follow-up errors might arise. These errors
might detract from the intended purpose of the packet capture. Hence, it is crucial that
the generated network packets consider the valid specifications. This is a time-consuming
part of the generation, because the different specifications and their expansions have to be
analysed in detail. Some specifications depend on each other, expand older versions and
add new functions. As an example, GRE as defined in RFC 2784 [43] does not provide the
relevant header fields for NVGRE, but the extension of GRE defined in RFC 2890 [44] adds
two optional header fields to the original header with a length of 32 bits each. NVGRE uses
24 bits to store the virtual subnet ID (VSID). The remaining 8 bits are used as a FlowID,
which provides per-flow entropy for flows in the same VSID.

https://en.wikipedia.org/wiki/Pcap
https://en.wikipedia.org/wiki/Pcap


J. Cybersecur. Priv. 2022, 2 520

3.3. Flexibility

Packet captures of hardware-based networks provide mostly static information, as the
number of changes inside this environment is very low. Connected systems such as servers
or computers do not change in these environments, which results in a predictable network
design. A major benefit of virtual networks and virtual environments is the flexibility
and dynamic of the infrastructure. Typically, packet captures of virtual environments
contain a huge number of changing network information such as IP addresses, protocols
and involved hosts. This is a result of VMs that are started and stopped inside the en-
vironment, or suspended systems copied to different locations inside a user network. A
packet generation process in this environment should provide the same flexibility as the
environment; otherwise, the generation process is too static for a modern environment.
As a result, the generator should be able to add additional systems into the capture file or
change information of existing systems.

3.4. Adaptability

In all fields of information security or digital investigation, the use of valuable test
data is a perpetual challenge [8]. In contrast to traditional hardware-based environments, it
is not applicable to use purchased second-hand hardware to collect different user data [45].
Unfortunately, network data are volatile and not stored on hardware after the transmission;
thus, purchasing old hardware is not a reasonable approach. However, the need for different
scenarios based on various data is crucial. In [46], the authors define the need for realistic
training as follows: “In order to prevent or detect cyber-attacks, people soon realised that
the best way is practising hands-on training, where trainees work in a testing environment
that mimics real-life situations.” Without this variety of scenarios, the effect of training is
limited and does not guarantee an ongoing improvement of the involved personnel [47].
With different scenarios and various levels of difficulty, based on flexible generated network
captures, the overall acceptance of training and testing can be improved. The packet
generator has to create adaptable capture files based on given files. The adaptability can be
reached by a useful software design like a graphical user interface or a parameter-based
command line interface.

3.5. Reproducability

In addition to the correctness of the created packet captures, it is necessary that the
results of packet transformation are repeatable and resilient. The reproducability is a
critical requirement of digital investigations [48,49] and ensures the equality of two (or
more) generated packet captures based on the same original file and that are manipulated
in the same manner. The generation process should be automatised and perform the same
steps for every run. Use of parameter sets to characterise and store all relevant parameter
settings for a particular generation run in one place can be of help here.

3.6. Randomisation

On the other hand, the generator should be able to create randomised values, which
change different packet parameters if needed. By using pseudo-random number generators
of good quality [50] and by recording the seed value as part of the parameter set, the
requirements of reproducability and randomisation can be fulfilled together.

3.7. Performance

The necessary speed of the generation process depends on the intended purpose. If
the generation process injects the packets into a real network in real time, the performance
of the process should touch 10 GBit/s [22]. A limiting factor of a generation process is the
deployed hardware, but the design of the software heavily affects the overall performance.
In addition to this, the memory allocation of the creation process should be suitable for the
created capture file.



J. Cybersecur. Priv. 2022, 2 521

3.8. Precision

A packet generator has to create precise packet captures with defined gaps or intervals
between network packets, which results in accurate packet captures [21,51]. In particular,
the pcapng-format is able to manage network packets with a timestamp of 64-bit accuracy,
so a packet generator should be able to create correct timestamps in a packet.

However, a common issue of different network packet generators is a varying rate
of packet transmission. Software-based solutions depend on the CPU load. If a generator
such as tcpreplay is used multiple times to replay a given capture file, the time between sent
network packets might differ from run to run [52]. If there are competitive processes on a
single-core system, the replay process is not eligible to use the CPU core in time.

3.9. Awareness

Virtual networks differ from physical networks in various aspects which have to be
handled during the transformation. Techniques such as migration or on-demand changes
in the infrastructure, often initiated by a user, are common in virtual environments. A
packet generator for virtual environments has to be aware of these situations and has to be
able to create valid scenarios based on a given packet capture.

Another event that can occur in virtual networks is the change of internal network
packet information and addresses such as the IP range of a user network. A customer
is able to change the assigned network and might change IP addresses, routes to some
destinations, packet forwarding, firewalling or add additional NFV devices such as VPN
gateways or load balancers. All these changes have effects on the network and have to
be managed by a packet generator, i.e., by changing internal network information of the
transferred network packets.

A further difference to traditional hardware-based networks is the possibility to change
protocols on the fly. This protocol swap is done to implement additional features scgh
as TCP-offloading [53]. A packet generator should be able to manage such a protocol
change by providing the ability of swapping from one protocol to another, which results in
different NVO information such as protocol types or port numbers. A packet generator
has to analyse and change the necessary information on the fly to create valid and usable
capture files.

3.10. Extending Encapcap

Given the systematic analysis of requirements above, we analysed how far our own
tool Encapcap [20] already fulfills these requirements and where it can be improved.

The analysis resulted in the following extensions. The first release of Encapcap as
discussed in [20] was able to create virtual network packet captures from a given capture
file containing arbitrary network packets. A check for correctness and RFC compatibilitiy
of the initial trace has been added. When started with a list of various parameters Encapcap
is able to provide flexible and adaptable but also reproducible packet captures. A special
parameter - -rand creates randomised values, which prevents the correct reproducability
of a created packet capture. As a consequence, the use of - -rand has been extended to
include a mandatory seed value in the current release of Encapcap. The extension of
Encapcap provides a tool that covers all aforementioned requirements with the exception
of performance. Encapcap is implemented in Python3, so the performance of the creation
process is limited due to the interpreting speed of the Python language. Implementing a
packet generator in a compiling language such as C will heavily improve the performance
of Encapcap [54] and is thus targeted as future work.

4. Use Cases

In this section, we list three different use cases, which illustrate the proposed re-
quirements. Based on the scenario, the requirements have different relevance. Not every
requirement is critical for every use case, but with three use cases, we illustrate that the
complete set of requirements is necessary; e.g., the performance as discussed in Section 3.7



J. Cybersecur. Priv. 2022, 2 522

is mostly irrelevant, when the need for having adapted network captures is not urgent
or the process of creating network packets does not have to be conducted in a short time.
On the other hand, a flexible adaptation of the resulting network capture as discussed in
Section 3.3 is important for network security. This area has to manage different network
traffic, and various attacks use an unusual combination of protocol header fields [55] or net-
work internal aspects such as fragmentation [56]. In addition to this, various network based
covert channels use different header fields to exfiltrate the intended information [57,58].

4.1. Training

The implementation of new network protocols might result in new or unknown errors,
e. g., in the case of misconfiguration of involved systems or misinterpretation of specifica-
tions. If a problem occurs, a common technique is network packet analysis [59]. Such an
analysis aims to detect irregular values in packet headers or the incorrect implementation
of given standards. Packet captures with pre-defined values related to a given network help
to train network engineers to learn new protocols in order to prevent the aforementioned
issues. As discussed in Section 3.2, the creation of the requested packet captures needs
to consider valid specifications; otherwise, emerging errors might hamper the intended
analysis. Figure 2 shows such an intentionally misconfigured capture file that violates the ad-
dressing scheme for MAC-addresses defined in [60]. Such a misconfiguration might confuse
the user of the tool and distract from other, more relevant issues or the intended purpose.
Thus, such misconfiguration should not occur within training sets for network engineers.
So, considering specifications and creating correct captures are critical requirements for
network packet generations. Otherwise, there would be a need for additional checks after
the creation of the transformed dataset before using it in an actual training session. The use
of Encapcap allowed us to create traces covering 1 hour of packets for training faster.

Figure 2. Example of incompatibility to RFC.

Other requirements such as adaptability, as discussed in Section 3.4, or reproducability,
discussed in Section 3.5, help training scenarios to create a clean training environment that
provides an identical basis for different training scenarios

4.2. Testing

The network is a fundamental and crucial element in modern environments. The high-
speed connection of involved systems as well as the correct transport of the information is
one of the most relevant tasks. Bringing new devices into the network has to be tested in
order to minimise the risk of unwanted results. Such devices, hardware-based as well as
virtual, change the internal packet flow, which results in a different behaviour. So, testing
a new device in a real-world scenario is necessary in modern infrastructures, but most
of the environments do not provide such an opportunity. Creating network packets with
real-world information in real time supports the testing and implementation of new devices.
The generated packets, either by a tool such as Encapcap or by a different tool that is able
to provide virtual network packet captures, can be replayed or sent in real time into a
given network device, and the resulting behaviour can be analysed in detail in a simulated
network environment to ensure the intended processing. A slow or dissimilar packet flow
might not produce the same behaviour as high-speed packet transfers with valid network
data, so the precision and performance as well as the awareness are crucial requirements
in this use case. We evaluated this process by replaying a generated packet capture into a



J. Cybersecur. Priv. 2022, 2 523

firewall implementation to analyze the forwarding process of the device. By this, we were
able to detect minor misconfigurations in the complex ruleset of the firewall. Without such
a testing process, these errors would have persisted into production mode. As a result, this
testing opportunity is similar to gray box testing [61].

4.3. Security

Network security and protection is relevant in modern environments. Due to the
increasing speed and diversity of network packets, the detection of network-based attacks
is a complex task. Preventing adversarial attacks is typically done with techniques such as
machine learning, but the deployed algorithms need realistic and correct network packets to
train and improve the models. Incorrect, static or incongruous information leads to wrong
results and therefore useless models. So, training the models with appropriate information
is crucial for a high level of security. As shown in [18], the shift from hardware-based
to virtual networks impacts every involved network device that analyses the transferred
network traffic. Whereas performance issues or a huge resource load might be detected
in an easy way, the detection of misconfigured or incomplete rules for the protection of
the network is critical but extremely difficult. Because of this, the process of implementing
new network devices or new algorithms for the classification of network packets in virtual
networks needs a valid baseline of well-known information. By using a known data-set
of the traditional network and transferring this capture to a capture file with adapted
information of the intended virtual network, the overall security benefits result in a clean
and correct process of packet generation. The re-configuration of the firewall mentioned in
Section 4.2 improved the security of a virtual network.

4.4. Relation to Requirements

The requirements defined in Section 3 cover the relevant aspects of the aforementioned
realistic use cases. Table 1 summarises the listed use cases and their corresponding require-
ments. An x marks the need of the requirement for the given use case, whereas – defines a
lower significance for the use case.

Table 1. Use case analysis.

Use Case 1 Use Case 2 Use Case 3
Requirements Training Testing Security

Correctness x x x
RFC compatibility x - -
Flexibility x - x
Adaptability x x x
Reproducability x x x
Randomisation - - x
Performance - x -
Precision x x -
Awareness - x x

Table 1 illustrates that not every requirement is critical for every use case, but that the
complete set of requirements is necessary already for the three given use cases. Because
of the variety of the different reasons for packet generation, a different emphasis in other
scenarios is possible. On the other hand, Table 1 details that the correctness is the most
relevant requirement when creating adapted virtual network packets. If the generation of
virtual packet traces produces irregular or incorrect data, every subsequent step such as
flow creation, feature selection, in-depth analysis or performance calculation will result in
misleading data, errors or unwanted behaviour.



J. Cybersecur. Priv. 2022, 2 524

5. Conclusions

Virtual networks are on the rise, and hence packet traces of virtual networks are needed
for a variety of use cases ranging from machine learning-based firewall configuration to
realistic training sessions for network engineers.

The process of creating such a dataset for virtual networks is a time-consuming
and error-prone task, which is faced with different issues. If the creation process is not
fully applicable to the intended purpose, subsequent errors might be undetected. In
this paper, we therefore derived, in a systematic manner and as completely as possible,
a set of requirements for the creation of datasets in modern networks, with an eye on
virtualisation techniques.

We have extended our own tool Encapcap [20] with the knowledge from the systematic
analysis in this research to meet all requirements except performance. We have applied
this tool in several use cases and have illustrated that the set of requirements is indeed
necessary for successful application.

Future work comprises the re-implementation of Encapcap in a compiled programming
language to improve performance as the last missing requirement.

Author Contributions: Conceptualization, D.S. and J.K.; methodology, D.S.; software, D.S.; vali-
dation, D.S.; formal analysis, D.S. and J.K.; investigation, D.S.; resources, D.S.; data curation, D.S.;
writing—original draft preparation, D.S. and J.K.; writing—review and editing, D.S. and J.K.; visual-
ization, D.S.; All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mahalingam, M.; Dutt, D.; Duda, K.; Agarwal, P.; Kreeger, L.; Sridhar, T.; Bursell, M.; Wright, C. Virtual eXtensible Local

Area Network (VXLAN): A Framework for Overlaying Virtualized Layer 2 Networks over Layer 3 Networks. RFC 7348, 2014.
Available online: https://datatracker.ietf.org/doc/rfc7348/ (accessed on 8 May 2022).

2. Garg, P.; Wang, Y.S. NVGRE: Network Virtualization Using Generic Routing Encapsulation. RFC 7637, 2015. Available online:
https://datatracker.ietf.org/doc/rfc7637/ (accessed on 8 May 2022).

3. Kantor, B. Internet Protocol Encapsulation of AX.25 Frames. RFC 1226, 1991. Available online: https://datatracker.ietf.org/doc/
rfc1226/ (accessed on 8 May 2022).

4. Simpson, W.A. The Point-to-Point Protocol (PPP). RFC 1661, 1994. Available online: https://datatracker.ietf.org/doc/rfc1661/
(accessed on 8 May 2022).

5. Mousavi, S.M.; St-Hilaire, M. Early detection of DDoS attacks against SDN controllers. In Proceedings of the 2015 International
Conference on Computing, Networking and Communications (ICNC), Garden Grove, CA, USA, 16–19 February 2015; pp. 77–81.

6. Aljuhani, A.; Alharbi, T. Virtualized Network Functions security attacks and vulnerabilities. In Proceedings of the 2017 IEEE 7th
Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 9–11 January 2017; pp. 1–4.

7. Kotenko, I.; Chechulin, A.; Branitskiy, A. Generation of source data for experiments with network attack detection software. In
Proceedings of the Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2017; Volume 820, p. 012033.

8. Du, X.; Hargreaves, C.; Sheppard, J.; Scanlon, M. TraceGen: User Activity Emulation for Digital Forensic Test Image Generation.
Forensic Sci. Int. Digit. Investig. 2020 , 38, 301133. [CrossRef]

9. Sharafaldin, I.; Lashkari, A.H.; Hakak, S.; Ghorbani, A.A. Developing realistic distributed denial of service (DDoS) attack dataset
and taxonomy. In Proceedings of the International Carnahan Conference on Security Technology (ICCST), Chennai, India,
1–3 October 2019; pp. 1–8.

10. Sharafaldin, I.; Lashkari, A.H.; Ghorbani, A.A. Toward generating a new intrusion detection dataset and intrusion traffic
characterization. In Proceedings of the ICISSp, Funchal, Portugal, 22–24 January 2018; pp. 108–116.

11. Rajasinghe, N.; Samarabandu, J.; Wang, X. INSecS-DCS: A highly customizable network intrusion dataset creation framework. In
Proceedings of the 2018 IEEE Canadian Conference on Electrical & Computer Engineering (CCECE), Quebec City, QC, USA,
13–16 May 2018; pp. 1–4.

https://datatracker.ietf.org/doc/rfc7348/
https://datatracker.ietf.org/doc/rfc7637/
https://datatracker.ietf.org/doc/rfc1226/
https://datatracker.ietf.org/doc/rfc1226/
https://datatracker.ietf.org/doc/rfc1661/
http://doi.org/10.1016/j.fsidi.2021.301133


J. Cybersecur. Priv. 2022, 2 525

12. Vishwanath, K.V.; Vahdat, A. Realistic and Responsive Network Traffic Generation. In Proceedings of the 2006 Conference
on Applications, Technologies, Architectures, and Protocols for Computer Communications, Pisa, Italy, 11–15 September 2006;
Association for Computing Machinery: New York, NY, USA, 2006; pp. 111–122. [CrossRef]

13. Voyiatzis, A.G.; Katsigiannis, K.; Koubias, S. A Modbus/TCP fuzzer for testing internetworked industrial systems. In Proceedings
of the 20th Conference on Emerging Technologies & Factory Automation (ETFA), Luxembourg, 8–11 September 2015; pp. 1–6.

14. Li, Y.; Miao, R.; Alizadeh, M.; Yu, M. DETER: Deterministic TCP Replay for Performance Diagnosis. In Proceedings of the 16th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 19), Boston, MA, USA, 26–28 February 2019;
pp. 437–452.

15. Padman, V.; Memon, N. Design of a virtual laboratory for information assurance education and research. In Proceedings of the
Workshop on Information Assurance and Security, West Point, NY, USA, 1–3 June 2002; Volume 1, p. 1555.

16. Son, J.; Irrechukwu, C.; Fitzgibbons, P. Virtual lab for online cyber security education. Commun. Iima 2012, 12, 5.
17. Corey, V.; Peterman, C.; Shearin, S.; Greenberg, M.S.; Van Bokkelen, J. Network forensics analysis. IEEE Int. Comput. 2002,

6, 60–66. [CrossRef]
18. Spiekermann, D.; Keller, J. Impact of Virtual Networks on Anomaly Detection with Machine Learning. In Proceedings of the 6th

IEEE Conference on Network Softwarization (NetSoft), Ghent, Belgium, 29 June–3 July 2020; pp. 430–436. [CrossRef]
19. Trabelsi, Z.; Alketbi, L. Using network packet generators and snort rules for teaching denial of service attacks. In Proceedings

of the 18th ACM Conference on Innovation and Technology in Computer Science Education, England, UK, 1–3 July 2013;
pp. 285–290.

20. Spiekermann, D.; Keller, J. Encapcap: Transforming Network Traces to Virtual Networks. In Proceedings of the 2021 IEEE 7th
International Conference on Network Softwarization (NetSoft), Tokyo, Japan, 28 June–2 July 2021; pp. 437–442.

21. Emmerich, P.; Gallenmüller, S.; Raumer, D.; Wohlfart, F.; Carle, G. Moongen: A scriptable high-speed packet generator. In
Proceedings of the 2015 Internet Measurement Conference, Tokyo, Japan, 28–30 October 2015; pp. 275–287.

22. Olsson, R. Pktgen the linux packet generator. In Proceedings of the Linux Symposium, Ottawa, Canada, 22–25 July 2005;
Volume 2, pp. 11–24.

23. Sanlı, M.; Schmidt, E.G.; Güran, H.C. FPGEN: A fast, scalable and programmable traffic generator for the performance evaluation
of high-speed computer networks. Perform. Eval. 2011, 68, 1276–1290. [CrossRef]

24. Kent, S.; Atkinson, R. IP Encapsulating Security Payload (ESP). RFC 2406, 1991. Available online: https://datatracker.ietf.org/
doc/html/rfc2406 (accessed on 8 May 2022).

25. Worster, T.; Rekhter, Y.; Rosen, E. Encapsulating MPLS in IP or Generic Routing Encapsulation (GRE). RFC 4023, 2005. Available
online: https://datatracker.ietf.org/doc/rfc4023/ (accessed on 8 May 2022).

26. Chowdhury, N.M.K.; Boutaba, R. A survey of network virtualization. Comput. Net. 2010, 54, 862–876. [CrossRef]
27. Hausenblas, M. Container Networking; O’Reilly Media, Incorporated: Sebastopol, CA, USA, 2018.
28. Botez, R.; Costa-Requena, J.; Ivanciu, I.A.; Strautiu, V.; Dobrota, V. SDN-Based Network Slicing Mechanism for a Scalable 4G/5G

Core Network: A Kubernetes Approach. Sensors 2021, 21, 3773. [CrossRef] [PubMed]
29. Spiekermann, D.; Keller, J. Wiretapping Pods and Nodes-Lawful Interception in Kubernetes. Electron. Commun. EASST 2021, 80.
30. Spiekermann, D.; Keller, J.; Eggendorfer, T. Network forensic investigation in OpenFlow networks with ForCon. Digit. Investig.

2017, 20, S66–S74. [CrossRef]
31. Al-Hadhrami, Y.; Hussain, F.K. Real time dataset generation framework for intrusion detection systems in IoT. Future Gener.

Comput. Syst. 2020, 108, 414–423. [CrossRef]
32. Belenko, V.; Krundyshev, V.; Kalinin, M. Synthetic datasets generation for intrusion detection in VANET. In Proceedings of the

11th International Conference on Security of Information and Networks, Cardiff, UK, 10–12 September 2018; pp. 1–6.
33. Botta, A.; Dainotti, A.; Pescapé, A. Do you trust your software-based traffic generator? IEEE Commun. Mag. 2010, 48, 158–165.

[CrossRef]
34. Feng, W.c.; Goel, A.; Bezzaz, A.; Feng, W.c.; Walpole, J. TCPivo: A High-Performance Packet Replay Engine. In Proceedings of

the ACM SIGCOMM Workshop on Models, Methods and Tools for Reproducible Network Research , Karlsruhe, Germany, 25–27
August 2003; Association for Computing Machinery: New York, NY, USA, 2003; pp. 57–64. [CrossRef]

35. Wundsam, A.; Levin, D.; Seetharaman, S.; Feldmann, A. OFRewind: Enabling record and replay troubleshooting for networks.
In Proceedings of the USENIX Annual Technical Conference, Portland, OR, USA, 15–17 June 2011; USENIX Association: Berkeley,
CA, USA, 2001; pp. 327–340.

36. Parry, J.; Hunter, D.; Radke, K.; Fidge, C. A network forensics tool for precise data packet capture and replay in cyber-physical
systems. In Proceedings of the Australasian Computer Science Week Multiconference, Canberra, Australia, 2–5 February 2016 ;
pp. 1–10.

37. Emmerich, P.; Gallenmüller, S.; Antichi, G.; Moore, A.W.; Carle, G. Mind the gap-a comparison of software packet generators.
In Proceedings of the 2017 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS),
Beijing, China, 18–19 May 2017; pp. 191–203.

38. Gallenmüller, S.; Scholz, D.; Stubbe, H.; Carle, G. The pos framework: A methodology and toolchain for reproducible network
experiments. In Proceedings of the 17th International Conference on emerging Networking EXperiments and Technologies s
(CoNEXT ’21), Munich, Germany, 7–10 December 2021 ; pp. 259–266.

http://dx.doi.org/10.1145/1159913.1159928
http://dx.doi.org/10.1109/MIC.2002.1067738
http://dx.doi.org/10.1109/NetSoft48620.2020.9165325
http://dx.doi.org/10.1016/j.peva.2011.07.003
https://datatracker.ietf.org/doc/html/rfc2406
https://datatracker.ietf.org/doc/html/rfc2406
https://datatracker.ietf.org/doc/rfc4023/
http://dx.doi.org/10.1016/j.comnet.2009.10.017
http://dx.doi.org/10.3390/s21113773
http://www.ncbi.nlm.nih.gov/pubmed/34072301
http://dx.doi.org/10.1016/j.diin.2017.01.007
http://dx.doi.org/10.1016/j.future.2020.02.051
http://dx.doi.org/10.1109/MCOM.2010.5560600
http://dx.doi.org/10.1145/944773.944783


J. Cybersecur. Priv. 2022, 2 526

39. Network Functions Virtualisation (NFV) Release 3; Testing; Specification of Networking Benchmarks and Measurement Methods for
NFVI. Standard, European Telecommunications Standards Institute: Sophia Antipolis, France, 2020.

40. Pezzè, M.; Young, M. Software Testing and Analysis—Process, Principles and Techniques; Wiley: Hoboken, NJ, USA, 2007.
41. Vömel, S.; Freiling, F.C. Correctness, atomicity, and integrity: Defining criteria for forensically-sound memory acquisition. Digit.

Investig. 2012, 9, 125–137. [CrossRef]
42. Soltanian, M.R.K.; Amiri, I.S. Chapter 4—Results and Discussions. In Theoretical and Experimental Methods for Defending Against

DDOS Attacks; Soltanian, M.R.K., Amiri, I.S., Eds.; Syngress: Waltham, MA, USA, 2016; pp. 47–56. [CrossRef]
43. Li, T.; Farinacci, D.; Hanks, S.P.; Meyer, D.; Traina, P.S. Generic Routing Encapsulation (GRE). RFC 2784. Available online:

https://dl.acm.org/doi/10.17487/RFC2784 (accessed on 8 May 2022).
44. Dommety, G. Key and Sequence Number Extensions to GRE. RFC 2890. Available online: https://datatracker.ietf.org/doc/html/

rfc2890 (accessed on 8 May 2022).
45. Moch, C.; Freiling, F.C. Evaluating the forensic image generator generator. In Proceedings of the International Conference

on Digital Forensics and Cyber Crime, Dublin, Ireland, 26–28 October 2011 ; Springer: Berlin/Heidelberg, Germany, 2011;
pp. 238–252.

46. Tang, D.; Pham, C.; Chinen, K.i.; Beuran, R. Interactive cybersecurity defense training inspired by web-based learning theory. In
Proceedings of the 2017 IEEE 9th International Conference on Engineering Education (ICEED), Kanazawa, Japan, 9–10 November
2017; pp. 90–95.

47. Torten, R.; Reaiche, C.; Boyle, S. The impact of security awarness on information technology professionals’ behavior. Comput.
Secur. 2018, 79, 68–79. [CrossRef]

48. Pan, L.; Batten, L. Reproducibility of digital evidence in forensic investigations. In Proceedings of the 5th Annual Digital Forensic
Research Conference (DFRWS 2005), New Orleans, LA, USA, 17–19 August 2005; pp. 1–8.

49. Spiekermann, D. FAP: Design of an Architecture of a Forensic Access Point to Perform Online Access in a Forensically Sound
Manner. In Proceedings of the European Interdisciplinary Cybersecurity Conference, Rennes, France, 18 November 2020; pp. 1–6.

50. Kneusel, R.T. Random Numbers and Computers; Springer: Berlin/Heidelberg, Germany, 2018.
51. Gallenmüller, S.; Emmerich, P.; Raumer, D.; Carle, G. Moongen: Software Packet Generation for 10 Gbit and Beyond; USENIX NSDI:

Oakland, CA, USA, 2015.
52. Covington, G.A.; Gibb, G.; Lockwood, J.W.; McKeown, N. A packet generator on the NetFPGA platform. In Proceedings of the

17th IEEE Symposium on Field Programmable Custom Computing Machines, Napa, CA, USA, 5–7 April 2009; IEEE: New York,
NY, USA, 2009; pp. 235–238.

53. Kawashima, R.; Matsuo, H. Implementation and Performance Analysis of STT Tunneling Using vNIC Offloading Framework
(CVSW). In Proceedings of the 2014 IEEE 6th International Conference on Cloud Computing Technology and Science, Singapore,
15–18 December 2014; pp. 929–934.

54. Prechelt, L. An empirical comparison of c, c++, java, perl, python, rexx and tcl. IEEE Comput. 2000, 33, 23–29. [CrossRef]
55. John, W.; Tafvelin, S. Analysis of internet backbone traffic and header anomalies observed. In Proceedings of the 7th ACM

SIGCOMM conference on Internet measurement, San Diego, CA, USA, 24–26 October 2007; pp. 111–116.
56. Bittau, A. The fragmentation attack in practice. In Proceedings of the IEEE Symposium on Security and Privacy, Oakland, CA,

8–11 May 2005; IEEE Computer Society: Washington, DC, USA, 2005.
57. Mazurczyk, W.; Szary, P.; Wendzel, S.; Caviglione, L. Towards reversible storage network covert channels. In Proceedings of the

14th International Conference on Availability, Reliability and Security, Canterbury, UK, 26–29 August 2019; pp. 1–8.
58. Spiekermann, D.; Keller, J.; Eggendorfer, T. Towards Covert channels in cloud environments: A study of implementations in

virtual networks. In Proceedings of the International Workshop on Digital Watermarking, Magdeburg, Germany, 23–25 August
2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 248–262.

59. Sanders, C. Practical Packet Analysis, 3E: Using Wireshark to Solve Real-World Network Problems; No Starch Press: San Francisco, CA,
USA, 2017.

60. IEEE Std-802.3-2005 (Revision IEEE Std-802.3-2002 including all approved amendments); IEEE Standard for Information Technology—
Telecommunications and Information Exchange Between Systems—Local and Metropolitan Area Networks—Specific Require-
ments Part 3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifica-
tions. IEEE: Piscataway, NJ, USA, 2005. [CrossRef]

61. Ivanova, M.E.; Dushkin, A.V.; Bryushinin, A.O. Method of Fuzzing Testing of Firewalls Using the Gray Box Method. In
Proceedings of the 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus), St.
Petersburg and Moscow, Russia, 26–28 January 2021; p. 2340. [CrossRef]

http://dx.doi.org/10.1016/j.diin.2012.04.005
http://dx.doi.org/10.1016/B978-0-12-805391-1.00004-3
https://dl.acm.org/doi/10.17487/RFC2784
https://datatracker.ietf.org/doc/html/rfc2890
https://datatracker.ietf.org/doc/html/rfc2890
http://dx.doi.org/10.1016/j.cose.2018.08.007
http://dx.doi.org/10.1109/2.876288
http://dx.doi.org/10.1109/IEEESTD.2005.7297898
http://dx.doi.org/10.1109/ElConRus51938.2021.9396544

	Introduction
	Related Work
	Requirements
	Correctness
	RFC Compatibility
	Flexibility
	Adaptability
	Reproducability
	Randomisation
	Performance
	Precision
	Awareness
	Extending Encapcap

	Use Cases
	Training
	Testing
	Security
	Relation to Requirements

	Conclusions
	References

