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Abstract: In the very recent years, cybersecurity attacks have increased at an unprecedented pace,
becoming ever more sophisticated and costly. Their impact has involved both private/public com-
panies and critical infrastructures. At the same time, due to the COVID-19 pandemic, the security
perimeters of many organizations expanded, causing an increase in the attack surface exploitable by
threat actors through malware and phishing attacks. Given these factors, it is of primary importance
to monitor the security perimeter and the events occurring in the monitored network, according to
a tested security strategy of detection and response. In this paper, we present a protocol tunneling
detector prototype which inspects, in near real-time, a company’s network traffic using machine
learning techniques. Indeed, tunneling attacks allow malicious actors to maximize the time in which
their activity remains undetected. The detector monitors unencrypted network flows and extracts
features to detect possible occurring attacks and anomalies by combining machine learning and deep
learning. The proposed module can be embedded in any network security monitoring platform
able to provide network flow information along with its metadata. The detection capabilities of the
implemented prototype have been tested both on benign and malicious datasets. Results show an
overall accuracy of 97.1% and an Fl-score equal to 95.6%.

Keywords: passive network analysis; DNS tunneling; anomaly detection; machine learning;
deep learning

1. Introduction

Cybersecurity attacks keep increasing year over year at an unprecedented pace, be-
coming ever more sophisticated and costly [1,2]. The growth between 2021 and 2022 has
resulted in a rise of attacks” volume and impact on both private/public companies and
critical infrastructures. Companies comprise digital service providers, public administra-
tions, and governments and include businesses operating in the finance and health sectors.
In particular, service providers have experienced a raise of more than 15% in intrusions
(infamous is the case of Solarwinds [3]) compared to 2021 [1], a trend destined to grow in the
next years [4]. At the same time, due to the COVID-19 pandemic, the security perimeters of
many organizations expanded to cope with the new needs of remote working, causing an
increase in the attack surface exploitable by attackers [4]. The European Union Agency for
Cybersecurity estimates that more than 10 terabytes of data are stolen monthly from target
assets that are made unavailable, until a ransom is payed [1], while IBM calculates that the
average cost of these attacks is USD 4.54 M, increasing up to USD 5.12 M [2]. On the other
hand, malware attacks are still on the rise after the pause recorded during the pandemic,
and phishing continues to be the common attack vector for initial access [1].

Given these factors, it is of primary importance to monitor the security perimeter and
the events occurring in the network, according to a tested security strategy of detection
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and response. According to Gartner [4], newly proposed solutions should be automated
as much as possible, since human errors continue to play a crucial role in most security
breaches. In this context, machine learning turned out to be a natural choice for automated
analyses and prevention of this kind of threats [5]. The strength of machine learning lies in
its ability to identify hidden patterns and correlations in large volumes of raw data and
leverage such features to recognize previously unseen attacks. In this paper, we present
a protocol tunneling detector prototype which inspects—in near real-time—a company’s
network traffic using machine learning. Tunneling techniques allow attackers to create a
tunnel through a network by encapsulating traffic inside another protocol [6]; hence, it can
be used to let infected machines contact their corresponding command-and-control centers.
Thus, by abusing legitimate network traffic protocols, like DNS [7], the attacker maximizes
the time in which the infection remains undetected. In this work, we rely on a commercial
network security monitoring platform for detecting and investigating potentially malicious
or anomalous activities [8-11], but the proposed solution can be easily integrated into any
network security monitoring platform able to provide network flow information along with
its metadata. The platform we employ is responsible for collecting, processing network
flows, and dispatching them to one or more advanced cybersecurity analytics (ACAs) which
are able to recognize the signals of possible occurring attacks and anomalies. In this scenario,
the detector monitors only clear-text protocols, but it works jointly with an ACA responsible
for analyzing encrypted traffic [11]. Indeed, while some clear-text protocols are extensively
used (i.e.,, DNS), nowadays, the vast majority of Internet traffic is encrypted [12-16]: this
enabled threat actors to perform malware campaigns relying on HTTPS for delivering
malware and contacting command-and-control centers [17]. Just in 2020, 67% of malware
has been delivered via encrypted HTTPS connections [18]. Along with malware delivery,
malicious secure communications are used to exfiltrate data and steal sensitive information
from private and public companies [19-21]. While the analytics dealing with encrypted
traffic has been extensively described in [11], we extend this previous work by backing
up secure connection analysis to the monitoring of clear-text protocols. As mentioned
before, the latter can be used to discover the abuse of such protocols and signal network
packets’ contents which are not usually observed in the monitored network. The module
presented in this paper extracts a sequence of N bytes from each single network packet and
computes features associated to the collected stream of bytes. Through the combination of
deep learning and machine learning, each network packet is assigned to a specific network
protocol; if a connection exhibits anomalies (e.g., an interleaving of different protocols), a
security analyst is notified about the discovered inconsistency. More specifically:

¢  we implement a protocol tunneling detector prototype which analyzes, in near real-
time, a byte sequence of the packets flowing in the monitored network.
* the proposed prototype combines

—  an artificial neural network (ANN), based on [22], that accurately classifies
clear-text protocols and identifies possible anomalies in network connections;

—  asupport vector machine that is able to detect compressed/encrypted traffic
within unencrypted connections.

*  we design and implement an input sanitization module, which automatically removes
inconsistent data from models’ training sets to significantly increase the models’ per-
formance.

With respect to [22], we changed both the input byte sequences we provide to the ANN
and their sizes in bytes (as detailed in Sections 4.1 and 5). The performance of the proposed
approach has been evaluated on different datasets that either contain legitimate traffic or
simulate DNS tunneling attacks, which are the most common [7]. The obtained overall
accuracy of the proposed prototype is 97.1%, along with an Fl-score equal to 95.6%. It is
worth noting that, being the prototype trained with only legitimate traffic, it is potentially
able to identify zero-day attacks that deviate from the usual traffic observed in the network.
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The rest of the paper is organized as follows: Section 2 discusses related work, while
Section 3 introduces basic notions that will be later used to detail the proposed approach
(Section 4). The experimental evaluation is reported in Section 5, followed by Section 6,
where we discuss the strengths of our prototype and some key design choices we made.
Finally, Section 7 concludes the paper.

2. Related Work

Tunneling attacks are a specific typology of network attacks in which an attacker
creates a tunnel through a network by encapsulating traffic inside another protocol [6].
This allows the attacker to bypass traditional network security controls and potentially
exfiltrate sensitive information. Therefore, as discussed in Section 1, using clear-text
network protocols may pose a significant risk when these are abused by malicious actors.
In this context, DNS tunneling represents one of the most common techniques employed
for covertly exfiltrating data from a network, by encoding the data in DNS queries and
responses. Since this method is becoming increasingly prevalent, a growing body of
research aims at detecting and mitigating DNS tunneling attacks. In [23], the authors review
detection technologies from a perspective of rule-based and model-based methods with
descriptions and analyses of DNS-based tools and their corresponding features, covering
detection approaches developed from 2006 to 2020 by means of a comparative analysis.

Latest works in the area of DNS tunneling detection mainly cover three main categories,
i.e., detection approaches via machine learning, real-time detection approaches, and detection
of DNS tunneling variants (e.g., fast flux [9] and domain generation algorithms (DGAs) [8]).

Regarding the first group, researchers have recently proposed both machine and deep
learning algorithms for detecting DNS tunneling traffic, such as support vector machines
(SVMs), random forests and Convolutional Neural Networks (CNNs) and Recurrent Neu-
ral Networks (RNNs), respectively. Do et al. have proposed an SVM to identify DNS
tunneling attacks within mobile networks, by using features such as time, traffic source
and destination, and length of DNS queries [24]. Other researchers have proposed a ran-
dom forest classifier to detect this kind of attack [25]. They included in their features the
number of answers provided by a DNS response and the time between two consecutive
packets and responses for a specific domain. Random forests are also employed in hybrid
solutions like the one proposed in [26], where a 100-trees random forest is paired with a
CNN; they achieved good performance on their dataset, and it is worth noting that, during
their experiments on traffic collected from a real network, they were able to identify a
domain associated to a command-and-control center. In [27], the authors developed a novel
DNS tunneling detection method employing a Convolutional Neural Network (CNN) to
analyze DNS queries and responses and identify DNS tunneling activities. The proposed
approach is evaluated using a dataset of real-world DNS traffic and shows promising
results in detecting DNS tunneling attacks with high accuracy. The work of [28] applies
both Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs)
for detecting DNS tunneling traffic. The authors have shown that these algorithms can
effectively spot and identify malicious patterns.

The second group of studies has focused on developing real-time detection systems
for DNS tunneling. These systems use a combination of several detection techniques to
timely identify malicious DNS traffic [29]. In [30], the authors presented an overview of
principal countermeasures for DNS tunneling attacks.

Regarding the state of the art of approaches that analyze encrypted communications,
it has already been presented in [11].

The approach we present and evaluate in the next sections passively extracts both
sequential and statistical features from network flows to detect tunneling attacks in clear-
text protocols. As sequential features, we refer to those characteristics obtained from raw
flow sequences. Most works rely on similar features, like domain-based features [23,29,30],
including the domain name itself [27,28] and payload and volumetric features [23,30].
These can only be obtained when the entire packet has been reconstructed by a network
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analyzer. Differently, for each packet, we directly examine a specific sequence of bytes
without requiring to compute and store any packet-related metadata. In addition, we use
artificial neural networks, which are simpler deep learning models and, hence, require less
computing resources to be trained.

3. Background
3.1. DNS Tunneling

Protocol tunneling is an attack technique commonly used to maximize the time in
which the infection remains undetected in a targeted network. In this context, the DNS
protocol is usually abused in order to bypass security gateways and, then, to tunnel
malware and other data through a client-server model [7]. Figure 1 depicts a typical DNS
tunneling scenario: firstly, an attacker registers a malicious domain (e.g., attacker.com,
accessed on 17 October 2023) on a C&C center managed by her; at that point, assuming
that the attacker has already taken control over a machine inside the targeted network
and violated its security perimeter, the infected computer sends a query to the malicious
domain. Since DNS requests are typically allowed to move in and out of the network, the
query through the DNS resolver reaches the attacker’s C&C center, where the tunneling
program is installed. This established tunnel can be used either to exfiltrate data and
sensitive information or for other malicious purposes.

attacker.com
DNS Server

DNS request y -
<attacker.com- m w7
Compromised User DNS Server Network Security
Manitoring
Platform

Figure 1. A DNS tunneling example.

3.2. Support Vector Machines

The original formulation of support vector machines [31] (SVMs) is related to the reso-
lution of supervised tasks with the objective of finding a maximum margin hyperplane that
separates two or more classes of observations. In the last years, one-class SVMs have also
been shown to represent a suitable choice in the context of anomaly and outlier detection [32].
It is defined as a boundary-based anomaly detection method, which modifies the original
SVM approach by extending it in order to deal with unlabeled data. Like traditional SVMs,
one-class SVMs can also benefit from the so called kernel trick when extended to non-linearly
transformed spaces, by defining an appropriate scalar product in the feature space.

3.3. Artificial Neural Networks

Artificial neural networks (ANNSs) are deep learning models that have been success-
fully applied to a vast number of knowledge fields ranging from computing science to
arts [33]. They are internally constituted by groups of multiple neurons, which can be
thought of as mathematical functions that take one or more inputs. In ANNS, inputs are
only processed forward and are multiplied by weights within each neuron and summed
up to be then passed to an activation function, which becomes the neuron’s output. In
general, artificial neural networks consist of three different layers: input, hidden, and
output; the first layer accepts inputs, while the hidden layers process them to learn the
optimum weights. Finally, the output layer produces the result.

4. Protocol Tunneling Detector

The proposed architecture splits the burden of processing the traffic of a monitored
network into two different sub-modules: the first mainly deals with secure connections,
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while the second inspects unencrypted traffic. As previously discussed, the former analytics
has been detailed in [11]. At a glance, it detects possible anomalies occurring during an
SSL/TLS handshake between a client, located inside the network monitored by the software
platform outlined in Section 1, and an external server. The SSL/TLS detection analytics
examines information contained in X.509, SSL, and TLS exchanged protocol messages.
Instead, the second module looks for anomalies in unencrypted traffic regarding the
abuse of specific protocols (i.e., tunneling attack techniques). To provide these detection
capabilities, this prototype collects a sequence of bytes from each network packet and
inspects its content. The content, along with its features, is fed to a testing module, which
detects possible anomalies that are signaled to security analysts.

4.1. General Approach

Figure 2 reports the general structure of the proposed anomaly detection methodology,
which runs in near-real-time fashion. Indeed, a delay is introduced both by data processing
and anomaly evaluations that are not performed on the single packet but, rather, on the
entire connection, meaning that the approach has to wait to have enough information to
make a decision. Hence, for each packet observed in the live network traffic, the prototype
collects a sequence of N bytes belonging to the highest network protocol used in the
communication. As an example, in a secure connection which relies on HTTPS, the bytes
returned by the extraction process are the ones related to HTTPS, and not to the other
lower-layer protocols (e.g., TCP).

Extraction of N bytes from Training phase
each network packet

Training set Training on clear-text Artificial neural network  [——
protocols
Bit stream i
feature extraction

Training set SVM training Compression/encryption
balancing detector

Validation phase

I

Input sanitization
module

MELEN

il

) @ ion/encryption .
et detector
Labeled dataset
nrichment Models' hyper
tuning J ¢
T Artificial neural network

I

Labeled dataset |

Testing phase

Splitting in training and
validation sets .
> Grouplng by Artificial neural network
connection

No

{

Does the connection
contain packets classified with low
confidence?

No

Does the connection contain
more than one protocol?

Protocol tunneling
detection
Trigger alerts to
security analysts

1
1

Compression/encryption
detector

Are all the packets of the

SSL/TLS Analytics connection encrypted?

Figure 2. Protocol tunneling detector prototype overview.

From the obtained bit stream, we extract the following sequential features (i.e., those
features obtained from raw flow sequences):

e  binary representation of collected bytes
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*  bit-stream entropy and p-values obtained from statistical tests for random and pseu-
dorandom number generators for cryptographic applications [34]
*  statistical properties of the bit-stream hexadecimal representation

and we keep the protocol label associated to the bit stream itself. While the binary rep-
resentation of the N bytes is meant to label the protocol of each packet under analysis,
the sequential features allow to understand if the packet content is either compressed
or encrypted.

After feature extraction, the raw dataset constituted by streams of bits and their
corresponding labels is properly sanitized. Indeed, it is easily possible to lightly label
the network packets belonging to a connection by simply looking either at the ports or
at the connection metadata. However, this labeling may be prone to errors since it either
does not take into account potential custom configurations of services (e.g., SMB protocol
operating on a port different from 445) or intentional misuse of specific protocols by
attackers (as in the case of tunneling). Moreover, clear-text protocols may transfer packets
containing compressed data, whose presence could compromise the identification of the
correct network protocol. Hence, it is paramount to have a refined and clean dataset to let
models perform at their best. During our experimental evaluations, we have found out
that the accuracy of the trained models, after refining the raw dataset, has significantly
increased: 7% for the ANN and 20% for the compression/encryption detector.

To achieve this performance boost, we have specially implemented an input sanitiza-
tion module, shown in Figure 3. In this module, we combine unsupervised and supervised
support vector machines (SVMs) to clean the raw dataset: first, for each network pro-
tocol, we train a one-class SVM both on clear-text and encrypted protocols in order to
filter out outliers from the raw dataset. As an example, in protocols like HTTP and SMB,
requests and responses may contain either the content of (compressed) files or other types
of information that are not strictly correlated with the specific protocol communication
patterns. Thus, in order to exclude these outliers, we build one-class SVMs, one for each
different protocol, whose hyperparameters are properly tuned on the raw labeled dataset.
Trained models are then applied to identify outliers and remove them from the raw dataset.
This refined dataset is then used to train an SVM by applying a one-vs-all classification
for detecting packets which are either compressed or encrypted. This single classifier is
applied to remove both compressed and encrypted packets from clear-text protocols. It
is worth mentioning that, in proxied environments, encrypted packets may be present in
connections labeled as HTTP: indeed, in these scenarios, secure communications also pass
through the proxy, even if these connections are erroneously labeled as HTTP. As already
outlined in Section 3, one-class SVMs are successful in identifying outliers; for this reason,
we have extensively used them to sanitize our training sets with remarkable results.

Input sanitization

Bit stream Bit stream Ry et s Per protocol one-class
feature extraction label correction SVM training

Inaccurate protocol classifiers

!
i
i
|
One-class SVM ]
for DNS ] Outlier identification and

=
i
i

removal from raw Refined labeled raw dataset

labeled set

One-class SVM i
for SSL !

i

]

Removal of compressed/
from the
raw labeled dataset

SVM training for detecting Inaccurate compression/
compression and encryption encryption detector

Figure 3. Input sanitization module.
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This sanitized dataset is then split into training and validation sets to essentially
build two different models: (i) an artificial neural network (ANN) able to classify clear-
text protocols (e.g., DNS) and (ii) an SVM that is a compression/encryption detector for
identifying, respectively, compressed and encrypted packets. As later shown in Section 5,
after construction, the training set is considerably unbalanced towards secure protocols.
For this reason, we apply the SMOTE data augmentation technique [35] to increase the
samples of those protocols belonging to minority classes. During the test phase, performed
light labeling based on connection’s destination port is not taken into account, and the
resulting bit streams are grouped by connection. Each packet is given in input to a trained
ANN (whose training process is detailed in Section 4.3) and the analytics both verifies if,
in the connection, there are some packets that have been classified with low confidence
and more than one protocol is present. While in this latter case, the co-presence of multiple
protocols might signal a possible tunneling attack, when the ANN classifies packets with
low confidence, then, the connection could contain either compressed /encrypted packets
or packets whose byte sequences differ from the ones usually observed in the network.
To distinguish between these two cases, a more in depth verification is carried out: if the
connection is not entirely encrypted, meaning that it is a not a secure communication,
the prototype checks if the packets signaled as anomalous (i.e., with low confidence) by
the ANN are either encrypted or belongs to another protocol. If either encryption or
compression is detected, the anomaly is notified to security analysts. On the other hand,
if the entire connection is encrypted, it is collected and stored in a database, periodically
accessed in order to retrieve data and metadata about X.509, SSL, and TLS exchanged
protocol messages in order to be analyzed by the analytics described in [11]. As outlined
earlier, all the compression/encryption tests are performed using an SVM, capable of
correctly classifying network packets, but the proposed classifier could be substituted with
other valid alternatives, such as random forest models.

4.2. Feature Extraction

As discussed in Section 4.1, sequential features allow us to understand if the content
of a network packet is either compressed or encrypted. We rely on a statistical package
developed by the Information Technology Laboratory at the National Institute of Standards
and Technology, containing a set of 15 tests that measure the randomness of a binary
sequence [34]. These tests have been designed to provide a first step towards the decision
whether or not a generated binary sequence can be used in cryptographic applications,
namely if the sequence appears to be randomly generated. In other words, each new
bit of the sequence should be unpredictable. From a statistical point of view, each test
verifies if the sequence being under analysis is random. This null hypothesis can be either
rejected or accepted depending on the statistic value on the data exceeding or not a specific
value—called critical value—that is typically far in the tails of a distribution of reference.
Test reference distributions used in the NIST tests are the standard normal and the x? dis-
tributions. Even if the statistical package contains 15 tests, we use only 5 of them, because
the length N of the binary sequence we test does not meet the corresponding input size
recommendation in [34]. To each sequence, we apply the following tests: frequency within
a block, longest-run-of-ones in a block, serial test, approximate entropy, and cumulative
sums. In addition, in our experimental evaluations, we extract some statistical proper-
ties and compute the Shannon entropy metrics [36] that, combined with the previously
mentioned tests, have shown to improve the overall accuracy of the classification. As statis-
tical properties, the following features are extracted from the corresponding hexadecimal
representation & of a bit stream of N bytes:

*  number of different alphanumeric characters in # normalized over h length;
*  number of different letters in # normalized over & length;
* longest consecutive sequence of the same character in & normalized over & length.
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4.3. Input Sanitization

For accurately training machine learning models, the training set should be as much
“clean” as possible. In Section 4.1 we have already discussed how labeling based on connec-
tion metadata could be error prone either due to potential custom configurations of services,
intentional misuse of specific protocols by attackers, or network protocols encapsulating
compressed data. In addition, during our experimental evaluations, we have observed that
in some cases the employed traffic analyzer can assign an empty label or multiple labels to
a single network packet. While in the first case bit streams with empty labels can be easily
discarded for the training phase, in the presence of multi-labels, it is possible to assign a
unique correct label if a protocol that is monitored by the prototype itself exists among the
labels. As an example, if the assigned labels are NTLM, GSSAPI, SMB, and DCE_RPC, the
resulting label is SMB. For these reasons the very first step of the sanitization module is to
correct the multi-labels associated to bit streams and discard the empty ones. Then, we train
an ensamble of one-class SVMs, one for each protocol (see Figure 3): each different classifier
is properly tuned to filter out outliers from the raw dataset. As stated in Section 4.1, HTTP
and SMB requests or responses may contain either the content of (compressed) files or
other types of information that are not strictly correlated with the specific protocol com-
munication patterns. Trained models are then applied to identify these kinds of network
packets, and they are removed from the raw dataset. This preprocessed dataset is used to
train a supervised support vector machine, called compression/encryption detector, by
applying a one-vs-all classification for detecting packets which are either compressed or
encrypted. It is worth noting that all these models are still inaccurate because they are
trained on a “dirty” dataset. Hence, to further increase the quality of the labels and obtain
the final training set, the compression/encryption detector is fed with clear-text bit streams
to remove possible compressed /encrypted packets from clear-text protocols, as in the case
of proxied environments. The result of this sanitization process is a dataset which allows to
train and validate two accurate models: an artificial neural network for clear-text protocols
and an SVM for compressed and encrypted traffic.

4.4. Anomaly Detection

During the test phase (see Figure 2), bit streams are analyzed by the trained ANN. In
turn, the ANN flags three different cases as potential tunneling attacks and alerts security
analysts when these cases occur: (i) the high confidence detection of more than one protocol
in the same connection, (ii) the low confidence detection of one protocol for all the packets
in the same connection, and (iii) the labeling, both with high and low confidence, of one or
more protocols for the packets belonging to the same connection (as in the case of secure
protocols over DNS). As later specified in Section 5, in the ANN, the high/low confidence
threshold ¢ can be dynamically set. In any case, the detection of encrypted packets into a
clear-text connection generates alert notifications enriched with the information about the
presence of encrypted protocol messages. Possibly, notified alerts can be filtered whitelisting
source and/or destination IPs to reduce the false positives caused by well-known machines.

Hence, if some packets of the connection are classified with low confidence, the
corresponding bit stream’s sequential features (refer to Section 4.2) are given in input to
the compression/encryption detector. If all the packets contained in the connection are
encrypted, then the connection and its corresponding metadata are given in input to the
SSL/TLS analytics for further scrutiny [11]. On the contrary, if the connection contains
some compressed/encrypted packets or none of them, depending on the protocol, the
connection is considered anomalous. Indeed, it is worth noting that the combination of two
different protocols is not always a signal of an occurring attack: as already discussed, SMB
and HTTP connections can contain protocol-specific messages along with compressed data;
however, DNS messages interleaved with other protocols are highly suspicious. Finally,
since each single module of the proposed prototype has been trained only with legitimate
traffic, it is potentially able to spot zero-day attacks having features which are different
from the ones usually observed in the network.
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5. Experimental Evaluation

The proposed prototype and the experimental evaluations have been, respectively,
implemented and performed in Python. The size N we have chosen for the byte sequences,
extracted from network packets, is 52 bytes. More in detail, we retrieve the first 64 bytes
of the payload of each TCP/UDP packet, from which we remove the first 12 B: indeed, a
preliminary evaluation has shown that these first bytes had a very low variance in their
binary representation among different packets of the same protocol. The specific selection
of the byte sequence to extract has improved the accuracy of the trained neural network,
increasing its anomaly detection capabilities.

For the experimental evaluation of the proposed prototype, we collected both benign
and malicious datasets. The benign communication dataset contains a subset of legitimate
traffic observed in a real corporate network during a period of about 2 days. From this initial
dataset, we sample connections to start building the models training sets and the dataset
that will be used for testing. Figure 4 summarizes general statistics about the collected
training set in terms of packets, before and after sanitization, while Table 1 reports how the
test set of legitimate network traffic is characterized. The sanitization process makes the
training set, which is obviously unbalanced towards encrypted protocols, balanced: indeed,
after sanitization, the number of packets belonging to, respectively, clear-text and secure
protocols is almost even. It is worth noting that the balanced training set for the ANN,
containing DHCP, DNS, NTP, HTTP, and SMB packets, also comprises data belonging to
the KRB network protocol (i.e., encrypted): our experimental evaluations have shown that
during the test phase, the neural network performs better when it is also trained with
encrypted byte sequences. As an ANN, we use a Keras sequential model with three hidden
layers. The input layer accepts 416 bits (i.e., 52 B) and the output layer consists of six
neurons, one for each clear-text protocol and KRB. Regarding SVMs, we rely on the open-
source library scikit-learn. For completeness, we report in Table 2 the hyperparameters
we have used to train the different SVMs in the sanitization module; in addition, we also
report the hyperparameters we obtained by tuning the compression/encryption detector
in the validation phase. It is worth mentioning that the parameter ¢, in Table 2, is used
for each protocol one-class SVM as a threshold to filter only those outliers which have a
Shannon entropy greater than ¢.

The intuition behind this filtering is that byte sequences having high entropy do not
specifically belong to clear-text protocol communications; thus, they have to be discarded
from the training set.

B Before balancing

DHCP I After balancing

DNS

Network Protocol
w
=
m

17.6%

17.8%

17.8%

T T T T T T T T
0 2500 5000 7500 10,000 12,500 15,000 17,500 20,000
Packet Count

Figure 4. Packet distribution for each network protocol, before and after balancing.
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Table 1. Benign test set composition.

Statistics Count [(%)]
DNS packets 30,669 (1.10%)
SMB packets 65,944 (2.35%)
HTTP packets 262 (0.01%)
NTP packets 46 (0.002%)
DHCP packets 20 (0.001%)
KRB packets 741 (0.03%)
SFTP packets 69,158 (2.46%)
Not labeled packets 61,552 (2.20%)
SSL packets 2,571,608 (91.84%)
Distinct connections 51,459
Distinct source machines 758
Distinct dest. machines 1566

On the other hand, malicious datasets are constituted by packet captures (PCAPs)
shared by [37-39]. The former dataset contains three different types of DNS tunnels gener-
ated in a controlled environment, whose sizes are approximately 750 MB each. Tunneled
data contain, respectively, SFTP, SSH, and Telnet malicious protocol messages. Each sample
is made up of one single connection containing millions of DNS packets. It is reasonable to
note that such connections would either easily stand out to security analysts or be simply
detectable through well-known statistical approaches (e.g., outlier detection). Subsequently,
as stated in Section 4.1, our approach groups data by connection; therefore, a single mali-
cious packet is enough to flag the entire connection as anomalous. For the above reasons,
we have decided to split each sample in n different connections, composed by approxi-
mately 5000 DNS packets each. The size of the split, reported in Table 3, has been chosen
according to the size of the connections monitored in the controlled environment. The
second malicious dataset, instead, was born by the collaboration between the Bell Canada
company’s Cyber Threat Intelligence group and the Canadian Institute for Cybersecurity.

Table 2. Support vector machine hyperparameter settings.

Model Kernel 0% v t C
DHCP one-class SVM RBF 0.7 0.03 0.77 —
DNS one-class SVM RBF 0.7 0.03 0.77 —
NTP one-class SVM RBF 0.03 0.1 0.92 —
HTTP one-class SVM RBF 0.08 0.07 0.91 —
SMB one-class SVM RBF 0.06 0.08 0.77 —
KRB one-class SVM RBF 0.04 0.05 0.97 —
SFTP one-class SVM RBF 0.7 0.05 0.97 —
SSH one-class SVM RBF 0.7 0.05 0.97 —
SSL one-class SVM RBF 0.0001 0.0028 0.97 —
Compression/encryption detector RBF 0.01 — - 100

In this dataset, we only take into account DNS packets that, in their payloads, contain
exfiltrations of various types of files and we discard legitimate traffic. Moreover, it is worth
mentioning that all the packets contained in [38] have been truncated at capture time to 96 B;
this has required a slightly different approach to test these samples that will be discussed
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later in this Section. Finally, [39] is a single packet capture to test detection and alerting
capabilities of Packetbeat, Elastic’s network packet analyzer. Malicious packet captures
have been injected into the network security platform in order to be processed and analyzed
as ordinary traffic. Table 3 reports a summary of the malicious assembled datasets: for each
PCAP, we list the number of packets in the capture and which of these packets have been
successfully processed by the platform’s network analyzer (i.e., those packets whose size
is greater or equal than 64 B); in addition, Table 3 depicts the number of connections in
the PCAP and the number of them that have been identified as protocol tunneling attacks
(i.e., true positives TP). Finally, the true positive rate TPR of the proposed detector is
reported for each packet capture. Analogously, Table 4 reports the same information
contained in Table 3, but with reference to the test set described in Table 1. Being legiti-
mate traffic, the last two columns report the connections mistakenly classified as tunnels
(i.e., false positives FP) and the false positive rate FPR. The results of the evaluation,
reported in Tables 3 and 4, show a false positive rate and a true positive rate, respectively,
equal to 5.8% and 96.6%. The overall accuracy of the proposed prototype is 97.1%, while
the resulting F1-score is 95.6%.

We conclude this section by discussing how we slightly modified the proposed ap-
proach, used in the other datasets, to be compliant with [38]. Indeed, the DNS packets
contained in this dataset have been truncated during traffic acquisition, resulting in byte
sequences that do not have the same length. In order to solve this dataset generation
problem, we reduced all the DNS packets to a common length of 44 B, discarding the
shorter byte sequences and trimming the longer ones. The result of the filtering operation
is clearly shown in Table 3, where the number of processed PCAP packets is more than 54%
less than the ones received in input by the traffic analyzer.

Since the bit-stream lengths are different from the datasets [37,39], we retrained our
ANN to be fed with 44 B sequences. On the contrary, for this evaluation, we maintained the
same hyperparameters for the different SVMs, reported in Table 2, and the same threshold
¢, used in the other experiments. In particular, for all our experimental evaluations, we set ¢
t0 0.999999 in order to maximize the algorithm sensitivity and to compensate for the lesser
information provided by the processing of [38]. This explains why, in the experimental
evaluations, we were not able to achieve a very low false positive rate, as shown in Table 4.

Table 3. Malicious test set summary.

Tunnel Type No. of PCAP Packets  No. of Processed PCAP Packets No. of Connections TP TPR(%)
Telnet over DNS tunnel [37] 24M 22M 457 457 100%
SFTP over DNS tunnel [37] 2M 1M 209 209 100%
SSH over DNS tunnel [37] 2.8M 2.7M 545 545 100%
Light file exfiltration [38] 187,500 102,000 7617 7361 96.6%
Heavy file exfiltration [38] 1.34M 765,000 43,964 42,441 96.5%
Data exfiltration over Iodine 438 247 1 1 100%

DNS tunnel [39]

Table 4. Benign test set summary.

No. of PCAP  No. of Processed . o
Dataset Packets PCAP Packets No. of Connections FP FPR(%)

Legitimate traffic 54 M 2.8M 51,459 2966 5.8%

However, in context where a high number of false positives could be detrimental, ¢ can
be tuned to obtain a 0.5% false positive rate or lesser without losing accuracy on protocol
tunneling attacks.
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6. Discussion

One of the most relevant challenges in cybersecurity is the detection of zero-day
attacks, which can easily evade all the products based on signature or pattern detection.
The proposed approach leverages various characteristics that are known to perform well
when facing zero-day threats [40] like, for example, the absence of malicious samples in
the training set, the training set sanitization process, and the absence of signature-based
features and filters.

On the other hand, in Section 4.4, we suggested the usage of whitelists as a way of
reducing false positives. While in the experimental evaluation of Section 5, we intentionally
used them as little as possible (i.e., only 11 of the 758 machines in the benign test set were
actually whitelisted), a security analyst could customize such whitelists in order to filter out
machines that do not require monitoring. Adding domain knowledge to machine learning
algorithms in the form of data (in our context, machines) that should not be modeled or
monitored can not only reduce the amount of alerts that an analyst has to evaluate, but
also increase model performance. In conjunction with the integration of whitelists, the
number of false positives generated by our approach can be tuned in two other ways.
The first one is represented by the threshold ¢ which, as already described in Section 5,
controls the sensitivity of the ANN; in turn, it impacts the false positive rate because
the lower the minimum value of the ANN output confidence considered as “high”, the
harder to match the conditions we have defined for the connection to be an anomaly (see
Section 4.4). The second way of reducing false positives is a periodic retraining of proposed
models. As briefly described in Section 7, once the prototype will be included in a streaming
architecture, the training phase will be performed periodically. Real networks changes over
time, so keeping the models updated is the key to maintain an accurate modeling of what
is the current state of the network.

Finally, as already pointed out in Section 3, differently from other approaches, we
extract features directly from the raw traffic without relying on network analyzers that
reconstruct network traffic metadata. This allows to save computing resources and to speed
up the analyses. Furthermore, the use of bit-stream representation is independent from
protocol specific fields (e.g., DNS query field), making the prototype also able to detect
tunneling attacks on different clear-text protocols.

7. Conclusions

In this paper, we proposed a software prototype for detecting protocol tunneling
attacks in a monitored network. Relying on a combination of machine learning and deep
learning techniques, the proposed solution identifies anomalous connections that deviate
from the ones usually established in the network. Since machine learning models are only
built based on legitimate traffic, the proposed solution is therefore able to deal with zero-day
attacks, because malicious traffic is not required for the learning phase. The prototype has
been evaluated both on malicious and benign datasets: results show a very high accuracy
in detecting malicious samples and a low false positive rate on legitimate traffic.

As future work, we plan to optimize the algorithm through a deeper analysis on
how the choice of byte-stream length affects the computational time, in order to find a
value which guarantees the best trade-off between efficiency and accuracy. Indeed, in this
work, we mainly focused on accuracy. Secondly, we envision that the engineered prototype
will be integrated into a streaming architecture, where new data will be analyzed by the
proposed prototype as soon as they are collected to provide the fastest possible response.
In parallel, the models of the protocol tunneling detector are periodically retrained to
keep them up-to-date with possible deviations from the usual behaviour of the monitored
network. It is important to mention that the envisioned streaming architecture can always
count on a trained model to process incoming traffic during possible retrainings; old
models will be available until the new ones are ready. Finally, in Section 6, we discussed
the benefits of IP whitelisting filters. Once in production, the prototype can be easily
extended with other SOC-defined whitelists (e.g., whitelists regarding domains and/or
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autonomous systems), allowing security analysts to enrich the proposed detector with their
domain-specific knowledge, further reducing possible false positives and improving the
overall performance.
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