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Abstract: In this paper, we provide an account of analytical results related to the Tsallis thermody-
namics that have been the subject matter of a lot of studies in the field of high-energy collisions. After
reviewing the results for the classical case in the massless limit and for arbitrarily massive classical
particles, we compute the quantum thermodynamic variables. For the first time, the analytical
formula for the pressure of a Tsallis-like gas of massive bosons has been obtained. The study serves
both as a brief review of the knowledge gathered in this area, and as original research that forwards
the existing scholarship. The results of the present paper will be important in a plethora of studies in
the field of high-energy collisions including the propagation of non-linear waves generated by the
traversal of high-energy particles inside the quark-gluon plasma medium showing the features of
non-extensivity.

Keywords: Tsallis statistics; Tsallis thermodynamics; thermodynamic variables; integral representation

1. Introduction

Power-law distributions have been routinely used to describe particle yields in high-
energy collision physics. It has been observed that the pions, kaons, protons (and other
hadrons) originated in these collision events follow a power-law distribution in the trans-
verse momentum (pT) space. The power-law formula, utilized by experiments such as
STAR [1], PHENIX [2], ALICE [3] and CMS [4], use the following form of a power-law
transverse momentum distribution,

d2N
dpTdy

= pT
dN
dy

(n− 1)(n− 2)
nC(nC + m0(n− 2))

(
1 +

mT −m0

nC

)−n
, (1)

which has some correspondence with the form of the Tsallis transverse momentum distri-
bution, proposed by Cleymans and Worku in 2012 [5,6],

d2N
dpTdy

=
gV

(2π)2 pTmT cosh y
(

1 + (q− 1)
mT cosh y− µ

T

)− q
q−1

. (2)

In Equations (1) and (2), n, C, m0, V (volume), q (Tsallis parameter), T (Tsallis temper-

ature) and µ (chemical potential) are fit parameters, g is degeneracy, mT =
√

p2
T + m2 is the

transverse mass of a particle with the mass m and y is rapidity. These distributions can
be associated with the Tsallis statistical mechanics, developed by C. Tsallis in 1988 [7], a
statistics that has long been used to tackle a medium with fluctuation, long-range corre-
lation [8–11], small system size [12] and fractal structure [13]. It has been shown that the
Tsallis-like distribution, proposed in Refs. [5,6], obeys thermodynamic relations. Later on,
from the definition of the Tsallis entropy, the distribution (2) has been shown to be the
zeroth-order approximation of the exact Tsallis-like transverse momentum distribution
in the Tsallis-2 prescription [14] that was shown to be rather useful for the Large Hadron
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Collider (LHC) phenomenology [15–19]. The same distribution can also be obtained from
the q-dual statistics, proposed in Ref. [20]. In the papers that spearheaded the study of
Tsallis thermodynamics, there were comparisons between the Tsallis-like classical and
quantum distributions and their Boltzmann–Gibbs (BG) counterparts (see, e.g., [5]) which
is achieved once the q-parameter approaches unity.

A reader may also have felt an implicit necessity to be able to compare the thermo-
dynamic variables in the two formulations—Tsallis and BG. One might always take a
numerical approach to provide an answer, as the analytical formulae of the Tsallis ther-
modynamic variables were not widely available, as opposed to their Boltzmann–Gibbs
counterparts, which are expressible in terms of the modified Bessel functions. However,
this does not mean that there were no attempts to find analytical results. Lavagno already
in 2002 provided these expressions in terms of the q-modified Bessel functions of the second
kind [21]. However, the properties of this group of q-modified special functions is not
widely available and known to physicists. Hence, it was necessary to explore this question
further. Thermodynamic variables are important as their relationships form the equation
of state that is an important input to study, for example, the evolution of the quark-gluon
plasma (QGP) medium [22–28], propagation of non-linear waves in the QGP using the
hydrodynamic equation [29–35].

There was a renewed interest in this attempt during Professor Jean Cleymans’ visit to
India in 2015. This attempt was based on the observation that the Tsallis-like distributions
can bewritten using the Taylor’s series expansion in the increasing order of (q− 1)n, n ∈ Z≥
(Z≥ represents the set of non-negative integers). In a joint paper [36], the Tsallis thermody-
namic variables for an ideal gas of massive particles were explored. However, eventually it
was realized that the results were restricted by the fact that the Tsallis distribution was trun-
cated at O(q− 1)2. Such an early truncation led to restrictions in the phase space dictated
by the ratios involving q, T and the single-particle energy, Ep; see also [10]. Therefore, the
question of finding an unapproximated analytical expression of the Tsallis thermodynamic
variables was still open. In the meantime, one of the authors (T.B.) joined the group of Jean
Cleymans in Cape Town, and some progress ensued. Cleymans proved that the calculations
for the massless case can be performed analytically, and that was a breakthrough. This
was the inspiration behind another paper in collaboration with him [37] that elaborated
a method to analytically calculate the Tsallis thermodynamic variables for the massive
particles without an approximation (like the Taylor’s series expansion, or considering the
massless case) using the Mellin–Barnes contour integral representation of the Tsallis distri-
bution. It was found that the interesting features (like poles) that were missed in the Taylor
approximated calculations are intact in the massless as well as the massive case. In this
paper, we extend the existing knowledge to the quantum domain, and propose a method
to calculate analytical formulae of the quantum Tsallis thermodynamic variables. In the
present study, isotropic momentum distributions are considered. So, the results can also
be useful for the quark-gluon plasma medium formed in the early universe [38] or other
branches of physics that use isotropic distributions [39–43]. For a more realistic scenario to
treat high-energy collision physics, anisotropy may be considered but we reserve that for
future studies.

Being involved in such a journey with Jean Cleymans as a friend, philosopher and
guide is truly rewarding. The present paper serves as our tribute to the memory and
inspiring scientific curiosity of Jean Cleymans.

2. Review: Tsallis Thermodynamics: m = 0, µ = 0

The Tsallis thermodynamic variables can be written in terms of the Tsallis single-
particle distribution. The single-particle distributions can be obtained following three
different averaging schemes [44], which we name Tsallis-1, 2 and 3. These schemes dif-
fer in the definition of the mean values (e.g., the mean energy), utilized for the con-
strained maximization of the Tsallis entropy. In the first scheme, the mean is defined as
〈O〉 = ∑i piOi, in the second scheme 〈O〉 = ∑i pq

i Oi and in the third scheme
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〈O〉 = ∑i pq
i Oi/ ∑ pq

i , where {pi} are the probabilities of micro-states. It is worthwhile to
mention that following the previous studies [5,6], we follow the second averaging scheme.
The present paper focuses entirely on the analytical method to calculate the Tsallis thermo-
dynamic variables, and based on this prescription, it is relatively straightforward to extend
the calculations for other forms of the single-particle distributions. With this understanding,
we consider the following isotropic quantum single-particle distributions (positive sign for
fermions (f), negative sign for bosons (b)):

nb/f =
1(

1 + (q− 1) Ep−µ
T

) q
q−1 ± 1

, (3)

where Ep =
√

p2 + m2 is the single-particle energy of a particle with the mass, m, and the
three-momentum, p (with magnitude p). This distribution is not entirely phenomenological
because it can be obtained (after certain approximations) from the constrained maximization
of the Tsallis entropy, as shown in [45]. The distribution (3) is similar to (but not exactly
the same as) the one, proposed in [46,47]. For the sake of completeness, we also quote the
popular classical (Maxwell–Boltzmann, MB) Tsallis-like single-particle distribution that
gives rise to Equation (2):

nMB =

(
1 + (q− 1)

Ep − µ

T

)− q
q−1

. (4)

With the help of the single-particle distributions (ns; s = b, f, MB), the thermodynamic
variables such as the pressure, P, the mean energy, E, and the mean number of particles, N,
can be expressed as follows:

P = g
∫

d3 p
(2π)3

p2

3 Ep
ns; E = gV

∫
d3 p
(2π)3 Ep ns; N = gV

∫
d3 p
(2π)3 ns. (5)

2.1. Classical Case

In this Section we tabulate the results for the classical (Tsallis Maxwell–Boltzmann)
case in the massless approximation. The pressure, P, the energy density, ε = E/V, and the
number density, ρ = N/V, with µ = 0 are given by [37]

P =
gT4

6π2
1

(2− q)(3/2− q)(4/3− q)
(6)

ε =
gT4

2π2
1

(2− q)(3/2− q)(4/3− q)
= 3P (7)

ρ =
gT3

2π2
1

(2− q)(3/2− q)
. (8)

Interestingly, from the above expressions (e.g., for P), the first pole of q appears at
q = 4/3, which is close to 1.3 [48]. This puts an upper-bound on the q value that is a
parameter to be determined from the experimental data. Experimental observations indeed
show that q values do obey this upper-bound which is imposed because of the finite values
of the thermodynamic variables. However, other considerations may further shrink the
range [49]. It is also noteworthy that the upper-bound of q (denoted as q(D)

max), obtained
from the thermodynamic considerations, changes with the dimension of the system as
q(D)

max < 1 + 1/(D− 1). Hence, for D = 4, the value of q(D)
max is 4/3.

2.2. Quantum Case

Tsallis quantum thermodynamic variables in the massless limit are given by the
following closed analytic formulae; see Ref. [34] for deatils.
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2.2.1. Bosons

Pb =
gT4

6π2(q− 1)3q

[
3ψ(0)

(
3
q
− 2
)
+ ψ(0)

(
1
q

)
− 3ψ(0)

(
2
q
− 1
)
− ψ(0)

(
4
q
− 3
)]

, (9)

εb =
gT4

2π2(q− 1)3q

[
3ψ(0)

(
3
q
− 2
)
+ ψ(0)

(
1
q

)
− 3ψ(0)

(
2
q
− 1
)
− ψ(0)

(
4
q
− 3
)]

, (10)

ρb =
gT3

2π2(q− 1)2q

[
2ψ(0)

(
2
q
− 1
)
− ψ(0)

(
3
q
− 2
)
− ψ(0)

(
1
q

)]
. (11)

2.2.2. Fermions

Pf =
gT4

6π2(q− 1)3q

[
3Φ
(
−1, 1,

2
q
− 1
)
− 3Φ

(
−1, 1,

3
q
− 2
)
+ Φ

(
−1, 1,

4
q
− 3
)

−Φ
(
−1, 1,

1
q

)]
, (12)

εf =
gT4

2π2(q− 1)3q

[
3Φ
(
−1, 1,

2
q
− 1
)
− 3Φ

(
−1, 1,

3
q
− 2
)
+ Φ

(
−1, 1,

4
q
− 3
)

−Φ
(
−1, 1,

1
q

)]
, (13)

ρf =
gT3

2π2(q− 1)2q

[
−2Φ

(
−1, 1,

2
q
− 1
)
+ Φ

(
−1, 1,

3
q
− 2
)
+ Φ

(
−1, 1,

1
q

)]
. (14)

Here ψ(0)(z) is the digamma function, and Φ(a, b, z) is Lerch’s transcendent [50], both
having the poles at z = 0. One observes that, similar to the classical case, the first pole
in the thermodynamic variables (for example, pressure) appears at q = 4/3. Hence, the
upper-bound q < 4/3 is still relevant. Before moving to the next Section, let us comment
that the above results can be extended to treat very light particles, as discussed in Ref. [34].
It is possible to obtain the O(m2T2) correction to the above approximated results, which
may also work for the light quarks such as up and down.

3. Review and New Results: Tsallis Thermodynamics: m 6= 0, µ = 0

In this Secton, we quote the closed analytical formula of the pressure in a gas of
massive classical and quantum particles without utilizing any approximation. The classical
case has already been considered earlier [37]. However, we are not aware of any other
results for the quantum case with arbitrarily massive particles (albeit results are available
for slightly massive particles). In this Secton, we only quote the obtained results for classical
and quantum (boson) particles. Detailed mathematical steps for obtaining quantum results
are described in Section 4.

3.1. Classical Case (Review)

In this Section, we tabulate analytical results of classical Tsallis thermodynamics for
arbitrarily massive particles. The calculation involves an integral representation of a power-
law function that appears in the Tsallis statistics. Due to the nature of the integrals involved,
the convergence conditions lead to two separate formulae for the thermodynamic variables
for two regions q > 1 + T/m, which we call the “upper region” and q ≤ 1 + T/m, which
we call the “lower region”. The origin of these regions are explained in Section 4, where the
quantum case is considered.
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3.1.1. Upper Region: q > 1 + T/m

The analytical expression valid for the upper region is:

PU =
g m4

16π
3
2

(
T

(q− 1) m

) q
q−1

Γ
(

4−3q
2(q−1)

)
Γ
(

2q−1
2(q−1)

) 2F1

(
q

2(q− 1)
,

4− 3q
2(q− 1)

,
1
2

;
T2

(q− 1)2m2

)

− 2T
(q− 1)m

×
Γ
(

3−2q
2(q−1)

)
Γ
(

q
2(q−1)

) 2F1

(
2q− 1

2(q− 1)
,

3− 2q
2(q− 1)

,
3
2

;
T2

(q− 1)2m2

), (15)

where Γ(z) is the Gamma function, and 2F1(a, b, c; z) is the hypergeometric function [50].

3.1.2. Lower Region: q ≤ 1 + T/m

The analytical expression valid for the lower region is:

PL =
g m4

2
q

q−1 π
3
2

 (q− 1)2 (3− q) Γ
(

1
q−1

)
(4− 3q) (3− 2q) (2− q)Γ

(
1+q

2(q−1)

)


× 2F1

(
2q− 1

2(q− 1)
,

q
2(q− 1)

,
3− q

2(q− 1)
, 1− (q− 1)2 m2

T2

)
. (16)

It is worth noticing that both the expressions in general require q < 4/3 for the consistency
of the framework apart from the (upper or lower) limits, based on the convergence criterion.

3.2. Quantum Case: Bosons (New Results)

In this Section, we tabulate the newly found analytical results of the Tsallis thermody-
namics for arbitrarily massive bosons. In comparison with the classical case, there is an
extra step in the quantum calculations that entails expressing the quantum single-particle
distributions as a superposition of an infinite number of classical distributions. However,
all the other procedures are the same as those in the classical case. In the quantum case
also, two analytical formulae for the upper and the lower regions are obtained.

3.2.1. Upper Region: q > 1 + T/m

PU,b =

s0

∑
s=1

gm4

32π2Γ
(

qs
q−1

)( 2T
m(q− 1)

) qs
q−1
[

Γ
(

qs
2(q− 1)

)
Γ
(

qs
2(q− 1)

− 2
)

× 2F1

(
qs

2(q− 1)
,

qs
2(q− 1)

− 2;
1
2

;
T2

m2(q− 1)2

)
− 2T

m(q− 1)
Γ
(

qs− 3q + 3
2(q− 1)

)
× Γ

(
qs + q− 1
2(q− 1)

)
2F1

(
qs− 3q + 3

2(q− 1)
,

qs + q− 1
2(q− 1)

;
3
2

;
T2

m2(q− 1)2

)]
. (17)

3.2.2. Lower Region: q ≤ 1 + T/m

PL,b =
gT4

16(q− 1)4

s0

∑
s=1

2 F̃1

(
qs

2(q− 1)
− 2,

qs
2(q− 1)

− 3
2

;
qs

q− 1
− 3

2
; 1− m2(q− 1)2

T2

)

× sec
(

πqs
q− 1

)[ Γ
(

qs−4q+4
2(q−1)

)
Γ
(

q(s−5)+5
2(1−q)

)
Γ
(

qs
2(1−q) +

1
2

)
Γ
(

qs
2(q−1) +

1
2

)
−

Γ
(

qs
2(q−1) −

3
2

)
Γ
(

qs
2(q−1)

)
Γ
(

qs
2(1−q) + 1

)
Γ
(

qs
2(1−q) + 3

)]. (18)
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Here, the regularized hypergeometric function 2 F̃1(a, b; c; z) = 2F1(a, b; c; z)/Γ(c). Ide-
ally, s0 is a very large number, depending on the desired agreement between the numerical
and analytical results. Equations (17) and (18) (also repeated in Equations (30) and (31)
below) are the main results of the paper.

4. Methodology: The Pressure of a Gas of Bosons Following the Tsallis Distribution

From Equation (5), the pressure for the bosons is:

Pb = g
∫

d3 p
(2π)3

p2

3 Ep
nb, (19)

where nb is the Tsallis Bose–Einstein single-particle distribution given by Equation (3). The
spherical symmetry of the integrand implies that:

Pb =
g

6π2

∫ ∞

0

p4√
m2 + p2

1[
1 + (q− 1)

√
m2+p2

T

] q
q−1 − 1

dp, (20)

where µ = 0 is set. Now, we describe the steps to obtain Equations (17) and (18).

4.1. Rescaling the Integration Variable

To simplify the calculations, the k = p/m is defined, so that the pressure reads:

Pb =
gm4

6π2

∫ ∞

0

k4
√

1 + k2

1[
1 + m(q−1)

T

√
1 + k2

] q
q−1 − 1

dk. (21)

4.2. Infinite Summation

Now, one observes that, similar to the Boltzmann–Gibbs case, the Tsallis quantum
distributions can be expressed in terms of an infinite summation of the Tsallis MB distributions:

1[
1 + m(q−1)

T

√
1 + k2

] q
q−1 ± 1

=

∞

∑
s=1

(−1)a(s+1)
(

1 +
m(q− 1)

T

√
1 + k2

)− qs
q−1

, (22)

where a = 0 (a = 1) yields the bosonic (fermionic) distribution. This step allows us to
write down the Tsallis pressure in a bosonic gas in a form similar to its classical counterpart,
except for a summation sign in front and a power index s in the denominator. Hence,
one obtains:

Pb =
gm4

6π2

∞

∑
s=1

∫ ∞

0

k4
√

1 + k2

1(
1 + m(q−1)

T

√
1 + k2

) qs
q−1

dk. (23)

4.3. Contour Integral Representation

Next, we use the Mellin–Barnes contour representation [51–53] of the power-law
function appearing in the integrand in Equation (23), and follow the procedure, described
in Ref. [37]. A power-law function can be written as a Mellin–Barnes contour integration:

1
(X + Y)λ

=
1

2πi

∫ ε+i∞

ε−i∞

Γ(−z)Γ(z + λ)

Γ(λ)
Yz

Xλ+z dz, (24)
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where Re(λ) > 0 and Re(ε) ∈ (−Re(λ), 0), which is the case here since λ = qs/(q− 1) >
0 ⇔ q, s ≥ 1. Moreover, one can take X = m(q − 1)

√
1 + k2/T and Y = 1, or other

combinations, all of which yield the following expression:

Pb =
gm4

12π3i

∞

∑
s=1

(
T

m(q− 1)

) qs
q−1 ∫ ε+i∞

ε−i∞

Γ(−z) Γ
(

z + qs
q−1

)
Γ
(

qs
q−1

) (
T

m(q− 1)

)z

dz

×
∫ ∞

0
k4(1 + k2)

− z
2−

1
2−

qs
2(q−1) dk. (25)

After performing the k-integration, the pressure reads:

Pb =
gm4

32π
5
2 i

∞

∑
s=1

(
T

m(q− 1)

) qs
q−1 ∫ ε+i∞

ε−i∞

Γ(−z)Γ
(

z + qs
q−1

)
Γ
(

qs
2(q−1) +

z
2 − 2

)
Γ
(

qs
q−1

)
Γ
(

qs
2(q−1) +

z
2 + 1

2

)
×
(

T
m(q− 1)

)z

dz. (26)

The convergence of the scaled momentum integration requires Re(z) ≥ 0.

4.4. Wrapping Contour Clockwise: q > 1 + T/m

To identify the poles, in order to obtain the residues of the integrand, the transforma-
tion z → 2z is made along with the use of the Legendre’s duplication formula [54] and
Cauchy’s residue formula [55], so that the pressure now reads:

Pb =
gm4

64π
7
2 i

∞

∑
s=1

2
qs

q−1

Γ
(

qs
q−1

)( T
m(q− 1)

) qs
q−1 ∫ ε+i∞

ε−i∞
Γ(−z)Γ

(
−z +

1
2

)

× Γ
(

z +
qs

2(q− 1)

)
Γ
(

qs
2(q− 1)

+ z− 2
)(

T
m(q− 1)

)2z

dz

=(−2πi)× gm4

64π
7
2 i

∞

∑
s=1

2
qs

q−1

Γ
(

qs
q−1

)( T
m(q− 1)

) qs
q−1

×
∞

∑̀
=0

{
Res(1)[ f (z), z = `] + Res(2)

[
f (z), z = `+

1
2

]}
, (27)

where f (z) is defined as:

f (z) ≡ Γ(−z)Γ
(

1
2
− z
)

Γ
(

qs
2(q− 1)

+ z
)

Γ
(

qs
2(q− 1)

+ z− 2
)(

T
m(q− 1)

)2z
,

and the contour is wrapped clockwise so that residues receive a contribution only from the
poles of Γ(−z) at the positive integers (Res(1)) including zero, and the poles of Γ(−z + 1/2)
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at the positive half-integers (Res(2)). This clockwise wrapping of contour imposes the
convergence condition q > 1 + T/m when z→ ∞. Res(1) and Res(2) are defined as follows:

Res(1) =Res
[

f (z), {z = ` 3 ` ∈ Z≥}
]

=
(−1)`+1

(
T

m(q−1)

)2`

`!
Γ
(

1
2
− `

)
Γ
(
`+

qs
2(q− 1)

− 2
)

× Γ
(
`+

qs
2(q− 1)

)
(28)

Res(2) =Res
[

f (z), {z = `+
1
2
3 ` ∈ Z≥}

]
=
(−1)`+1

(
T

m(q−1)

)2`+1

`!
Γ
(
−`− 1

2

)
Γ
(
`+

qs
2(q− 1)

− 3
2

)
× Γ

(
`+

qs
2(q− 1)

+
1
2

)
. (29)

In substituting Equations (28) and (29) into Equation (27), the infinite summation over
` can be expressed in terms of the hypergeometric function 2F1 [50], and the pressure in
the region q > 1 + T/m, given by Equation (17), reads:

PU,b =

s0

∑
s=1

gm4

32π2Γ
(

qs
q−1

)( 2T
m(q− 1)

) qs
q−1
[

Γ
(

qs
2(q− 1)

)
Γ
(

qs
2(q− 1)

− 2
)

× 2F1

(
qs

2(q− 1)
,

qs
2(q− 1)

− 2;
1
2

;
T2

m2(q− 1)2

)
− 2T

m(q− 1)
Γ
(

qs− 3q + 3
2(q− 1)

)
× Γ

(
qs + q− 1
2(q− 1)

)
2F1

(
qs− 3q + 3

2(q− 1)
,

qs + q− 1
2(q− 1)

;
3
2

;
T2

m2(q− 1)2

)]
, (30)

when the infinite summation is truncated at s = s0.

4.5. Analytic Continuation: q ≤ 1 + T/m

Instead of keeping the dimension of the momentum space arbitrary and analytically
continuing the integrand prior to wrapping (since it does not lead to a closed form), the
result, obtained in Equation (30) using Ref. [50], is analytically continued, and one obtains
the following result in the complementary (lower) region:

PL,b =
gT4

16(q− 1)4

s0

∑
s=1

2 F̃1

(
qs

2(q− 1)
− 2,

qs
2(q− 1)

− 3
2

;
qs

q− 1
− 3

2
; 1− m2(q− 1)2

T2

)

× sec
(

πqs
q− 1

)[ Γ
(

qs−4q+4
2(q−1)

)
Γ
(

q(s−5)+5
2(1−q)

)
Γ
(

qs
2(1−q) +

1
2

)
Γ
(

qs
2(q−1) +

1
2

)
−

Γ
(

qs
2(q−1) −

3
2

)
Γ
(

qs
2(q−1)

)
Γ
(

qs
2(1−q) + 1

)
Γ
(

qs
2(1−q) + 3

)], (31)

where the regularized hypergeometric function, 2 F̃1(a, b; c; z), is defined as for Equation (18).

5. Numerical Results and Discussion

Here, some comments about the comparison of numerical results with the results,
obtained from the analytical formulae, are in order. Let us check the massless limit first.
We notice that the final result works rather well for the case of massless particles (m = 0),
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as it should. To check this we substitute numerical values in Equation (18) and compare
the result with the numerical value of the integral in Equation (20). We take, for example,
q = 1.2, g = 1, T = 0.08 GeV, m = 10−7 GeV, such that q = 1.2 � 1 + T/m. This
condition implies that Equation (31) was used. For s0 = 20, both the numerical and the
analytical results (obtained also from Equation (9)) agree up to eleven significant digits and
the value of pressure is 2.20098 × 10−5 GeV4.

Next, let us consider light particles like the positively-charged pions (of the mass of
0.140 GeV), produced in proton-proton (p-p) collisions at the LHC. We observe that for
q = 1.154, g = 1 and T = 0.0682 GeV (values taken from [5]), the value of s0 significantly
differs from the massless case when we consider the pions. For the pions (q = 1.154 <
1 + T/m = 1.487), a similar agreement between the analytical and numerical results can be
reached for s0 = 5 and the pressure turns out to be 5.4318 × 10−6 GeV4.

We also consider more massive particles like the protons (of the mass of 0.938 GeV),
produced in p-p collisions at the LHC. For q = 1.107, g = 2 and T = 0.073 GeV (the values
are taken from [5]), a similar agreement between the numerical and analytical results, both
of which are 3.5597× 10−7 GeV4 , can be obtained including just two terms, i.e., s0 = 2. It
is noteworthy that the protons are fermions, and the corresponding formula for pressure
can be obtained by multiplying (−1)s+1 with each term of, for example, Equation (30), as
q = 1.107 > 1 + T/m ≈ 1.078. In these examples, the heavier the particle, the faster the
infinite summation convergence. This trend is repeated when we change only mass, while
keeping q and T values unaltered.

For a gas of positively charged pions produced at the RHIC (Relativistic Heavy Ion
Collider) (center-of-mass energy,

√
sNN = 200 GeV, Au-Au collisions, q = 1.090 and

T = 0.117 GeV [56]), the pressure is found to be 3.0089 × 10−5 GeV4. Considering all the
charged particles produced at the LHC (

√
sNN = 2760 GeV Pb-Pb collisions, q = 1.135 and

T = 0.096 GeV [19]), the pressure is found to be 6.5733 × 10−5 GeV4

We conclude from the comparison of numerical and analytical results that the latter
works considerably well. We hope that the main results, reported in this paper, will suffi-
ciently reduce the overall computation time. We have checked that for some of the above
examples, computation time is almost ten times reduced when the analytical formulae
are used.

6. Summary, Conclusions and Outlook

In summary, we presented a brief review of the studies, related to the Tsallis thermo-
dynamics, that may be important in the further studies of the quark-gluon plasma and
many other systems that display fluctuation and long-range correlation. We also presented
a detailed description of how to extend those existing findings to the quantum domain
(Equations (30) and (31)). We used the contour integral representation of the power-law
function and followed the ritual proposed in [37], after expressing the quantum distribu-
tions in terms of an infinite summation of classical MB distributions. We elaborated the
analytical computation of the pressure of a bosonic gas following the Tsallis statistics, and
the final result can be expressed as a summation that appears from the superposition of
classical distributions. However, we noticed that in the examples discussed, only a finite
number of terms are needed, and the number of required terms for convergence decreases
with mass (when q, and T, are kept unaltered). The integral representation, also known as
the Mellin–Barnes representation, has extensively been used in the studies involving loop
calculations in quantum field theory [53]. Hence, in a way, this is one of the examples where
techniques established in one field of research benefit another. Although not mentioned
in the paper, extension to the fermionic case is straightforward. The only difference in
summation comes owing to a factor (−1)s+1 appearing with each term. In this paper, we
provided the results only of the pressure of a Tsallis-like bosonic gas. Other thermodynamic
variables of such a system can be calculated by appropriately differentiating pressure.
Extension to the µ 6= 0 case can be performed with a proper identification of the variables
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X and Y in Equation (24). Moreover, in this case, the convergence condition for clockwise
wrapping is modified [37].

There may be many different applications of the present study but we would like to
mention a particular field that has caught some recent interest. Of late, there have been
studies [34,35] reporting the propagation of non-linear waves in the quark-gluon plasma
fluid (both ideal and viscous) in which constituents follow the Tsallis-like distributions. In
studies [34,35], a Tsallis-like MIT bag equation of state, considering massless (or very light)
particles, was used. It will be interesting to modify the equation of state incorporating the
present findings. It will also be interesting to extend the study for hadronic gases. It has
been shown [14] that the exact Tsallis single-particle distribution is expressed in terms of a
series summation, and the distributions, used in Equation (3) are only the approximations.
For low-energy collisions (e.g., in the future experiments at the NICA (Nuclotron-based
Ion Collider fAcility) and FAIR (Facility for Antiproton and Ion Research) facilities, terms
beyond the one, used in the present paper, may be important. It will be worthwhile to
investigate how those additional terms would affect the present results, and hence, the
studies utilizing them.

Author Contributions: Conceptualization, T.B.; methodology, T.B. and A.H.; software, T.B. and A.H.;
validation, T.B. and A.H.; formal analysis, T.B. and A.H.; investigation, T.B. and A.H.; writing—
original draft preparation, T.B.; writing—review and editing, A.H.; supervision, T.B. All authors have
read and agreed to this version of the manuscript.

Funding: This research was partially funded by the joint project between the JINR (Joint Institute
for Nuclear Research, Dubna, Russia) and IFIN-HH (Horia Hulubei National Institute for R&D in
Physics and Nuclear Engineering, Ilfov, Romania).

Data Availability Statement: No new data have been generated.

Acknowledgments: A.H. acknowledges all-round support from Alia Dawood during this work
and stimulating discussions with Mohamed Elekhtiar and Mohamed Al Begaowe. T.B. gratefully
acknowledges discussions with Sylvain Mogliacci regarding the intricacies of the Mellin–Barnes
representation used in the paper as well as generous support from the University of Cape Town
where the foundation of this work was prepared. Authors thank Rajendra Nath Patra for providing
fit parameter values of RHIC data.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Abelev, B.I.; et al. [STAR Collaboration]. Strange particle production in p + p collisions at

√
s = 200 Gev. Phys. Rev. C 2007,

75, 064901. [CrossRef]
2. Adare, A.; et al. [PHENIX Collaboration]. Identified charged hadron production in p + p collisions at

√
s = 200 Gev and 62.4 Gev.

Phys. Rev. C 2011, 83, 064903. [CrossRef]
3. Aamodt, K.; et al. [The ALICE Collaboration]. Production of pions, kaons and protons in pp collisions at

√
s = 900 GeV with

ALICE at the LHC. Eur. Phys. J. C 2011, 71, 1655. [CrossRef]
4. Khachatryan, V.; et al. [CMS Collaboration]. Strange particle production in pp collisions at

√
s = 0.9 and 7 TeV. J. High Energy

Phys. 2011, 5, 64. [CrossRef]
5. Cleymans, J.; Worku, D. The Tsallis distribution in proton-proton collisions at

√
s = 0.9 TeV at the LHC. J. Phys. G Nucl. Part.

Phys. 2012, 39, 025006. [CrossRef]
6. Cleymans, J.; Worku, D. Relativistic thermodynamics: Transverse momentum distributions in high-energy physics. Eur. Phys. J. A

2012, 48, 160. [CrossRef]
7. Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 52, 479–487. [CrossRef]
8. Wilk, G.; Włodarczyk, Z. Interpretation of the Nonextensivity Parameter q in Some Applications of Tsallis Statistics and Lévy

Distributions. Phys. Rev. Lett. 2000, 84, 2770. [CrossRef]
9. Wilk, G.; Włodarczyk, Z. Multiplicity fluctuations due to the temperature fluctuations in high-energy nuclear collisions. Phys.

Rev. C 2009, 79, 054903. [CrossRef]
10. Osada, T.; Wilk, G. Nonextensive hydrodynamics for relativistic heavy-ion collisions. Phys. Rev. C 2009, 77, 044903. [CrossRef]
11. Biro, T.S.; Molnar, E. Fluid dynamical equations and transport coefficients of relativistic gases with non-extensive statistics. Phys.

Rev. C 2012, 85, 024905. [CrossRef]
12. Birö, T.S.; Barnaföldi, G.G.; Van, P. Quark-gluon plasma connected to finite heat bath. Eur. Phys. J. A 2013, 49, 110. [CrossRef]

http://doi.org/10.1103/PhysRevC.75.064901
http://dx.doi.org/10.1103/PhysRevC.83.064903
http://dx.doi.org/10.1140/epjc/s10052-011-1655-9
http://dx.doi.org/10.1007/JHEP05(2011)064
http://dx.doi.org/10.1088/0954-3899/39/2/025006
http://dx.doi.org/10.1140/epja/i2012-12160-0
http://dx.doi.org/10.1007/BF01016429
http://dx.doi.org/10.1103/PhysRevLett.84.2770
http://dx.doi.org/10.1103/PhysRevC.79.054903
http://dx.doi.org/10.1103/PhysRevC.77.044903
http://dx.doi.org/10.1103/PhysRevC.85.024905
http://dx.doi.org/10.1140/epja/i2013-13110-0


Physics 2022, 4 810

13. Deppman, A. Thermodynamics with fractal structure, Tsallis statistics, and hadrons. Phys. Rev. D 2016, 93, 054001. [CrossRef]
14. Parvan, A.S.; Bhattacharyya, T. Hadron transverse momentum distributions of the Tsallis normalized and unnormalized statistics.

Eur. Phys. J. A 2020, 56, 72. [CrossRef]
15. Cleymans, J.; Lykasov, G.I.; Parvan, A.S.; Sorin, A.S.; Teryaev, O.V.; Worku, D. Systematic properties of the Tsallis Distribution:

Energy Dependence of Parameters in High-Energy p− p Collisions. Phys. Lett. B 2013, 723, 351. [CrossRef]
16. Marques, L.; Cleymans, J.; Deppman, A. Description of high-energy pp collisions using Tsallis thermodynamics: Transverse

momentum and rapidity distributions. Phys. Rev. D 2015, 91, 054025. [CrossRef]
17. Tripathy, S.; Tiwari, S.K.; Younus, M.; Sahoo, R. Elliptic flow in Pb+Pb collisions at

√
sNN = 2.76 TeV at the LHC using Boltzmann

transport equation with non-extensive statistics. Eur. Phys. J. A 2018, 54, 38. [CrossRef]
18. Acharya, S.; et al. [ALICE Collaboration]. Production of deuterons, tritons, 3He nuclei, and their antinuclei in pp collisions at√

s = 0.9, 2.76, and 7 TeV. Phys. Rev. C 2018, 97, 024615. [CrossRef]
19. Azmi, M.D.; Bhattacharyya, T.; Cleymans, J.; Paradza, M.W. Energy density at kinetic freeze-out in Pb-Pb collisions at the LHC

using the Tsallis distribution. J. Phys. G 2020, 47, 045001. [CrossRef]
20. Parvan, A.S. Equivalence of the phenomenological Tsallis distribution to the transverse momentum distribution of q-dual statistics.

Eur. Phys. J. A 2020, 56, 106. [CrossRef]
21. Lavagno, A. Relativistic nonextensive thermodynamics. Phys. Lett. A 2002, 301, 13–18. [CrossRef]
22. Gyulassy, M.; Matsui, T. Quark gluon plasma evolution in scaling hydrodynamics. Phys. Rev. D 1984, 29, 419–425. [CrossRef]
23. Akase, Y.; Mizutani, M.; Muroya, S.; Namiki, M.; Yasuda, M. Hydrodynamical evolution of QGP fluid with phase transition and

particle distribution in high-energy nuclear collisions. Prog. Theor. Phys. 1991, 85, 305–320. [CrossRef]
24. Csernai, L.P.; Anderlik, C.; Keranen, A.; Magas, V.K.; Manninen, J.; Strottman, D.D. QGP hydrodynamics for RHIC energies. Acta

Phys. Hung. A 2003, 17, 271–280. [CrossRef]
25. Song, H.; Heinz, U.W. Extracting the QGP viscosity from RHIC data—A Status report from viscous hydrodynamics. J. Phys. G

2009, 36, 064033. [CrossRef]
26. Teaney, D.A. Viscous hydrodynamics and the quark gluon plasma. In Quark Gluon Plasma 4; Hwa, R.C., Wang, X.-N., Eds.; World

Scientific: Singapore, 2010; pp. 207–266. [CrossRef]
27. Chaudhuri, A.K. Knudsen number, ideal hydrodynamic limit for elliptic flow and QGP viscosity in

√
s = 62 and 200 GeV

Cu+Cu/Au+Au collisions. Phys. Rev. C 2010, 82, 047901. [CrossRef]
28. Jaiswal, A.; Roy, V. Relativistic hydrodynamics in heavy-ion collisions: General aspects and recent developments. Adv. High

Energy Phys. 2016, 2016, 9623034. [CrossRef]
29. Fowler, G.N.; Raha, S.; Stelte, N.; Weiner, R.M. Solitons in nucleus-nucleus collisions near the speed of sound. Phys. Lett. B 1982,

115, 286–290. [CrossRef]
30. Fogaça, D.A.; Filho, L.G.F.; Navarra, F.S. Nonlinear waves in a quark gluon plasma. Phys. Rev. C 2010, 81, 055211. [CrossRef]
31. Fogaça, D.A.; Navarra, F.S.; Filho, L.G.F. Korteveg-de Vries solitons in a cold quark-gluon plasma. Phys. Rev. D 2010, 84, 054011.

[CrossRef]
32. Fogaça, D.A.; Navarra, F.S. Gluon condensates in a cold quark-gluon plasma. Phys. Lett. B 2011, 700, 236–242. [CrossRef]
33. Fogaça, D.A.; Navarra, F.S.; Filho, L.G.F. On the radial expansion of tubular structures in a quark-gluon plasma. Nucl. Phys. A

2012, 887, 22–41. [CrossRef]
34. Bhattacharyya, T.; Mukherjee, A. Propagation of non-linear waves in hot, ideal, and non-extensive quark-gluon plasma. Eur.

Phys. Jour. C 2020, 80, 656. [CrossRef]
35. Sarwar, G.; Hasanujjaman, M.; Bhattacharyya, T.; Rahaman, M.; Bhattacharyya, A.; Alam, J.E. Nonlinear waves in a hot, viscous

and non-extensive quark-gluon plasma. Eur. Phys. J. C 2022, 82, 189. [CrossRef]
36. Bhattacharyya, T.; Cleymans, J.; Khuntia, A.; Pareek, P.; Sahoo, R. Radial flow in non-extensive thermodynamics and study of

particle spectra at LHC in the limit of small (q – 1). Eur. Phys. J. A 2016, 52, 30. [CrossRef]
37. Bhattacharyya, T.; Cleymans, J.; Mogliacci, S. Analytic results for the Tsallis thermodynamic variables. Phys. Rev. D 2018, 94,

094026. [CrossRef]
38. Sanches, M.S., Jr.; Navarra, F.S.; Fogaça, D.A. The quark gluon plasma equation of state and the expansion of the early Universe.

Nucl. Phys. A 2015, 937, 1–16. [CrossRef]
39. Bhatia, A.B. Vibration spectra and specific heats of cubic metals. I. Theory and application to sodium. Phys. Rev. 1955, 97, 363.

[CrossRef]
40. Taylor, C.D.; Lookman, T.; Scott, L.R. Ab initio calculations of the uranium-hydrogen system: Thermodynamics, hydrogen

saturation of a-U and phase-transformation to UH3. Acta Mater. 2010, 58, 1045. [CrossRef]
41. Aguiar, J.C.; Mitnik, D.; DiRocco, H.O. Electron momentum density and Compton profile by a semi-empirical approach. J. Phys.

Chem. Solids 2015, 83, 64–69. [CrossRef]
42. Sharma, G.; Joshi, K.B.; Mishra, M.C.; Kothari, R.K.; Sharma, Y.C.; Vyas, Y.C.V.; Sharma, B.K. Electronic structure of AlAs: A

Compton profile study. J. Alloys Compd. 2009, 485, 682–686. [CrossRef]
43. Kawasuso, A.; Maekawa, M.; Fukaya, Y.; Yabuuchi, A.; Mochizuki, I. Polarized positron annihilation measurements of poly-

crystalline Fe, Co, Ni, and Gd based on Doppler broadening of annihilation radiation. Phys. Rev. B 2011, 83, 100406(R).
[CrossRef]

http://dx.doi.org/10.1103/PhysRevD.93.054001
http://dx.doi.org/10.1140/epja/s10050-020-00083-2
http://dx.doi.org/10.1016/j.physletb.2013.05.029
http://dx.doi.org/10.1103/PhysRevD.91.054025
http://dx.doi.org/10.1140/epja/i2018-12461-2
http://dx.doi.org/10.1103/PhysRevC.97.024615
http://dx.doi.org/10.1088/1361-6471/ab6c33
http://dx.doi.org/10.1140/epja/s10050-020-00117-9
http://dx.doi.org/10.1016/S0375-9601(02)00964-7
http://dx.doi.org/10.1103/PhysRevD.29.419
http://dx.doi.org/10.1143/ptp/85.2.305
http://dx.doi.org/10.1556/APH.17.2003.2-4.11
http://dx.doi.org/10.1088/0954-3899/36/6/064033
https://doi.org/10.1142/9789814293297_0004
http://dx.doi.org/10.1103/PhysRevC.82.047901
http://dx.doi.org/10.1155/2016/9623034
http://dx.doi.org/10.1016/0370-2693(82)90371-9
http://dx.doi.org/10.1103/PhysRevC.81.055211
http://dx.doi.org/10.1103/PhysRevD.84.054011
http://dx.doi.org/10.1016/j.physletb.2011.05.011
http://dx.doi.org/10.1016/j.nuclphysa.2012.05.009
http://dx.doi.org/10.1140/epjc/s10052-020-8191-4
http://dx.doi.org/10.1140/epjc/s10052-022-10122-5
http://dx.doi.org/10.1140/epja/i2016-16030-5
http://dx.doi.org/10.1103/PhysRevD.94.094026
http://dx.doi.org/10.1016/j.nuclphysa.2015.02.004
http://dx.doi.org/10.1103/PhysRev.97.363
http://dx.doi.org/10.1016/j.actamat.2009.10.021
http://dx.doi.org/10.1016/j.jpcs.2015.03.023
http://dx.doi.org/10.1016/j.jallcom.2009.06.043
http://dx.doi.org/10.1103/PhysRevB.83.100406


Physics 2022, 4 811

44. Tsallis, C.; Mendes, R.S.; Plastino, A.R. The role of constraints within generalized nonextensive statistics. Phys. A 1998, 261,
534–554. [CrossRef]

45. Bhattacharyya, T.; Parvan, A.S. Analytical results for the classical and quantum Tsallis hadron transverse momentum spectra:
The zeroth order approximation and beyond. Eur. Phys. J. A 2021, 57, 206. [CrossRef]

46. Conroy, J.M.; Miller, H.G.; Plastino, A.R. Thermodynamic consistency of the q-deformed Fermi-Dirac distribution in nonextensive
thermostatics. Phys. Lett. A 2010, 374, 4581–4584. [CrossRef]

47. Büyükkiliç, F.; Demirhan, D. A fractal approach to entropy and distribution functions. Phys. Lett. A 1993, 181, 24–28. [CrossRef]
48. A Repeated Digit Is Represented by a Bar. Available online: https://en.wikipedia.org/wiki/Repeating_decimal (accessed on 19

April 2022).
49. Bhattacharyya, T.; Cleymans, J.; Mogliacci, S.; Parvan, A.S.; Sorin, A.S.; Teryaev, O.V. Non-extensivity of the QCD pT-spectra. Eur.

Phys. J. A 2018, 54, 222. [CrossRef]
50. Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Higher Transcendental Functions; Krieger: New York, NY, USA, 1981;

Volume 1.
51. Davydychev, A.I.; Tausk, J.B. Two-loop self-energy diagrams with different masses and the momentum expansion. Nucl. Phys. B

1993, 397, 123–142. [CrossRef]
52. Boos, É.É.; Davydychev, A.I. A method of calculating massive Feynman integrals. Theor. Math. Phys. 1991, 89, 1052–1064.

[CrossRef]
53. Smirnov, V.A. Evaluating Feynman Integrals; Springer: Berlin/Heidelberg, Germany, 2004. [CrossRef]
54. Wolfram MathWorld. Available online: https://mathworld.wolfram.com/LegendreDuplicationFormula.html (accessed on 19

April 2022).
55. Weber, H.J.; Arfken, G.B. Essential Mathematical Methods for Physicists; Academic Press: San Diego, CA, USA, 2004.
56. Patra, R.N.; Mohanty, B.; Nayak, T.K. Centrality, transverse momentum and collision energy dependence of the Tsallis parameters

in relativistic heavy-ion collisions. Eur. Phys. J. Plus 2021, 136, 702. [CrossRef]

http://dx.doi.org/10.1016/S0378-4371(98)00437-3
http://dx.doi.org/10.1140/epja/s10050-021-00527-3
http://dx.doi.org/10.1016/j.physleta.2010.09.038
http://dx.doi.org/10.1016/0375-9601(93)91118-O
https://en.wikipedia.org/wiki/Repeating_decimal
http://dx.doi.org/10.1140/epja/i2018-12647-6
http://dx.doi.org/10.1016/0550-3213(93)90338-P
http://dx.doi.org/10.1007/BF01016805
http://dx.doi.org/10.1007/b95498
https://mathworld.wolfram.com/LegendreDuplicationFormula.html
http://dx.doi.org/10.1140/epjp/s13360-021-01660-0

	Introduction
	Review: Tsallis Thermodynamics: m=0,  =0
	Classical Case
	Quantum Case
	Bosons
	Fermions


	Review and New Results: Tsallis Thermodynamics: m =0,  =0
	Classical Case (Review)
	Upper Region: q>1+T/m
	Lower Region: q1+T/m

	Quantum Case: Bosons (New Results)
	Upper Region: q>1+T/m
	Lower Region: q1+T/m


	Methodology: The Pressure of a Gas of Bosons Following the Tsallis Distribution
	Rescaling the Integration Variable
	Infinite Summation
	Contour Integral Representation
	Wrapping Contour Clockwise: q>1+ T/m
	Analytic Continuation: q1+ T/m

	Numerical Results and Discussion
	Summary, Conclusions and Outlook
	References

