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Abstract: We present a concise review of selected parts of axion electrodynamics and their application
to Casimir physics. We present the general formalism including the boundary conditions at a
dielectric surface, derive the dispersion relation in the case where the axion parameter has a constant
spatial derivative in the direction normal to the conducting plates, and calculate the Casimir energy
for the simple case of scalar electrodynamics using dimensional regularization.
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1. Introduction

The axion concept has actually a long history. It was introduced by Roberto Peccei
and Helen Quinn back in 1977 [1,2] in connection with the CP (charge conjugation and
parity symmetry) problem in high-energy physics. However, later it was understood as
related to a natural extra term in the electromagnetic Lagrangian with a direct formal
connection to materials like topological insulators and thus of obvious practical interest.
So, we first describe the basic properties of topological materials. Topological insulators
(TIs) are the new phases of matter, which exhibit unique electronic properties due to their
nontrivial topological characteristics, and were discovered in 2005 [3,4]. These materials
have insulating states inside the bulk with a bulk energy gap separating the highest
occupied electronic band from the lowest empty band, like an ordinary insulator, while
conducting states exist on their surfaces in the case of three-dimensional TIs or on their
edges in the case of two-dimensional (2D) TIs, which are topologically protected (robust to
local defects, imperfections, and disorders) by time-reversal symmetry [5]. In 2006, the TI
phase was theoretically predicted [6] and experimentally realized in a CdTe-HgTe-CdTe
quantum well; this quantum well behaves in bulk as an insulator. However, the electric
current was observed across the interface, i.e., it behaves like a conductor in the surface
region [7]. Additionally, one knows from band theory that conductors do not have a
gap between their valence and conduction bands. In contrast, insulators are defined as
materials with a gap between them. The most notable aspect is that Maxwell’s equations are
unable to explain the experimental behaviors of topological insulators. Notably, this kind of
behavior was previously suggested by Frank Wilczek [8] in 1987, along with the possibility
that it could be described by the axion electrodynamics he [9] and Steven Weinberg [10]
developed. Their initial aim was to explain the breaking of combined symmetries of charge
conjugation and parity in strong interactions.

With a topological invariant called the Z2 invariant, one can distinguish trivial insula-
tors from topological insulators. Topological materials have interesting features, and one
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of them is the magnetoelectric effect caused by a term called the θ term. Since this term,
referred to as the magnetoelectric polarizability, has exactly the same form as the action
describing the coupling between a photon and an axion, these magnetoelectric phenomena
are often depicted with axion electrodynamics. In the presence of time-reversal symmetry,
θ takes on a quantized value θ = π(mod 2π) for topological insulators and θ = 0 for
ordinary insulators [11–14]. The value of θ, nevertheless, can be arbitrary in systems with
broken time-reversal symmetry, even depending on space and time as θ(r, t), like in various
semimetallic phases. Moreover, when the dynamics of the axion field is included, the exis-
tence of new quasiparticles, such as the axion polariton [15], is also proposed. For more
details, see [14] and the references therein.

In a separate paper [16] we reviewed the semiclassical electrodynamics and its link
to Casimir physics. Notably, the history of this remarkable effect dates back to 1948 when
it was predicted by Hendrik Casimir [17,18]. A formidable, and highly effective, theory
for the retarded dispersion force between a pair of planar surfaces interacting across an
intervening medium was developed in the 1950s by Evgeny Lifshitz and collaborators
[19,20]. From the late 1960s, groups from around the world explored if a theory based upon
the classical Maxwell’s equations combined with the Planck quantization of light could by
itself lead to a simple and useful semiclassical theory for van der Waals, Lifshitz, and Casimir
interactions [21,22]. As one important example, a semiclassical derivation of Casimir effects
in magnetic media was presented by Peter Richmond and Barry Ninham [23] already in
1971. Many theoretical [24–36] and experimental studies [37–44] have followed in the last
50 years. More information related to Casimir effects in traditional systems can be found
in the extensive literature [45–51]. A number of studies have been carried out with a focus
on predictive theories, nanobiotechnological applications, and novel materials’ growth and
characterization. Notably, going beyond the standard applications, specific ion effects in both
biological systems and colloid chemistry have been proposed to occur partly due to ionic
dispersion potentials [52] acting on ions in salt solutions [53–59]. This leads to a nonlinear
coupling of electrodynamical and electrostatic interactions with a proposed role behind
the so-called (ion-specific) Hofmeister effect [60]. Most interestingly, Casimir and van der
Waals interactions may also have an impact on the growth of ice clusters within mist [61] and
clouds [62,63]. It has been, and still is, relevant to explore the limits of validity of the different
theories for dispersion forces (e.g., between two layered surfaces). A most natural extension
of this conventional semiclassical electrodynamics, as well as quantum electrodynamics,
in media is to allow for an extra pseudoscalar field, called conventionally the axion field a(x)
(x means here spacetime), pervading in the whole volume. Some of the pioneering papers on
axion electrodynamics are listed in Refs. [1,2,10,64–69]. More recent investigations can be
found in Refs. [70–94]. Here, we present an easy-to-follow and concise review of the current
understanding of axion electrodynamics from our point of view.

2. Axion Electrodynamics

Different methods have been suggested to investigate the electromagnetic character-
istics of 3D magnetic topological insulators (see, for example, Refs. [10,64]), which are
based on axion field theory [95,96]. This approach introduces an additional term to the
conventional Maxwell electromagnetic action, expressed as follows:

SA =
e2

32π2h̄c

∫
d3⃗r dt θ εµναβFµνFαβ, (1)

where e denotes the elementary charge, h̄ is the reduced Planck constant, c denotes the
speed of light. Here and elsewhere below, εµναβ represents the completely antisymmetric
tensor, Fµν is the Maxwell field strength tensor, the Greek letter indices take the 0 (time, t),
1, 2, and 3 (space) values, r⃗ is the space vector, and θ denotes the axion coupling strength.
Originally proposed in the context of quantum chromodynamics (QCD) to address the
strong CP problem [1,97], the axion is a hypothetical pseudoscalar particle and has also
been considered a potential candidate for cosmological dark matter. Since Equation (1)
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bears mathematical similarities to the description of cosmological/QCD axions, the term
“axion” is used in the context of topological insulators. However, the axial coupling in
topological insulators is related to the presence of a surface quantum Hall effect [98].

The reason why a(x) is a pseudoscalar quantity is that the mentioned extra term in
the Lagrangian implies a two-photon interaction with the electromagnetic field, and the
pseudoscalar property of a(x) ensures that its product with the polar vector E together with
the axial vector B becomes a scalar in the Lagrangian. We shall in the following highlight
some essential properties of the axion formalism, assuming a dielectric environment with
the permittivity ε and the permeability µ being constants. It means that the constitutive
relations are simply D = εE, B = µH. The presentation in the following is largely based
upon our earlier papers [91–94]. When magnetoelectric effects occur in topological material,
the magnetic induction B changes the electric displacement vector D, and the magnetic
field intensity H is in turn influenced by the electric field. Then, the relations for D
and B should be changed, D = εE − θαB/π, H = B/µ + θαE/π, where α is the fine-
structure constant. These constitutive relations were given in [99] and in references therein;
see also the later Ref. [100]. As a result, these two polarizations are coupled, meaning
that the electromagnetic boundary conditions are off-diagonal components of the Fresnel
coefficients [101].

In relation to our previous comments in Section 1, it is quite important to note paral-
lelism between two analogous yet distinct phenomena. In the following discussion, our
focus will be on the axion approach rooted in the Peccei–Quinn formalism, while a formal
analogy arises with polariton excitations in condensed media. Our coupling constant gaγγ,
below, will thus refer to the axion case. One might be interested in the corresponding
coupling constant in the polarization case also, but this is a complicated subject into which
we will not enter here. Interested readers may consult, for instance, the paper [102], to ob-
tain detailed information about a strong coupling between a topological insulator and
a III-V heterostructure.

2.1. Basic Equations

We choose the metric convention with signature g00 = −1 and introduce two field
tensors, Fαβ and Hαβ. The components of the original field tensor Fαβ are as in vacuum,
F0i = −Ei, Fjk = ϵijkBi (where the indices in Latin letters denote the space coordinates),
while the components of the contravariant response tensor Hαβ are H0i = Di, Hjk = ϵijk Hi.

Including the pseudoscalar axion field a = a(x), we obtain for the Lagrangian

L = −1
4

FαβHαβ + A · J − ρΦ − 1
2

∂µa∂µa − 1
2

m2
aa2 − 1

4
θ(x)Fαβ F̃αβ, (2)

in which A denotes the magnetic potential, J denotes the current, ρ denotes the energy
density, Φ denotes the scalar potential, ma is the axion mass, F̃αβ = ϵαβγδFγδ/2, and we
have defined the nondimensional field amplitude as

θ(x) = gaγγa(x). (3)

The constant for the coupling of the axion with two photons can be defined as follows,

gaγγ = gγ
α

π

1
fa

, (4)

where gγ is a constant depending on the specific model used and is usually taken to be
0.36 [75]. The fa represents the axion decay constant and for fa, it is commonly assumed
that its value is on the order of 1012 GeV. The Lagrangian’s last term (2), Laγγ, can be
written as Laγγ = θ(x)E · B, explicitly showing the pseudoscalar property of θ(x).

The expression (2) can be used to obtain the generalized Maxwell equations

∇ · D = ρ − B · ∇θ, (5)
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∇× H = J +
∂

∂t
D +

∂θ

∂t
B +∇θ × E, (6)

∇ · B = 0, (7)

∇× E = − ∂

∂t
B. (8)

These equations are general, and there are no restrictions on the spacetime variation of
a(x). The equations are relativistically covariant. It is crucial that the constitutive relations
stated previously maintain their quite simple form D = εE, B = µH only in the rest system,
and the electromagnetic formalism’s covariance is achieved by introducing two distinct
field tensors, Fµν and Hµν. The field equations describing the system are

∇2E − εµ
∂2

∂t2 E = ∇(∇ · E) + µ
∂

∂t
J + µ

∂

∂t

[
∂θ

∂t
B +∇θ×E

]
, (9)

∇2H − εµ
∂2

∂t2 H = −∇× J −∇×[
∂θ

∂t
B +∇θ×E]. (10)

In practice, the influence from axions is typically small in our case here. We do not
consider the field equations for the axions explicitly for simplicity and clarity.

The field equations above contain the second-order derivatives of θ. These may
conveniently be removed if we assume there is a strong external magnetic field Be = Beẑ
present , where ẑ is the normal vector. Then, assuming the axion field

a(t) = a0 cos ωat, (11)

one can separate out the part Ea(t) related to the θ̈ term, where the dot on the top denotes
the time derivative. From the governing equation for Ea(t), ignoring the current J as the
axion-related field,

∇2Ea − εµ
∂2

∂t2 Ea = µθ̈Be. (12)

Then,

Ea(t) = −1
ε

E0 cos ωat ẑ, (13)

where
E0 = θ0Be. (14)

After this separation, the field equations (9) and (10) take the reduced forms

∇2E − εµ
∂2

∂t2 E = ∇(∇ · E) + µ
∂

∂t
J + µ[θ̇

∂

∂t
B +∇θ× ∂

∂t
E], (15)

∇2H − εµ
∂2

∂t2 H = −∇× J −
[
θ̇∇× B + (∇θ)∇ · E − (∇θ · ∇)E

]
. (16)

In the following, we allow θ to be spatially varying but neglect the second-order
derivatives, i.e., ∂i∂jθ ≈ 0. This means that the model excludes situations where spatial
boundaries lead to δ- and δ′-type terms. Actually, as shown in Equation (25) below, we in the
mathematical analysis take θ to vary linearly in space over the field region of interest. There
will accordingly be no second-order terms in the field region, while the electromagnetic
boundary conditions must be imposed at the boundaries.

It is to be noted that the equations contain the dynamical fields E and B only.
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2.2. Hybrid Form of Maxwell’s Equations. Boundary Conditions

It turns out that one can construct a hybrid form of Maxwell’s equations from which
the generalized boundary conditions at a dielectric surface follow in a very transparent
way. We introduce new fields Dγ and Hγ via(

Dγ

Hγ

)
=

(
ε θ
−θ 1/µ

)(
E
B

)
, (17)

which shows how Dγ, Hγ relate to the response tensor Hµν. The hybrid Maxwell equations
thus become similar to those in the usual electrodynamics,

∇× Hγ = J +
∂

∂t
Dγ, ∇ · Dγ = ρ, (18)

∇× E = − ∂

∂t
B, ∇ · B = 0. (19)

The boundary conditions at a dielectric boundary are then immediate:

E⊥ = Eγ,⊥ + Ea,⊥ is continuous, (20)

E⊥, Hγ,⊥ are continuous, (21)

Dγ,∥, B∥ are continuous, (22)

(the symbols ⊥ and ∥ mean perpendicular and parallel to the normal, thus parallel and per-
pendicular to the surface). A key quantity is the property of Poynting’s vector, S = E × H.
Taking the z component Sz orthogonal to a dielectric surface, one sees that

S1z = S2z, (23)

showing that the energy flux density is continuous across the surface, dividing media 1
and 2. This is as one would expect as the surface is at rest; the force acting on it is not able
to perform any mechanical work.

2.3. Dispersion Relations

We use now the standard plane wave expansion

E ∝ ei(k·x−ωt), k = (kx, ky, kz) (24)

with k the wave number and the frequency ω.
We start from the reduced Maxwell Equations (15) and (16) and restrict ourselves to

the case where a(x) will vary with space only,

β = ∇θ, (25)

with β assumed constant. This form is mathematically convenient and often used in
the literature. The form is of the same kind as assumed for Weyl semimetals [103,104],
where the gradient of the axion is related to the separation of Weyl nodes in the Brillouin
zone. One may here note that the case of topological insulators is different, as in such a
case the gradient of the axion is taken to be zero except at the interfaces between trivial
and nontrivial phases. The situation is, however, complex, and it should be mentioned
that the configuration given here is very close to the one reported in Ref. [105], where a
topological insulator slab is placed between two perfect conducting plates. We also point
out that instructive papers on the new material, for example, those showing exotic Hall
effects, those on TRS-broken semimetals, those on Chern insulators, etc., can be found in
the Refs. [101,106,107].
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Starting from Equations (15) and (16), assuming ρ = J = 0, we find the determinant
equation determining the dispersion relations. There are two dispersive branches. The first
is a “normal” one, satisfying

εµω2 = k2, (26)

corresponding to waves independent of the axions and polarizing parallel to β. The second
branch, polarizing perpendicular to β, should have

εµω2 = k2 ± µβω. (27)

showing the splitting of this branch into two modes, equally separated from the normal
mode on both sides. This sort of splitting has been encountered before under various
circumstances; see, for instance, Refs. [75,76,108].

The following property of this kind of material should be noticed: the dispersive
property does not influence the electromagnetic energy density. In a complex representation,
the energy density can be written as

Wdisp =
1
4

[
d(εeffω)

dω
|E|2 + |H|2

]
, (28)

where we have assumed for a moment that the medium is nonmagnetic, and we have
introduced an effective permittivity εeff such that

k2 = εeff(ω)ω2. (29)

It then follows that
d(εeffω)

dω
= ε, (30)

which shows that the dispersive correction disappears. The energy density is the same as if
dispersion were absent. This property is not quite trivial.

2.4. Dispersion Relations, When θ Is Time-Dependent

We introduce the variable α as
α = θ̇ (31)

and assume α constant. The dispersion takes the form

εµω2 = k2 ± µα|k|. (32)

We may here for a nonmagnetic medium introduce the refractive index, neff =
√

εeff,
and so obtain

neff(ω) =

√
ε +

α2

4ω2 ± α

2ω
. (33)

Given the assumed smallness of the axion contributions, we restrict the parameter
values to the region (β + α)/kz ≪ 1.

If kz is the wave number for photons in the z direction, corresponding to axions with
mass ma ∼ ω = 10−5 eV, we have kz = 10−5 eV, so that the condition above can be
rewritten as

β + α ≪ 10−5 eV
( ma

10−5 eV

)
. (34)

3. Energy–Momentum Considerations

It is interesting to consider the electromagnetic energy–momentum tensor in interac-
tion with the axion field. As this is a nonclosed physical system, the four-force density will
in general be different from zero. The system is in this way analogous to the electromag-
netic field in a medium in ordinary electrodynamics, since also, in that case, the system
is nonclosed because the influence from the mechanical system itself is not accounted for
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(this is the point giving rise to the classic Abraham–Minkowski problem). We assume in
this section that ε and µ can vary in space and time but do not restrict the derivatives with
respect to space or time to be constants.

We may start with the electromagnetic energy density,

W =
1
2
(E · D + H · B). (35)

Together with the Poynting vector,

S = E × H, (36)

this leads to the energy conservation equation

∇ · S + Ẇ = −E · J − θ̇(E · B). (37)

There is thus an exchange of electromagnetic energy with the axion “medium” if
E and B are different from zero and θ(t) is time-varying, even if J = 0.

A more delicate question is the expression for the momentum density g. In accordance
with Planck’s principle of inertia of energy, g = S/c2, one would expect the Abraham
momentum density gA to be right,

gA = E × H. (38)

We notice that the Maxwell stress tensor,

Tik = EiDk + HiBk −
1
2

δik(E · D + H · B), (39)

is common for the Abraham and Minkowski alternatives, TA
ik = TM

ik ≡ Tik. Here δik is the
Kronecker delta. The momentum conservation equation can thus be expressed in the form

∂kTik − ġA
i = f A

i , (40)

where f A
i are the components of Abraham’s force density

fA = ρE + (J × B) + (εµ − 1)
∂

∂t
(E × H)− gaγγ(E · B)∇a. (41)

The third term on the right-hand side of Equation (41), the Abraham term, has ex-
perimentally turned up only in a few experiments, mainly at low frequencies where the
mechanical oscillations of a test body are directly detectable.

In optics, the Abraham force will fluctuate out. It is therefore mathematically simpler,
and in accordance with all observational experience in optics, to include the Abraham
momentum (physically, a mechanical accompanying momentum) in the effective field
momentum. Therewith, the momentum density becomes just the Minkowski momentum
gM, given by

gM = D × B. (42)

The momentum conservation equation in the Minkowski case yields

∂kTik −
∂

∂t
gM

i = f M
i , (43)

where
fM = ρE + (J × B)− (E · B)∇θ. (44)
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Consider the relativistically covariant form for the energy–momentum balance: Minkowski’s
energy–momentum tensor,

SMν
µ = FµαHνα − 1

4
gν

µFαβHαβ, (45)

has the same form in all inertial frames. The conservation equations for electromagnetic
energy and momentum can be written as

−∂νSMν
µ = f M

µ , (46)

where f M
µ = ( f0, fM) is the four-force density. In the rest system,

f0 = E · J + (E · B)θ̇, (47)

where f M
0 = f A

0 ≡ f0.

4. Casimir Effect between Two Plates

We here restrict ourselves to the simplest case, namely, scalar electrodynamics, mean-
ing that the photons’ vector property is included but not their spin. We assume α = 0
and also zero temperature. Assume the usual setup where there are two large metallic
plates, with a gap L, orthogonal to the z direction. In the intervening region, there is an
axion field a(z) whose amplitude increases linearly with z,

a(z) =
a0z
L

= βz, 0 < z < L, (48)

where a0, the amplitude at z = L, is fixed. There is no external magnetic field. The
magnitude of β is not restricted to be small. The smallness expansion in the present theory
applies rather to the spatial variation of the axion field, as embodied in the restriction
∂i∂jθ ≈ 0, as also mentioned above.

We mention that the reduced Maxwell equations in this case can be written as

∇2E − εµË = gaγγµβẑ × Ė, (49)

∇2H − εµḦ = gaγγβ∂zE. (50)

We obtain two dispersive branches, as before. The first, corresponding to Equation (26),
can now be written

|k| = √
εµ ω, kz =

πn
L

, n = 1, 2, 3, · · · , (51)

showing no dependence on the axions. The second branch can be written as

εµω2 = k2 ± gaγγβω, (52)

which can be recast in the form

ω =
1

√
εµ

(
|k| ± 1

2
gaγγβ

√
µ

ε

)
, (53)

in view of the smallness of g2
aγγ. This branch, composed of two modes, lies very close to

the first mode above. For a given ω, there are in all three different values of |k|.
Consider now the zero-temperature zero-point energy E of the field, defined by

E =
1
2 ∑ ω. (54)
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From the second branch (53) only, one obtains, per unit plate area,

E =
1

2
√

εµ

∞

∑
n=1

[∫ d2k⊥
(2π)2

√
k2
⊥ +

π2n2

L2 ±
gaγγ

2L2

√
µ

ε

]
, (55)

where k⊥ is the component of k orthogonal to the surface normal (note that the present
definition of β differs from that in Ref. [108]). This expression can be further treated using
dimensional regularization (see, for instance, Ref. [46]), with the result [108]

E =
1

√
εµ

(
− π2

1440
1
L3 ∓

gaγγβ

4L2

√
µ

ε

)
. (56)

Of main interest is the contribution from the photons and axions moving in the
z direction. We associate this with the Casimir energy EC. Mathematically, the derivation
involves the Hurwitz zeta function. One obtains

EC =
1

4
√

εµ

(
− π

6L
± 1

2
gaγγβ

√
µ

ε

)
1
L2 . (57)

Here, the first term comes from scalar photons propagating in the z direction, while
the second term is the axionic contribution. With respect to the inverse L dependence,
the Casimir energies for the electrodynamic and the axion parts behave similarly, as one
would expect. In the above, the upper and lower signs match. In Equation (57), the small
axion-induced increase in the Casimir energy arises from the superluminal mode in the
dispersion relation (53) (meaning that the group velocity is larger than 1/

√
εµ). This mode

corresponds to a weak repulsive Casimir force. The other mode corresponds to a weak
attractive force.

5. An Axion Echo from Reflection in Outer Space

Assume that the axion field is of the form a = a(t) = a0 sin ωat, as is often chosen
for outer space, and assume ε = µ = 1. In view of the smallness of the axion velocity,
v ∼ 10−3c, one has approximately ωa = ma. An estimated value of ma = 10 µeV is common.
If the axions are associated with dark matter, we have to make do with a very low energy
density, ρDM = 0.45 GeV/cm3 [71]. We will adopt the simple form

ρa =
1
2

m2
aa2

0. (58)

Assume now that an electromagnetic beam is sent from the Earth to an axion cloud.
We take the initial form of the beam to be Gaussian,

A0(x, t) = c e−x2/2D2
cos k0x ŷ, (59)

with A0 as the vector potential and the constant D as the Gaussian width. Making a
Fourier decomposition,

A0(x.t) =
1
2

∫ ∞

−∞

[
A0(k)ei(kx−ωt) + A∗

0(k)e
−i(kx−ωt)

]
dk, (60)

one has as inversion

A0(k) =
1

2π

∫ ∞

−∞
e−ikx

[
A0(x, 0) +

i
ω

∂A0

∂t
(x, 0)

]
dx. (61)

Then, imposing the condition ∂A0/∂t(x, 0) = 0, we obtain

A0(k) = A+
0 (k) + A−

0 (k), (62)
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where

A+
0 (k) =

cD
2
√

2π
exp

[
−1

2
D2(k − k0)

2
]

ŷ. (63)

The expression for A−
0 (k) implies that k − k0 → k + k0. The right-moving wave, to be

considered henceforth, is

A+
0 (x, t) =

∫ ∞

0
A+

0 (k) cos(kx − ωt)dk, ω = k > 0. (64)

In what follows, we omit the superscript. The incident wave fields are E0(x, t) = −Ȧ0(x, t),
H0(x, t) = ∇×A0(x, t).

The incident wave will interact with the axion cloud. As ρ = J = 0, we see from
Equations (41) or (44) that f = 0, in accordance with the assumed homogeneity of the cloud.
Furthermore, the component f0 in (47) is zero, because E0 and H0 are orthogonal. We
therefore go back to the field equations, from which we obtain

∇2A − Ä = −gaγγ ȧ∇× A. (65)

We here let A → A0 on the right-hand side of Equation (65). Neglecting ∇2A on the
left-hand side, and using Equation (64), we obtain

Ä(x, t) = −gaγγa0ωa

∫ ∞

0
A0(k)k sin(kx − ωt) cos ωat dk ẑ, (66)

still with ω = k.
In complex notation, extracting the resonance term,

Ä(x, t) =
1
2

gaγγa0ωaIm
∫ ∞

0
A0(k)kei(kx−ωt+ωat) ẑ. (67)

We construct a new quantity A(k, t) as

A(x, t) = Im
∫ ∞

0
eikxA(k, t)dk, (68)

and can thus write
Ä(k, t) = −1

2
gaγγa0ωa A0(k)ke−i(ω−ωa)t ẑ. (69)

With yet another quantity

A(k, t) = A(k, t)e−iωt, (70)

we have
Ä(k, t) = Ä(k, t)eiωt + 2iωȦ(k, t)eiωt − ω2A(k, t)eiωt, (71)

Now, keeping the resonance term only, we obtain

Ȧ(k, t) =
i
4

gaγγa0ωa A0(k)e−i(2ω−ωa)t ẑ. (72)

Integrating over t,

A(k, t) = −gaγγa0ωa
cD

8
√

2π
exp

[
−1

2
D2(k − k0)

2
]

e−i(2ω−ωa)t

2ω − ωa
ẑ. (73)
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The resonance at ω = ω/2 is as expected: an incoming photon 2ω can split an axion
into two components with the same mass, ma = ωa. We focus on the imaginary part of the
above expression and use the relation

lim
sin αx

πx
∣∣
α→∞ = δ(x), (74)

(with δ(x) the Dirac delta function) to obtain

ImA(k, t) = gaγγa0ωa
cD
16

√
π

2
exp

[
−1

2
D2(k − k0)

2
]

δ(ω − 1
2

ωa) ẑ. (75)

From this, the axion echo can be found. This sort of calculation was pioneered by Pierre
Sikivie and collaborators [75,82]. The present generalized form, containing the Gaussian
width D, was given by one of the authors of this paper and Masud Chaichian [91].

6. Discussions and Future Outlooks

We would like to conclude with the following brief points.

1. As already mentioned, the influence of axions, at least in cosmology, is expected
to be very weak. The cosmological axion energy density is often expected to be
about 0.40 GeV/cm3, corresponding to an axion mass of about 10−5 eV and a relative
velocity of about 10−3. Various experiments and proposals of experiments have
been launched:

(a) The haloscope experiment, proposed by Sikivie [75], in which the aim is to
detect resonances between the electromagnetic eigenfrequencies of a dielectric
cylinder and the axions (see also Refs. [70,91]). To date, no such resonance has
been detected.

(b) The idea, also due to Sikivie [75], to observe the axions via their electromagnetic
“echo” returned back to the Earth from an outer cloud (see also Ref. [91]).

(c) The broadband solenoidal haloscope proposed in Ref. [71], which proposes to
make use of the axion “antenna” effect to focus the electromagnetic radiation
emitted from dielectric boundaries towards a detector.

2. The above treatment provides a general review of axion electrodynamics and is,
in principle, not limited to the semiclassical case. This constraint applies similarly to
ordinary electrodynamics, usually when distances are small or temperatures are high.

3. The axion formalism is useful as regards application to topological insulators. Thus,
the constitutive relations (17) can formally be taken over to this kind of modern
material science as they stand. The case of chiral materials, for instance, a Faraday
material, is more complicated since the coupling parameter θ becomes imaginary ;
see, for instance, Ref. [74].

4. To conclude, we have presented a concise summary of the basics of axion electrody-
namics, linking it to the general field of Casimir physics. Notably, additional contribu-
tions to the Casimir interaction are observed that occur as direct consequences of the
extra pseudoscalar axion field. Novel physics, based on improved materials character-
ization requiring new and improved physical models, is likely to be discovered in the
years to come.
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