
Citation: Thiyyakat, M.; Kalambur,

S.; Sitaram, D. Constraint-Aware

Federated Scheduling for Data Center

Workloads. IoT 2023, 4, 534–557.

https://doi.org/10.3390/iot4040023

Academic Editors: Arun Ravindran

and Reshmi Mitra

Received: 22 September 2023

Revised: 2 November 2023

Accepted: 6 November 2023

Published: 8 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

IoT

Article

Constraint-Aware Federated Scheduling for Data
Center Workloads
Meghana Thiyyakat 1,* , Subramaniam Kalambur 1 and Dinkar Sitaram 2

1 Department of Computer Science and Engineering, PES University, Bangalore 560093, India
2 Cloud Computing Innovation Council of India, Bangalore 560093, India
* Correspondence: meghanathiyyakat@pesu.pes.edu

Abstract: The use of data centers is ubiquitous, as they support multiple technologies across domains
for storing, processing, and disseminating data. IoT applications utilize both cloud data centers and
edge data centers based on the nature of the workload. Due to the stringent latency requirements
of IoT applications, the workloads are run on hardware accelerators such as FPGAs and GPUs for
faster execution. The introduction of such hardware alongside existing variations in the hardware
and software configurations of the machines in the data center, increases the heterogeneity of the
infrastructure. Optimal job performance necessitates the satisfaction of task placement constraints.
This is accomplished through constraint-aware scheduling, where tasks are scheduled on worker
nodes with appropriate machine configurations. The presence of placement constraints limits the
number of suitable resources available to run a task, leading to queuing delays. As federated
schedulers have gained prominence for their speed and scalability, we assess the performance of
two such schedulers, Megha and Pigeon, within a constraint-aware context. We extend our previous
work on Megha by comparing its performance with a constraint-aware version of the state-of-the-art
federated scheduler Pigeon, PigeonC. The results of our experiments with synthetic and real-world
cluster traces show that Megha reduces the 99th percentile of job response time delays by a factor
of 10 when compared to PigeonC. We also describe enhancements made to Megha’s architecture to
improve its scheduling efficiency.

Keywords: job scheduling; data centers; federated architecture; placement constraints

1. Introduction

In the last decade, extensive research has focused on the usage of IoT in various
domains, including healthcare [1], smart transportation [2], and agriculture [3,4]. These
applications generate a vast amount of data through deployed sensors, necessitating
efficient and cost-effective solutions for data storage, processing, and distribution. Cloud
computing and edge computing have emerged as the most popular solutions to support IoT
applications. Both of these computing paradigms require an array of networking, storage,
and computing components, which are encapsulated in a data center (DC).

IoT applications often have strict latency requirements. For example, automatic
driving needs information every 10 ms, with a maximum delay of 10 ms [5]. One way
to reduce latency in IoT workloads is to execute parts of a transaction at a fog server
instead of the cloud. Fog servers are closer to IoT devices, so communication overhead is
lower [6]. This is often performed in applications like autonomous cars, eHealth services,
and smart cities [7]. Another way to reduce job response time in IoT workloads is to use
hardware accelerators like FPGAs and GPUs. These accelerators can process data much
faster than general-purpose CPUs [5,8]. Integrating such devices into the DC increases
the heterogeneity of the DC’s infrastructure. Given that worker nodes in DCs used by IoT
applications are heterogeneous [9], with varying software and hardware configurations,
the DC’s scheduler must match tasks in the workloads to suitable resources, taking into

IoT 2023, 4, 534–557. https://doi.org/10.3390/iot4040023 https://www.mdpi.com/journal/iot

https://doi.org/10.3390/iot4040023
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/iot
https://www.mdpi.com
https://orcid.org/0000-0003-1635-7576
https://doi.org/10.3390/iot4040023
https://www.mdpi.com/journal/iot
https://www.mdpi.com/article/10.3390/iot4040023?type=check_update&version=1

IoT 2023, 4 535

consideration these configuration parameters. However, this makes the scheduling process
more complex [10], increasing queuing delays by a factor of 2 to 6 [11].

The scheduler encapsulates a task’s requirements as task placement constraints. A
study by Google [11] revealed that over 50% of the tasks in Google’s workload had task
placement constraints related to hardware and software machine properties. We use the
placement constraint distribution and machine statistics published by the study to enrich
existing cluster traces and evaluate the performance of federated scheduling architectures
when handling workloads with constraints.

The state of the art in constraint-aware scheduling has been limited to hybrid sched-
ulers [12]. Hybrid schedulers employ a set of probe-based distributed schedulers for short
jobs and a single centralized scheduler for long jobs. This enables them to be scalable
and fast under low loads. However, due to a lack of coordination between the various
scheduling components, and the use of probe-based sampling to place jobs, they perform
poorly under high loads as pointed out in previous work [13]. Recent research in the area of
scheduling has highlighted the benefits of employing federated architectures [13,14] over
hybrid schedulers for achieving fast and scalable scheduling. To the best of our knowledge,
the use of federated schedulers in scheduling data center workloads, such as IoT and Big
Data workloads, with task placement constraints remains unexplored. The objective of this
paper is to address this research gap by studying the performance of federated schedulers
in the constraint-aware context.

Federated scheduling architectures split the DC into multiple autonomously managed
clusters. A top-level scheduler acts as a load balancer and directs tasks to one of the
clusters based on some heuristic. Thus, the scheduling load is distributed across these
clusters to achieve speed and scalability. Megha, introduced in our previous work [15,16],
is a scalable federated scheduler that uses eventual consistency to make fast scheduling
decisions with low scheduling overheads. Pigeon [13] and Hydra [14] are the state of the
art in federated scheduling. Hydra is Microsoft’s proprietary software and is not available
to us for performance comparison. We therefore limit our comparisons to Megha and
Pigeon. In our prior work on federated scheduling [15], we compared the performance
of Megha with Pigeon with the use of cluster traces. However, the tasks in the cluster
traces did not have any task placement constraints, and the comparison was made with the
assumption that the resources were homogeneous. In our current work, we implement a
constraint-aware version of Pigeon, known as PigeonC. We compare PigeonC with Megha
using cluster traces enriched with task placement constraints. We also do away with the
homogeneity assumption by assigning machine constraints to resources.

In this paper, we assess the performance of federated schedulers for workloads with
constraints. We use publicly available cluster traces and synthetically generated traces,
augmented with placement constraints, to study the performance of the two architectures.
The contributions of the paper are:

1. A modified variant of the Pigeon scheduler, named PigeonC. This extension involves
fundamental changes to the design to enable Pigeon’s architecture to address task
placement constraints;

2. Numerous architectural improvements to Megha’s original architecture. The enhance-
ments are geared towards improving job response time and scheduling efficiency;

3. A comprehensive explanation of how placement constraints and machine constraints
can be represented, and the data structures used to store them;

4. Two constraint-matching approaches supported by a rationale for their suitability
within the context of Megha and PigeonC;

5. A performance comparison of Megha and PigeonC using synthetic and real-world
cluster traces. Our results demonstrate that Megha significantly outperforms Pi-
geonC, achieving a minimum tenfold reduction in the 99th percentile delays in job
response time;

6. A recommendation of scheduling architecture to be used for IoT workloads and the
constraint-matching approach suitable for each architecture.

IoT 2023, 4 536

The rest of the paper is organized as follows: Section 2 briefly describes the archi-
tectures of Megha and Pigeon, as well as the algorithm used to augment the traces with
placement constraints. In Section 3, we give a brief overview of related work in the field of
DC scheduling. In Section 4, we delve into the constraint representation matching algo-
rithms. Section 5 offers a detailed overview of the experimental setup, including the cluster
traces used, and configuration parameters. Section 6 presents the results of our experiments.
We discuss the trends observed in the results and their implications in Section 7. We finally
summarize the findings of the paper in Section 8.

2. Background

In this section, we give an overview of the scheduling architectures of Pigeon and
Megha. We also briefly summarize the process used to create workloads with constraints.

2.1. Megha’s Architecture

Megha [15,16] is a fast, scalable DC scheduling architecture that relies on eventual
consistency to provide its multiple scheduling entities with a low overhead and global
view of DC resource availability. The two key components of its architecture are Global
Managers (GMs) and Local Managers (LMs). Like other federated scheduling architec-
tures [13,14], Megha divides the DC into multiple logical clusters, each managed by an
LM. A representation of Megha’s architecture is shown in Figure 1a. Each cluster is further
divided into sub-clusters. The LM serves as a centralized scheduler and maintains complete
and up-to-date information on resource availability within its cluster. It is also responsible
for handling failures in both tasks and nodes, as well as sharing the current state of its
cluster with all the GMs.

GM 1 GM 2 GM 3

LM A LM B LM C

status update
messages &

task mappings

task
launch

message

Job
Queue

Job
Queue

Job
Queue

(a) Megha’s architecture

Distributor 1 Distributor 2 Distributor 3

Master A Master B Master C

task launch
message

Job
Queue

distribute
tasks

(b) Pigeon’s architecture

Figure 1. A representation of the architectures of (a) Megha and (b) Pigeon. In (a), GM stands for
Global Manager, and LM stands for Local Manager.

On the other hand, the GM is solely responsible for matching tasks with the required
resources. Each GM is assigned one sub-cluster, referred to as the GM’s ‘internal partition’,
under each LM. The other partitions in the LM’s cluster are known as ‘external partitions’.
In Figure 1a, a GM and its internal partitions are shown in the same color palette.

GMs gather resource availability information from various LMs and aggregate it to
create a global view of resource availability in the DC. However, GMs are not immediately
informed of changes in an LM’s cluster. They learn about these changes through periodic

IoT 2023, 4 537

heartbeats and other forms of communication. This delay can result in a situation where an
LM’s cluster’s resource availability changes, but the GM is not promptly made aware of
this change. In such cases, the GM may make invalid scheduling decisions by assigning a
task to unavailable resources.

To prevent tasks from queuing at the wrong resources chosen by the GM, Megha
employs a validation step. When a GM establishes a mapping between tasks and resources,
it sends this mapping to the LM responsible for the resource for validation. If the LM
identifies the mapping as invalid, indicating that the requested resource is unavailable, it
responds to the GM with a message to this effect. Additionally, the LM also piggybacks
the current resource availability information of its cluster on this message. Subsequently,
the concerned GM updates its resource availability information and retries scheduling the
task. GMs always start the search for resources in their internal partitions before checking
external partitions. This ordering reduces the number of invalid requests, particularly
under moderate load, and diminishes the likelihood of multiple GMs scheduling tasks on
the same resource.

With multiple GMs and LMs operating in parallel, this architecture is fast and scalable,
accommodating up to a hundred thousand nodes. Access to global resource availability
information reduces unnecessary queuing delays, leading to increased resource utilization
and shorter job response times.

2.2. Pigeon’s Architecture

Pigeon [13], similarly to Megha and Hydra [14], organizes the data center’s resources
into smaller logical clusters. This architecture consists of two primary components: Distrib-
utors and Masters. Distributors are responsible for evenly distributing a job’s tasks among
the Masters. Masters, which are analogous to Megha’s LMs, each manage a logical cluster
or group. The Distributors, Masters, and their respective clusters are shown in Figure 1b.
In the figure, the Masters and their clusters share the same colors.

Unlike Megha, in Pigeon, it is the Master, rather than the top-level Distributor, that
creates task-to-resource mappings. When a Master receives a task for scheduling, it seeks
suitable resources within its cluster for task allocation. If no resources are available, the
Master queues the task in its task queue and waits for resources to become free.

Pigeon handles short and long jobs differently. It uses worker reservation for short
jobs and employs weighted fair queuing to select tasks from the Masters’ queues.

With multiple Distributors and Masters working in parallel, Pigeon achieves low job
response time delays at scale. However, since tasks are limited to running on resources
in their Master’s cluster, available resources in a different cluster cannot be utilized by
the task. This results in unnecessary queuing delays and reduced resource utilization. In
contrast, Megha does not restrict tasks to particular clusters. When resources are available
in the data center, GMs use global resource availability information to schedule pending
tasks on resources, regardless of the cluster they belong to.

In our prior work [15], we compared the performance of workloads without constraints
across Megha, Sparrow [17], Eagle [18], and Pigeon. Megha, benefiting from its access
to global availability information and the flexibility to schedule tasks anywhere in the
DC, reported shorter median and average delays compared to the other three schedulers.
It reduced average delays for jobs in the Yahoo workload by factors of 1.25, 2, and 1.35
compared to Sparrow, Eagle, and Pigeon, respectively. For jobs in the Google workload,
Megha achieved even more significant reductions in average delays, with factors of 12.89,
1.52, and 1.7 compared to Sparrow, Eagle, and Pigeon, respectively.

2.3. Real-World and Synthetic Cluster Workloads

In this paper, we utilize both real-world and synthetic cluster traces to generate
workloads. Most publicly available cluster traces lack sufficient information about task
placement constraints or machine constraints. To address this, we rely on constraint distri-
butions published by Sharma et al. [11], which were synthesized from raw cluster traces

IoT 2023, 4 538

generated from Google’s compute clusters. These distributions contain 21 task placement
constraints and corresponding machine constraints. These 21 placement constraints repre-
sent various software and hardware configuration requirements. For instance, constraint
c.1.1 (represented as constraint 0 in our work) signifies a task’s requirement for a specific
machine architecture, although specific architecture details are obfuscated in the trace.
When a machine is assigned constraint 0, it indicates that the machine meets the required
architecture type, satisfying the constraint. If a task is assigned task placement constraint
0, it signifies the task’s need to be scheduled on a machine with constraint 0, indicating
a specific architecture type. Other constraints encode software configurations such as
platform family and hardware requirements like the minimum number of disks, cores, and
Ethernet speed.

The tasks in the workloads, after augmenting them with constraints, carry a combina-
tion of these 21 unique placement constraints. Consequently, a task may have none, one,
or more constraints. Each constraint is represented by a unique numerical constraint ID
ranging from 0 to 20. The DC’s resource load for each constraint in the synthetic workload
is depicted in Figure 2. We have labeled the synthetic workloads and traces in the format
syn_<number>, where <number> denotes the number of tasks, each lasting 1 s, arriving
every second. The resource load for the workload derived from the Yahoo cluster trace [19]
is displayed in Figure 3, and the load for the workload derived from a sub-trace of the
Google cluster trace [20] is shown in Figure 4. The load for each constraint is calculated,
per second, as the ratio of the number of resources required by active tasks needing the
placement constraint to the number of resources in the DC that meet the constraint. Because
the placement constraints assigned to a task are generated from a probability distribution,
the aggregate placement constraints for all active tasks, and therefore the load per constraint
ID, vary from second to second. To capture this variability, we have plotted the average,
median, 95th percentile, and 99th percentile of the load. In these figures, the x-axis indicates
the constraint ID for which the load is calculated.

When calculated per constraint in this manner, the load may appear deceptively low.
This is because the plots assume that for each constraint, there are dedicated resources
that satisfy that constraint and no resources are needed by tasks with other constraints.
However, in reality, machine and task placement constraints are a combination of multiple
constraints; therefore, a resource satisfying one constraint may also fulfill others. As a
result, multiple tasks may require the same worker node. For example, a machine that
meets the requirement of one task for a minimum of 4 cores might also meet another task’s
requirement for a minimum number of disks. Consequently, the same worker node could
satisfy the constraints of multiple tasks, leading to potential waiting times for those tasks
to access the same worker node. The number of such conflicts, where multiple tasks wait
for a worker node to become available, impacts queuing times and, therefore, the delay
in job response times. The number of such conflicts encountered by the scheduler each
second while scheduling the synthetic workloads is shown in Figure 5. It is important to
note that these calculations make two assumptions: first, that tasks have the flexibility to
switch to another worker node when needed, and second, that tasks do not experience
any delays that might cause their execution to extend into the next few seconds. This
scenario represents an idealized view of scheduling complexity and provides insight into
the reasons behind higher job response time delays in workloads with constraints.

IoT 2023, 4 539

(a) Average per-constraint load (b) Median per-constraint load

(c) 95th percentile per-constraint load (d) 99th percentile per-constraint load

Figure 2. Per-constraint load applied on the DC by the synthetic trace workloads. syn_250, syn_500,
and syn_1000 are the synthetic workloads that have 250, 500 and 1000 tasks, of 1s duration, arriving
each second, respectively.

Figure 3. Per-constraint load of the Yahoo workload.

IoT 2023, 4 540

Figure 4. Per-constraint load of the Google workload.

Figure 5. Scheduling conflicts encountered while scheduling the 3 synthetic workloads: syn_250,
syn_500, and syn_1000. number in syn_<number> indicates the number of tasks arriving every second.

Another factor that impacts queuing times, regardless of placement constraints, is
the overall load on the resources of the DC. This load is calculated as the ratio of the
total number of resources required to the total number of resources present in the DC,
calculated per second. For the synthetic workloads and the real-world workloads, the
median, average, and 99th percentile loads are shown in Table 1. The Yahoo workload
exhibits the highest load, with the 99th percentile exceeding 1. This indicates that, during
the execution of the workload, the demand for resources outweighs the supply, leading to
queuing. In such cases, queuing is inevitable. The other workloads, in the decreasing order
of 99th percentile load, are syn_1000, Google, syn_500, and syn_250.

Table 1. The median, average, and 99th percentile load of the workloads generated from the clus-
ter traces.

Cluster Trace Median Load Average Load 99th Percentile Load

Yahoo 0.30 0.33 1.08

Google 0.0032 0.05 0.77

syn_250 0.025 0.025 0.025

syn_500 0.05 0.05 0.05

syn_1000 0.1 0.1 0.1

IoT 2023, 4 541

2.4. Metrics

Job response time (JRT) is a widely used metric for comparing the performance of
different scheduling frameworks [12,13,18,21]. In our work, we use the delay in job response
time to compare scheduler performance. The delay is calculated as follows:

delay = Actual JRT − Ideal JRT (1)

Here, delay represents the delay in job response time, and Ideal JRT is the time taken
from the submission of a job at the scheduler to its completion in the absence of delays.
Actual JRT is the job response time (the time between submission and completion of a job)
including the delays encountered, such as execution delay, queuing delay, processing delay,
and communication delay. Most of these delay components are inherent to the scheduling
framework, making the delay in job response time a valuable metric for assessing scheduler
performance in a workload-agnostic manner. Lower delays not only signify improved task
performance, but also indicate higher resource utilization. This is because, when there
is a scope for delays to be reduced, it suggests that idle resources are waiting for task
assignments. The result of the reduction in queuing delays is fewer idle resources, which
means higher resource utilization. Enhanced resource utilization is a crucial metric for data
center service providers as it leads to a better return on investment.

In addition to delays in JRT, we also use the utilization of the workloads reported
under each scheduler to compare the scheduling efficiency and analyze the cause of the
delays in JRT. Utilization% for a workload, at a time t is calculated as:

Utilization%(t) =
Rconsumed(t)

Rtotal
(2)

Here, Utilization%(t) represents the resource utilization of the workload at time t,
Rconsumed denotes the number of resource units consumed by all active tasks at time t, and
Rtotal is the total number of resource units the DC contains.

3. Related Works

In this section, we give a brief overview of existing work in the areas of DC scheduling,
and constraint-aware scheduling.

3.1. Data Center Scheduling

Traditionally, schedulers were created with a centralized entity with global resource
availability information [22,23]. However, the centralized design led to the formation of
bottlenecks, limiting the scalability and throughput of the scheduler [14]. To solve this
problem, schedulers [17,24] with greater degrees of parallelism, which used random prob-
ing to achieve high throughput task placements, were developed. These suffered from
the drawback of unnecessary worker-side queuing under high loads as a result of the
parallel scheduling entities working with partial resource availability information. Hybrid
schedulers such as Hawk [21] and Eagle [18] tried to combine the benefits of centralized and
distributed schedulers by employing both kinds in their architecture. While this allowed
the scheduler to handle short and long jobs differently, thereby catering to their specific
performance requirements of low latency and high performance, respectively, the lack
of coordination between the two types of schedulers, as well as among the distributed
schedulers, resulted in poor performance at high loads. To address the increasing require-
ments for speed and scalability, federated schedulers gained popularity [13,14]. These
schedulers divided the scheduling responsibility across multiple autonomous scheduling
entities, which were capable of making independent scheduling decisions without much
coordination. This made the architectures scalable, tolerant to failures, and fast. Megha and
Pigeon are the two federated schedulers studied in this work. Both divide the data center
into multiple smaller clusters, each of which is governed by an autonomous scheduling
entity. The top-level scheduling entities send task requests to the bottom-level scheduling

IoT 2023, 4 542

entities to be fulfilled by the resources in their cluster. This distribution of responsibility
between the two tiers, and the parallelism present in both tiers makes both federated
schedulers scalable and fast. In the case of Megha, the top-level entities operate with a
global view of resource availability, allowing Megha to find idle resources even under
high load.

Hydra [14] is Microsoft’s proprietary federated scheduler that can scale to tens of
thousands of workers, and delivers scheduling speeds of up to 40,000 scheduling decisions
per second. Such high scalability and scheduling throughput are achieved by Hydra by
using a federated architecture that logically divides the DC or large cluster into smaller
sub-clusters. Each sub-cluster is governed by a Resource Manager (RM), which handles the
life cycle of tasks and jobs. The RM collects and aggregates resource availability information
from its worker nodes through periodic heartbeats. It also schedules jobs onto resources
based on configured policies. Each worker node runs a Node Manager (NM) component
that is in charge of the tasks running on that worker node. Since the Resource Manager
is adopted from YARN [23], a centralized resource management architecture, it inherits
the scalability limitations of YARN (∼4000 worker nodes). In addition to the RM and
NM, Hydra contains a single Global Policy Generator that is in charge of deciding the
scheduling policy to be used by the different sub-clusters, Routers that distribute jobs to
different sub-clusters, and the AM–RM Proxy. The AM–RM Proxy runs on each worker
node and allows jobs to span multiple sub-clusters by posing as the application manager
(AM) requesting resources from different RMs, and also acting as an RM when a job’s AM
requests for resources. Unlike Megha and Pigeon, the federated cluster managers in Hydra
communicate with one another to coordinate the placement of tasks. Additionally, the
top-level component, the GPG, unlike the GM or the Distributor, is not actively involved
in the scheduling of each individual job or task. Since Hydra is Microsoft’s proprietary
software, we were unable to compare the performance of Hydra with Megha and PigeonC
in a constraint-aware setting.

3.2. Constraint-Aware Scheduling

Cloud computing has been used extensively across different domains. This has
resulted in heterogeneous DCs with specialized hardware and software, as well as heteroge-
neous workloads [25]. For a scheduler to make the most of its infrastructure and guarantee
the required job performance, it is crucial that the scheduler be aware of the heterogeneity
of the DC’s resources [26]. Nevertheless, workloads with constraints introduce unique
challenges [27]. They can result in an increase in job delays by a factor of 2 to 6 [11].

Phoenix [12] is a constraint-aware, hybrid scheduling architecture, which employs
a centralized scheduler for long jobs and distributed schedulers for short jobs. Phoenix
periodically calculates the ratio of the demand and supply for each constraint on each
worker. It then uses these values to estimate the wait times of the tasks queued at each
worker. When the wait time of a worker queue crosses a threshold, Phoenix reorders
the tasks in the queue based on the ratio calculated earlier. Phoenix improves the 99th
percentile response times of jobs by a factor of 1.25 and 1.9 when compared to Hawk-C
and Eagle-C, respectively. Hawk-C and Eagle-C are constraint-aware versions of hybrid
schedulers Hawk [21] and Eagle [18] implemented by the authors for comparison. The
scheduling process followed by the constraint-aware versions of the hybrid schedulers has
not been described by the authors. As mentioned earlier, hybrid schedulers suffer from the
limitation of being unable to find idle worker nodes at high loads.

To the best of our knowledge, incorporating constraint-awareness in scheduling archi-
tectures halted at hybrid architectures. Hierarchical/federated schedulers such as Hydra
and Pigeon have not been evaluated for constraint-awareness, even though they have
proved to perform better than hybrid schedulers. In this paper, we evaluate Megha and
PigeonC, two constraint-aware federated schedulers, with real-world and synthetic work-
loads. Neither PigeonC nor Megha employs worker-side queuing; they send tasks to idle
worker nodes only. In hybrid approaches such as Phoenix, tasks are queued at worker

IoT 2023, 4 543

nodes based on heuristics, such as task runtime estimates or worker queue lengths, to
determine at which workers a task is likely to incur lower queuing delays. However, such
estimates cannot accurately determine the worker node at which the task is guaranteed to
experience the smallest queuing delay. Moreover, while the scheduling entities in Phoenix
also aggregate and periodically update a local copy of the global resource availability infor-
mation to make scheduling decisions, unlike Megha, they do not employ a validation step
that prevents tasks from being queued at busy workers as a result of stale state stored in
the scheduling entity. This inconsistency can lead to unnecessary queuing delays. Neither
Megha nor Pigeon uses probe-based sampling to find idle workers. Instead, they split
the data center into multiple clusters, each of which has a master governing the cluster
autonomously. Each master has complete resource availability knowledge of its own cluster.
In Pigeon, the master uses this resource availability information to allocate resources to
tasks such that there is no worker-side queuing. In Megha, the top-level scheduling entities
use global resource availability information to map tasks to resources anywhere in the
data center, and the cluster masters (Local Manager) validate the task placements. This
approach not only removes the need for worker-side queuing, but the additional flexibility
in task placement also reduces queuing at the scheduler and improves resource utilization
of the data center.

Medea [28] is a scheduler with an architecture similar to a hybrid architecture. It
has one scheduler to schedule long-running applications and a traditional task-based
scheduler for other tasks. Medea requires constraints to be captured in the form of tags,
which also allows for flexibility in specifying constraints such as affinity, anti-affinity, and
cardinality. Neither Megha nor PigeonC considers placement constraints related to co-
located tasks. We want to evaluate this aspect of constraint-based scheduling in the future.
The long-running application scheduler uses integer linear programming to model the
task placement problem with a set of constraints. Medea, however, does not accommodate
placement constraints in shorter tasks. The authors suggest that some heuristics be used
in the task-based schedulers to cater to such tasks, without overloading the long-running
application scheduler.

George [29] is a reinforcement learning-based scheduler specifically designed for long-
running applications. George is both interference and constraint-aware. It uses a projection-
based proximal policy optimization algorithm along with integer linear optimization
techniques to filter the action space. The scheduler also uses transfer learning by leveraging
the fact that scheduling events are similar and therefore, the training need not start from
scratch and can instead use a base model. This significantly reduced the training time.
When compared to Medea, George not only reduces the training time by a factor of 16 but
also reduces constraint violations by a factor of 8.5. Medea also reports 23% lower container
requests per second. This is attributed to George’s awareness of inter-container interference.
Megha does not discriminate between tasks of varying durations, while PigeonC treats
shorter jobs with higher priority. PigeonC uses weighted fair queuing while choosing tasks
to schedule, thereby prioritizing tasks from short jobs and reducing their queuing delay.

Tetrisched [30] is a heterogeneity-aware scheduler, that leverages runtime estimates,
generated from information collected by the reservation system, to plan ahead. Task
requirements are captured using a declarative language known as Space-Time Request
Language. Tetrisched periodically constructs a Mixed Integer Linear Programming formu-
lation to update scheduler plans by considering the system as a whole. Tetrisched has been
integrated with the YARN scheduler and has shown higher SLO satisfaction and reduced
latency in best-effort jobs when compared to the state-of-the-art YARN scheduling stack.

Swain et al. [31] define a Constraint Aware Profit Maximization problem in terms of
the revenue generated from a task, the cost of the resources to the service provider, and
the penalty incurred due to missed deadlines. They study the combined effect of task
placement constraints, and deadline constraints on profits and try to maximize the latter
using a profit-based heuristic approach called the Heuristic of Ordering and Mapping for
CAPM problem (HOM-CAPM), which controls task admissions and task allocation. The

IoT 2023, 4 544

approach also involves grouping tasks and machines based on hard constraints, thereby
reducing the number of worker nodes that need to be searched for a particular task. This
approach is only possible when the hard constraints are static and known to the scheduler
beforehand such that mutually exclusive, meaningful groupings can be created. Since
Swain et al. use only the Google cluster trace to evaluate their approach, the assumption
of knowing the hard constraints holds. In our study, the scheduling approach is agnostic
of the type of constraint and therefore can be used without modification for all workload
traces even when machines cannot be grouped. Furthermore, Megha and Pigeon do not
explicitly consider profit maximization and only focus on reducing delays in job response
time. However, this reduction in delays has an impact on the utilization of resources, QoS,
and therefore the revenue, profits, and penalty. Additionally, our work also focuses on the
underlying architecture of the scheduling approach taking into consideration the speed-up
and scalability offered by having multiple scheduling entities working in parallel.

While the authors may not explicitly mention it, the underlying architectures of
George, TetriSched, and HOM-CAPM appear to be centralized. Centralized architectures,
as discussed earlier, have limitations of both bottleneck formation and low scalability.
Megha and PigeonC, on the other hand, have federated architectures involving multiple
scheduling components functioning in parallel, enabling fast and scalable scheduling.

4. Constraint-Aware Scheduling with Megha and PigeonC

In this section, we describe how we have incorporated constraint awareness in the
existing architectures of Pigeon and Megha.

4.1. Representation

In both PigeonC and Megha, we have used bit vectors to represent the machine
constraints and task placement constraints. Let C = (C1, C2, C3, . . . , CK) be the K machine
constraints supported by the DC’s infrastructure. When we say a worker node has a
machine constraint Ck, Ck ∈ C, we mean that the worker node satisfies the task’s hardware
or software requirement encoded as Ck. On the other hand, when we say a task has
a placement constraint Ck, we mean that the task requires that the hardware/software
requirement Ck be met by the worker node; that is, the worker node must have a machine
constraint Ck. Therefore, a task T with a set of placement constraints CT , such that CT ⊆ C,
can only be scheduled on a machine W with machine constraints CW if CT ⊆ CW ; that is, all
the task placement constraints of task T are satisfied by or contained in W’s set of machine
constraints, CW .

4.1.1. Representation in Megha

Megha divides the DC into smaller logical clusters (L1, L2, . . . , LN), where N is the
number of clusters. Each cluster, Li, is further divided into partitions (P1

i , P2
i , . . . , PM

i),
where M represents the number of partitions. We use bit vectors to represent the con-
straints satisfied by the worker nodes in a partition [16]. For a partition Pj

i in cluster i,
we represent the constraints satisfied by the nodes in the cluster as a set of bit vectors
Bj

i = (Bkj
i , B2j

i , . . . , BK j
i). If the partition consists of Q workers, Pj

i = (W1j
i , W2j

i , . . . , WQj
i),

the bit vector for a constraint k, Bkj
i , is an ordered list of Q bits [bk

W1j
i
, bk

W2j
i
, . . . , bk

WQj
i
], where

each bit, bk
Wl j

i
, represents whether or not worker Wl j

i satisfies constraint k. Therefore, if a par-

tition Pj
i , belonging to cluster Li contains five worker nodes W = (W1j

i , W2j
i , W3j

i , W4j
i , W5j

i),

with worker nodes W1j
i , W2j

i , W5j
i satisfying constraint k, then Bkj

i = [1, 1, 0, 0, 1].

4.1.2. Representation in PigeonC

Like Megha, PigeonC also divides its DC into multiple small logical clusters or groups,
(L1, L2, . . . , LN), where N is the number of clusters. However, the clusters in PigeonC
are not divided any further into partitions. Therefore, we represent the constraints sat-

IoT 2023, 4 545

isfied by the nodes in cluster Li = (W1i, W2i, . . . , WQi) as a collection of bit vectors
Bi = (B1i, B2i, . . . , BKi), and each bit vector Bki is an ordered list of Q bits, such that
Bki = [bkW1i , bkW2i , . . . , bkWQi] represents which workers in the cluster satisfy constraint k.
When a bit bkWli , such that bkWli ∈ Bki is set to 0, it means worker Wli does not have/satisfy
the machine constraint Ck. Conversely, when bit bkWli is set to 1, it indicates that the worker
node Wli has/satisfies the constraint Ck.

4.2. Constraint-Awareness in PigeonC

As explained in Section 2.2, Pigeon divides the DC into clusters. The Distributors
receive jobs and distribute the tasks in a job evenly to all the Masters. In PigeonC, the
constraint-aware version of Pigeon, we modify how tasks are distributed to Masters. All
Distributors in PigeonC maintain a data structure, CSi that represents, for each unique set
of machine constraints, the frequency of occurrence of the constraint set in the cluster i. That
is, if workers W11, W21, W31 in cluster L1 have machine constraints (C1, C3, C5), (C1, C2)
and (C4), respectively, and if workers W12, W22 and W32 in cluster L2 have machine
constraints (C2, C4),(C4) and (C2, C4), respectively, the constraint set occurrence for L1
would be:

CS1 = {(C1, C3, C5) : 1, (C1, C2) : 1, (C4) : 1}

Similarly, the constraint set occurrence for L2 would be:

CS2 = {(C2, C4) : 2, (C4) : 1}

When a task T, with task placement constraints CT , needs to be assigned to a Master the
Distributor aggregates the counts of the constraint set occurrences in CSi = (csA, csB, . . . , csS)
for each cluster Li, where csX is the frequency of occurrence of unique constraint set X and
TC ⊆ X. That is, the aggregate count, countC

i of the constraint set occurrence in cluster Li,
TC is:

countC
i = ∑

csX⊆CSi , X⊇TC

csX

The Distributor uses the countC
i as weights, where each weight corresponds to the

availability of constraint sets in each cluster, and uses weighted random selection to pick
a Master. This ensures that the load is distributed as per the supply of the constraint sets
available in each cluster.

Once the task is sent to a Master, the Master uses the matching algorithm described in
the following section to choose an appropriate worker node for the task such that the worker
node has the required resources to run the task and satisfies the placement constraints of
the task.

In addition to the changes mentioned above, we have also removed the reservation of
worker nodes for short jobs, which is a feature present in Pigeon. This was performed to
address the potential issue of indefinite task starvation for long jobs when suitable resources
are only reserved for short jobs. This change ensures better resource utilization and fairness
in job scheduling. PigeonC continues to use weighted fair queuing to give priority to short
jobs over long jobs, if the fair queue weight is FQW, PigeonC tries to schedule one task
from a long job for every FQW number of tasks from short jobs. However, when idle
resources in the DC do not match any of the tasks from the short jobs, PigeonC schedules
suitable tasks from long jobs onto these resources.

4.3. Matching Algorithm

Since both Megha and PigeonC have a bit vector representation of the machine con-
straints, similar algorithms can be used to find a suitable worker node for a task T with
task placement constraints CT . Both architectures employ a greedy matching algorithm
while choosing suitable resources for tasks. Since real-world workloads are unpredictable
in terms of task execution times, task resource demands, and job fan-out degree, finding

IoT 2023, 4 546

an optimal task-to-resource mapping for the set of all the tasks in the workload, such that
queuing delays are optimally minimized, is not realistic. Instead, we consider each task
individually and try to find the best possible resource match for the task. However, for a
particular task, there may be multiple suitable worker nodes. We evaluate two techniques
for choosing a worker node from the set of suitable worker nodes: Random, and Minimum
Constraints. We formally describe the matching algorithms and the heuristic employed to
reduce queuing delays below.

Suppose W is the set of workers in the chosen partition or cluster, in the cases of Megha
and PigeonC, respectively, then, ∀Ci ∈ CT , the corresponding bit-vectors are {Bi |Ci ∈ CT}.
The matching algorithm used in both PigeonC and Megha is depicted in Algorithm 1. The
input to the algorithm consists of the list of bit vectors B, the resource availability vector R,
and the task placement constraints required by a task, CT . The resource availability vector
is a vector of 1s and 0s, which indicates whether or not a worker node, represented by a
single bit at the corresponding index, is available (1) or busy (0). Bit-wise AND operations
are performed on the bit vectors for each task placement constraint in CT , and the resource
availability vector. The time complexity of finding all possible suitable worker nodes in a
partition or cluster, in Megha or PigeonC, respectively, can be represented as:

O(match(T)) = O(n.m) (3)

where n is the number of placement constraints in CT , and m is the number of bits in a
bit-vector Bi, such that Ci ∈ CT . Since all partitions and clusters are of the same size, the
number of bits representing each of them in bit-vector Bi will be the same for a given
DC configuration. However, since the AND operation between the vectors is likely to be
performed at the byte or word level, the time complexity in Equation (3) can be re-written as:

O(match(T)) = O(n.logsizem) (4)

where size represents the number of bits in the operands of the AND operation performed
in the CPU.

Algorithm 1: Matching algorithm.
Data: list of bit vectors B, set of task constraints CT , resource availability vector R
Result: suitable worker node W
// Initialize resultant vector result
result← R;
// Iterate through K bit vectors
foreach i ∈ CT do

result← result AND B[i];
end
suitable_workers← indices of bits set to 1 in result
W ← worker node chosen from suitable workers

After the bit-wise AND operation is performed, the bits set to 1 in the resultant
vector are worker nodes that are suitable for the task. That is, the worker nodes are
available to execute the task and have all the machine constraints required to satisfy the
task’s placement constraints. We have evaluated two approaches, Random and Minimum
Constraints, to choose a worker node from the set of suitable worker nodes.

4.3.1. Random

In this approach, the final worker is selected through uniform random selection. This
means that any suitable worker node has an equal probability of being chosen from the set
of all suitable worker nodes. Using this approach in Megha offers a notable advantage. The
introduction of randomness into worker node selection reduces the likelihood of multiple
GMs selecting the same worker node. When multiple GMs attempt to schedule a task on

IoT 2023, 4 547

the same idle worker node, it results in at least one invalid request because an idle worker
node can execute only one task at a time. Invalid requests lead to communication and
processing overheads. The probability of such invalid requests increases significantly under
high loads due to the limited availability of idle worker nodes.

4.3.2. Minimum Constraints

While the Random approach may help reduce inconsistencies in Megha under high
loads, the performance advantages of this approach might not be as significant in Megha
under low-load conditions or in PigeonC. Workers with a greater number of machine
constraints are inherently more versatile, as they can match a wider range of tasks. Opting
for the Random approach to choose a suitable worker node might be inefficient, as it could
select a worker with a constraint set much larger than the task’s constraints. This could
reduce the pool of suitable worker nodes available for future tasks and potentially lead
to additional queuing delays in task execution. For example, suppose the DC had two
idle worker nodes, workerA, with machine constraints (1, 2, 3, 4), and another worker node,
workerB, with machine constraints (1, 2); then, for a task, task1, with task placement con-
straints (1, 2), both worker nodes would be considered as suitable. Nevertheless, workerA
supports more constraints than workerB. If workerA was chosen at random for task1, and
another task, task2 arrives with task placement constraints (3), task2 cannot execute until
task1 completes because workerB does not satisfy task2’s placement constraints. However,
had workerB been chosen for task1’s execution, then task2 would have been scheduled onto
workerA without any queuing delay. Therefore, to improve the likelihood of finding suit-
able worker nodes for future tasks with placement constraints that are a subset of workerA’s
constraints, we use the Minimum Constraints approach which is similar to the best-fit
algorithm. In this approach, we choose the worker node, from the set of suitable worker
nodes, with the least number of machine constraints. The approach can be represented
as follows:

Wchosen = arg min
W∈Ssuitable

|machine_constraints(W)|

Here, Wchosen is the suitable worker node with the minimum constraints, Ssuitable
is the set of all suitable worker nodes satisfying the task’s placement constraints, and
machine_constraints(W) is a function that returns the number of machine constraints
supported by a worker W. By employing this approach, we do not hinder the task’s
performance because we have already determined the chosen worker node as suitable.
Simultaneously, we enhance the chances of future tasks finding compatible worker nodes.
In the scenario described earlier, workerB has the least number of machine constraints and
would have been chosen for task1, leaving workerA available to execute task2, without
task2 encountering queuing delays.

4.4. Enhancements Made to Megha

In addition to the matching algorithm, Megha’s architecture has undergone a few
enhancements to improve the efficiency of the scheduler and to reduce the job response time
of the workload. The highest contributor to the processing overhead in Megha’s original
architecture [15,16] was the periodic and aperiodic status updates from the LMs to the GMs.
These updates included a comprehensive snapshot of the resource availability information
for the entire cluster and were transmitted to the GMs following inconsistencies or LM
heartbeat intervals. In the revised design, LMs no longer send the GMs the entire snapshot;
instead, they only transmit the changes made to the cluster’s resource availability since
the last status update was shared with the GM. Consequently, separate delta updates are
maintained for each GM.

In the earlier design, one of the causes for inconsistencies was the arrival of a task
completion message indicating that the task has freed resources, closely followed by a
status update message also indicating the same. In such cases, the GM might allocate a
task to the recently freed resources and, upon receiving a status update message again

IoT 2023, 4 548

indicating their availability, mistakenly assign another task to the same resources. This led
to the second request failing in the validation step at the GM resulting in an inconsistency,
prompting yet another status update from the LM. To prevent this issue, status updates
sent to a GM no longer include information about resources that became available due to
the GM’s tasks completing their execution. Instead, this information is conveyed to the GM
through task completion messages.

4.5. Limitations

In our work, we have assumed that all task placement constraints are hard constraints,
meaning that we consider these constraints as requirements rather than preferences (soft
constraints). Furthermore, we do not account for task placement constraints that depend
on the placement of other tasks. For example, we do not address constraints requiring two
tasks to be scheduled on the same machine.

5. Evaluation Setup

In this section, we describe the experimental setup used to compare the performance
of Megha and PigeonC.

Previous studies [12] related to constraint-aware scheduling have relied upon trace-
driven simulation to study the performance of scheduling architectures. We implemented
both Megha and PigeonC on a publicly available trace-driven simulator [32] used in previ-
ous works [13,16–18,21] to evaluate scheduling architectures. We used publicly available
Yahoo cluster trace [19] and a sub-trace of the Google cluster trace [20] along with syn-
thetically generated traces as input to the simulator. The Yahoo cluster trace consisted of
24,262 jobs and 968,335 tasks. The Google cluster sub-trace consisted of 10,000 jobs and
312,558 tasks. The synthetically generated traces consisted of 2000 jobs arriving with a
constant job inter-arrival time of 1 s. Each job was made up of 250/500/1000 tasks that ran
for 1 s each. Therefore, the synthetic traces tested the schedulers’ performance at constant
load. In this paper, the workload generated from the Yahoo cluster trace has been referred
to as the Yahoo workload, the workload from the Google cluster sub-trace as the Google
workload, and from the synthetic traces, as the syn_250, syn_500, and syn_1000 workloads.
The <number> in syn_<number> indicates the number of tasks, of duration 1s, arriving
per second. All the workloads were augmented with task placement constraints.

Following the approach of previous research [13,21,32], we assume the tasks in a
job are independent and do not have inter-task dependencies. Therefore, the value for
Ideal JRT, from Equation (1), was set to the duration of the longest task. That is, in the ideal
scenario with no delays encountered, the job would finish whenever its longest task would.

The DC size for the runs with synthetic cluster traces and the Yahoo cluster trace was
set to 10,000 worker nodes. For the Google cluster sub-trace, it was set to 20,000.

Both Megha and PigeonC were built on a publicly available event-driven simulator
that takes as input a cluster trace. Each line in the cluster trace represents a job in the form
<arrival time, number of tasks, average task duration, duration of task 1, duration of task 2,
duration of task 3, . . .>. The simulator was implemented in Python. The reproducibility of
the simulation study was maintained as long as the seeds to initialize the random number
generator remained unchanged across runs. We used a pseudo-random number generator
from Python’s library while assigning task placement constraints and machine constraints
as per the algorithms published by Sharma et al. [11] and for the Random approach.

For each cluster trace and type of constraint-matching approach, we conducted sim-
ulations for both Megha and PigeonC using three different seed values for the random
number generator. Furthermore, we employed distinct configurations for each of the three
runs, resulting in varying constraint assignments to the machines across configurations.
The delays in job response time shown in the next section are the average values of the
delays that were reported in the three runs.

IoT 2023, 4 549

Since PigeonC uses weighted fair queuing, we set the value of FQW to 20 in all the
experiments. This value was chosen based on the results of experiments conducted in a
previous work [13], which showed that Pigeon performed best with this value of FQW.

6. Results

This section reports the results of the experiments conducted with the two schedulers,
Megha and PigeonC, using real-world and synthetic workloads.

The CDF of the average delays in job response time of the various jobs in the synthetic
workloads, Yahoo workload, and Google workload are shown in Figures 6–8. The delays
have been calculated as shown in Equation (1). The figures contain the CDFs of Megha and
PigeonC for the two matching algorithms: Random and Minimum Constraints. The graphs
for Megha are labeled Megha_rand and Megha_min for the CDFs of the delays under Megha
with the Random approach and the Minimum Constraints approach, respectively. Similarly,
the graphs for PigeonC are labeled PigeonC_rand and PigeonC_min for the CDFs of the
delays under PigeonC with the Random and the Minimum Constraints approach, respectively.
In the figures, a graph for a particular scheduler-matching approach combination may not
be visible due to an overlap with the graph of the scheduler with the alternative approach,
indicating that the performance did not vary significantly under the two approaches.

Under PigeonC, the median delays increased with an increase in the load exerted by
the workload. For the Yahoo workload, the median delays were 1281.3 s under the Random
approach and 1161.86 s under the Minimum Constraints approach. In contrast, the Google
workload exhibited much lower median delays, around 1.5 ms under both approaches.
The synthetic workloads displayed similar trends, with marginal differences in median
delays. Specifically, for the syn_250 workload, median delays were 1.003 s (Random) and
1.002 s (Minimum Constraints), while for the syn_500 workload, the values were 507.74 s
(Random) and 520.60 s (Minimum Constraints). The syn_1000 workload experienced
median delays of 1416.88 s (Random) and 1449.3 s (Minimum Constraints). In the case
of the Yahoo workload, the Minimum Constraints approach reduced the 99th percentile
tail latency by approximately 1.05× (∼47,000 s). Meanwhile, for the Google workload
and the syn_500 workload, the Random approach achieved a marginal improvement with
reductions by factors of 1.002 (∼200 s) and 1.03 (∼30 s), respectively. Conversely, for
the syn_1000 workload and the syn_250 workload, the Minimum Constraints approach
slightly outperformed the Random approach with reductions by factors of 1.006 and 1.08,
respectively. Notably, the Random approach led to an 8% reduction in the 99th percentile
delays for the syn_250 workload, although the absolute value of the difference was only
0.3 s.

Under Megha, the median delay was consistently 1.5 ms in all scenarios, except for
syn_1000, where it was 0.67 s (Random) and 0.33 s (Minimum Constraint). The Yahoo
workload exhibited a 30% reduction (∼2000 s) in the 99th percentile delays under the
Random approach compared to the Minimum Constraints approach for one seed value,
while for other seeds, the difference was insignificant. For the syn_250, syn_500, and
syn_1000 workloads, the 99th percentile delay differences between the two approaches
were less than 1s, with a minimal 0.2% reduction for the Google workload under the
Minimum Constraints approach.

Compared to PigeonC, Megha improved the 99th percentile delays in short jobs by a
factor of 5.61 and 5.3 for the Yahoo and Google workloads, respectively. All the jobs in the
synthetic traces were considered to be short jobs since the task durations for all the jobs
were set to 1 s, therefore the short job performance is identical to the overall performance
of the workload.

IoT 2023, 4 550

0 20 40 60 80 10
0

12
0

Delay in job response time (s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Megha_rand
Megha_min
PigeonC_rand
PigeonC_min

(a) syn_250 workload

0
20

0
40

0
60

0
80

0
10

00
12

00

Delay in job response time (s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Megha_rand
Megha_min
PigeonC_rand
PigeonC_min

(b) syn_500 workload

0
50

0
10

00
15

00
20

00
25

00
30

00

Delay in job response time (s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Megha_rand
Megha_min
PigeonC_rand
PigeonC_min

(c) syn_1000 workload

Figure 6. Performance of the synthetic workloads.

IoT 2023, 4 551

20
0,0
00

40
0,0
00

60
0,0
00

80
0,0
00

1,0
00
,00
0

1,2
00
,00
0

1,4
00
,00
0

Figure 7. Performance of the Yahoo workload.

50
,00
0

10
0,0
00

15
0,0
00

20
0,0
00

25
0,0
00

30
0,0
00

35
0,0
00

Figure 8. Performance of the Google workload.

The resource consumption of the workloads was recorded in every experiment and
the resource utilization of the data center was calculated using Equation (2). For both
Megha and PigeonC, the difference in the utilization for the two matching approaches was
consistently less than 0.5%. We have, therefore, taken an average of the utilization reported
for each scheduler across all runs, regardless of the constraint-matching approach employed.
The mean utilization of PigeonC for each of the workloads, normalized with respect to
Megha’s mean utilization, has been represented in Figure 9. To show the distribution of the
utilization, Figure 10 shows the CDF of the utilization under Megha and PigeonC. Since
the utilization varies insignificantly over the simulation runs with different seed values
and constraint-matching approaches, we have only shown the CDFs for one seed value
and the Random approach.

IoT 2023, 4 552

13.22%

88.70%

47.57%

94.51%
99.94%

0%

20%

40%

60%

80%

100%

120%

Yahoo Google syn_1000 syn_500 syn_250

M
ea

n
U

til
iza

tio
n

w
rt

 M
eg

ha

Workload

Figure 9. PigeonC’s utilization normalized with respect to Megha’s utilization

(a) Yahoo workload (b) Google subtrace workload

(c) syn_250 workload (d) syn_500 workload

(e) syn_1000 workload

Figure 10. Utilization of the synthetic workloads recorded under Megha and PigeonC.

IoT 2023, 4 553

7. Discussion

In this section, we discuss the performance in terms of delay in job response time under
the two scheduling architectures and examine the performance of the workloads under the
two matching approaches, while also considering the relevance to IoT applications. The
key findings have been summarized in Table 2.

Table 2. Summary of Key Findings and Recommendations

Findings & Recommendations Description

Finding 1: Megha Outperforms PigeonC
Our experiments consistently show that Megha outperforms PigeonC. The me-
dian job response time delay in Megha was at least an order of magnitude lower
than in PigeonC.

Finding 2: Significant Variation Seen in Job Re-
sponse Time under Both Schedulers

The 99th percentile of the delay in job response time was found to be 3 to 6 orders
of magnitude higher than the median delay.

Finding 3: Megha Reports Higher Utilization
Compared to PigeonC

Across all workloads, Megha recorded a higher average utilization than PigeonC.
The difference was more prominent for workloads exerting higher loads.

Finding 4: Megha Performs Better with Ran-
dom Approach

For the Yahoo workload, which exerts the highest load, the delays reported
under the Minimum Constraints approach were 1.29x higher than the Random
approach. For other workloads, the difference was not significant.

Finding 5: PigeonC Performs Better with Mini-
mum Constraints Approach

For the Yahoo workload, PigeonC recorded a 10% improvement in job delays
under the Minimum Constraints approach over the Random approach. The
difference was not significant for the other workloads.

Recommendation: Using Megha with the Ran-
dom Approach for IoT workloads

Scheduling IoT workloads with Megha will result in consistent and predictable
delays and higher utilization of resources.

Finding 1: Megha Outperforms PigeonC

The experimental results consistently demonstrate that Megha outperforms PigeonC
across all workloads, irrespective of the matching approach used. Specifically, the median
job response time delay is at least an order of magnitude lower in Megha when compared
to PigeonC. PigeonC exhibited a wide range of job response time delays, spanning from
milliseconds to the order of 106 s. In contrast, Megha maintained job response time delays
below 1.5× 104 s, with the highest delays observed in workloads with greater loads.

This performance gap can be attributed to several key factors. In Megha, GMs schedule
tasks with global resource availability knowledge, and flexibility to place tasks anywhere
in the DC. In contrast, PigeonC’s Distributors and Masters do not have the same degree of
flexibility and resource awareness. The Distributors are fast, load-balancing entities that
work in parallel to distribute the tasks to different Masters. Supplying Distributors with
up-to-date, complete resource availability information would impose a significant burden
in terms of communication and processing overhead. Therefore, PigeonC’s Distributors rely
on the distribution of constraints within Masters’ clusters when assigning tasks. Although
Masters in PigeonC possess accurate and current resource availability information within
their clusters, once a task reaches a Master, it is confined to running on resources available
solely within that Master’s cluster. Consequently, even when suitable worker nodes exist in
other clusters capable of satisfying a task’s requirements, the task is unable to utilize those
resources and must wait until resources become available within its designated cluster.
This limitation becomes more pronounced as the per-constraint load increases, leading
to a rise in conflicts. A higher number of conflicts further amplifies the queuing delays
experienced by tasks, contributing to overall job response time delays within PigeonC.

In summary, Megha’s superior performance can be attributed to its GMs having
access to global resource availability information and task placement flexibility. These
two properties help Megha handle higher loads more effectively. PigeonC encounters
difficulties in high-load scenarios primarily due to the limited scheduling scope for tasks
within individual clusters, which leads to an increase in conflicts and queuing delays.

IoT 2023, 4 554

Finding 2: Significant Variation Seen in Job Response Time under Both Schedulers

Under both scheduling architectures, there was considerable variation in the delays
experienced by the jobs in the workloads. While the median of the delay in job response
time remained within a limit of 700 ms and ∼3000 s, under Megha and PigeonC, the 99th
percentile delay was consistently 3 to 6 orders of magnitude higher than the median delay.
This phenomenon can be attributed to multiple factors. Firstly, in the case of the real-world
workloads, the difference in median and 99th percentile load is significant. When the load
is less, the jobs may encounter insignificant delays; however, when the load increases, it
causes delays to cascade, leading to larger queuing delays in jobs that are queued and in
future jobs. Second, as explained earlier, the presence of constraints restricts the number
of available resources for each task, thereby further increasing the ratio of demand to
supply, which results in larger queuing delays. Third, a minimum delay in tasks due to
communication overhead cannot be avoided. Although this delay may appear insignificant
on its own, it can compound over time. This cumulative effect occurs as each task that
waits on a resource adds its own portion of the minimum delay to the queue, impacting all
subsequently scheduled tasks that require the same resource.

Finding 3: Megha Reports Higher Utilization Compared to PigeonC

As previously discussed, delays in job response time directly impact the resource
utilization of the data center. In all the scenarios, Megha consistently reported a higher
average utilization compared to PigeonC. The limited flexibility in PigeonC led to more
idle resources, resulting in a lower utilization when compared to Megha. However, for the
workloads with lower resource demands per second (as in the case of syn_250 and syn_500
workloads), the difference in utilization was less pronounced. This is because when task
resource demands are lower, PigeonC can successfully accommodate each task within its
assigned cluster without significant wait times, mitigating the impact of the inflexibility in
task placement seen in PigeonC.

Finding 4: Megha Performs Better with Random Approach:

From the results of the experiments, it is apparent that the Yahoo workload, which ex-
erts the highest load on the DC’s resources, responds differently to the constraint-matching
approaches compared to the other workloads. In the case of Megha, both constraint-
matching approaches yielded identical median delays for the Yahoo workload. However,
the 99th percentile delay was 1.29 times higher (approximately 2000 s) under the Minimum
Constraints approach compared to the Random approach. This can be attributed to the
higher load of the Yahoo workload (99th percentile load of approximately 1.1) and the
reduced inconsistencies due to increased randomness, as discussed in Section 4.3.1.

Finding 5: PigeonC Performs Better with Minimum Constraints Approach

Under PigeonC, the results are reversed. For the Yahoo workload, the Minimum Con-
straints approach improved the 99th percentile delays by a factor of 1.1 (1.98× 104 s). This
is because, the scheduling entity in PigeonC, unlike Megha, possesses comprehensive and
accurate information about resource availability in its clusters. Consequently, it does not
need to address issues related to inconsistencies and conflicting scheduling decisions, which
are mitigated by randomness. Instead, the Minimum Constraints approach in PigeonC
reduces resource wastage of valuable machines with numerous constraints, enhancing the
likelihood of future tasks finding suitable resources without queuing, thus reducing delays.

The difference in performance between the two approaches was less significant for the
other workloads. For example, in the Google workload, which has a lower 99th percentile
load than the Yahoo workload, the difference in the performance of Megha under the two
approaches was not significant (ratio of 99th percentile delay approximately 0.98). This is
because the advantages of the randomness approach were offset by resource wastage when
selecting worker nodes with more constraints than required.

IoT 2023, 4 555

Recommendation:

Since IoT workloads are known to be unpredictable, we recommend using Megha,
configured with the Random approach, to schedule the workloads in both edge and cloud
data centers. This will make job response times more consistent and lower than with
PigeonC. Additionally, it will also improve the utilization of the data center’s resources.
However, if the data center has little variation in workload patterns and rarely experi-
ences high load, the difference in performance between Megha and PigeonC, with either
constraint-matching approach, would not be significant.

8. Conclusions

To meet the demands of increasing data and processing complexity brought on by
the proliferation of IoT and artificial intelligence applications, modern data centers must
rely on heterogeneous infrastructure. To fully leverage the potential speed-ups offered by
hardware such as GPUs and FPGAs, data center schedulers must be aware of infrastructure
heterogeneity and the constraints imposed by the workloads.

This paper comprehensively explores federated scheduling architectures for heteroge-
neous workloads with task placement constraints. Two such architectures, PigeonC and
Megha, are discussed in detail. PigeonC is a modified variant of federated scheduling
architecture, Pigeon, with constraint-awareness, while Megha is enhanced for efficient
handling of constraint-rich workloads. Additionally, we study the performance of two
constraint-matching approaches, the Random and Minimum Constraints approaches.

Our experiments with real-world and synthetic cluster traces show that Megha reduces
the 99th percentile delays in job response times of the workloads by at least a factor of
10 when compared to PigeonC. Megha, particularly when using the Random approach,
outperforms the Minimum Constraints approach, yielding 1.29 times lower delays in job
response times. Conversely, under high load conditions, PigeonC shows a 10% reduction in
job response time delays when employing the Minimum Constraints approach compared to
the Random approach. However, under lower loads, both approaches deliver similar levels
of performance. We recommend that Megha be used with the Random constraint-matching
approach for IoT workloads with stringent latency requirements.

In our future work, we would like to study the performance of federated architectures
when scheduling workloads with constraints involving inter-task dependencies and data
locality preferences.

Author Contributions: Conceptualization, S.K. and D.S.; methodology, D.S. and M.T.; software,
M.T.; validation, M.T., S.K. and D.S.; formal analysis, M.T.; investigation, M.T.; data curation, M.T.;
writing—original draft preparation, M.T.; writing—review and editing, S.K.; visualization, M.T.; su-
pervision, D.S. and S.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Simulator code and cluster traces are available in a publicly accessible
repository that does not issue DOIs: https://github.com/meghanat/megha-constraint-aware.git
(accessed on 1 November 2023).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Dang, L.M.; Piran, M.J.; Han, D.; Min, K.; Moon, H. A survey on internet of things and cloud computing for healthcare. Electronics

2019, 8, 768. [CrossRef]
2. Zantalis, F.; Koulouras, G.; Karabetsos, S.; Kandris, D. A review of machine learning and IoT in smart transportation. Future

Internet 2019, 11, 94. [CrossRef]
3. Farooq, M.S.; Riaz, S.; Abid, A.; Umer, T.; Zikria, Y.B. Role of IoT technology in agriculture: A systematic literature review.

Electronics 2020, 9, 319. [CrossRef]
4. Xu, J.; Gu, B.; Tian, G. Review of agricultural IoT technology. Artif. Intell. Agric. 2022, 6, 10–22. [CrossRef]
5. Ning, H.; Li, Y.; Shi, F.; Yang, L.T. Heterogeneous edge computing open platforms and tools for internet of things. Future Gener.

Comput. Syst. 2020, 106, 67–76. [CrossRef]

https://github.com/meghanat/megha-constraint-aware.git
http://doi.org/10.3390/electronics8070768
http://dx.doi.org/10.3390/fi11040094
http://dx.doi.org/10.3390/electronics9020319
http://dx.doi.org/10.1016/j.aiia.2022.01.001
http://dx.doi.org/10.1016/j.future.2019.12.036

IoT 2023, 4 556

6. Tang, S. Performance Modeling and Optimization for a Fog-Based IoT Platform. IoT 2023, 4, 183–201. [CrossRef]
7. Tadakamalla, U.; Menascé, D.A. Autonomic resource management using analytic models for fog/cloud computing. In

Proceedings of the 2019 IEEE International Conference on Fog Computing (ICFC), Prague, Czech Republic, 24–26 June 2019;
IEEE: Piscataway, NJ, USA, 2019; pp. 69–79.

8. Yamato, Y.; Demizu, T.; Noguchi, H.; Kataoka, M. Automatic GPU offloading technology for open IoT environment. IEEE Internet
Things J. 2018, 6, 2669–2678. [CrossRef]

9. Kim, C.; Kim, S. Optimizing Logging and Monitoring in Heterogeneous Cloud Environments for IoT and Edge Applications.
IEEE Internet Things J. 2023, early access. [CrossRef]

10. Bian, J.; Al Arafat, A.; Xiong, H.; Li, J.; Li, L.; Chen, H.; Wang, J.; Dou, D.; Guo, Z. Machine learning in real-time internet of things
(iot) systems: A survey. IEEE Internet Things J. 2022, 9, 8364–8386. [CrossRef]

11. Sharma, B.; Chudnovsky, V.; Hellerstein, J.L.; Rifaat, R.; Das, C.R. Modeling and synthesizing task placement constraints in
Google compute clusters. In Proceedings of the 2nd ACM Symposium on Cloud Computing, Cascais, Portugal, 26–28 October
2011; pp. 1–14.

12. Thinakaran, P.; Gunasekaran, J.R.; Sharma, B.; Kandemir, M.T.; Das, C.R. Phoenix: A constraint-aware scheduler for heterogeneous
datacenters. In Proceedings of the 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), Atlanta,
GA, USA, 5–8 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 977–987.

13. Wang, Z.; Li, H.; Li, Z.; Sun, X.; Rao, J.; Che, H.; Jiang, H. Pigeon: An effective distributed, hierarchical datacenter job scheduler.
In Proceedings of the ACM Symposium on Cloud Computing, Santa Cruz, CA, USA, 20–23 November 2019; pp. 246–258.

14. Curino, C.; Krishnan, S.; Karanasos, K.; Rao, S.; Fumarola, G.M.; Huang, B.; Chaliparambil, K.; Suresh, A.; Chen, Y.; Heddaya, S.;
et al. Hydra: A federated resource manager for data-center scale analytics. In Proceedings of the 16th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 19), Boston, MA, USA, 26–28 February 2019; pp. 177–192.

15. Thiyyakat, M.; Kalambur, S.; Chaudhary, R.; Nayak, S.G.; Shetty, A.; Sitaram, D. Eventually-Consistent Federated Scheduling for
Data Center Workloads. arXiv 2023, arXiv:2308.10178.

16. Thiyyakat, M.; Kalambur, S.; Sitaram, D. Megha: Decentralized Federated Scheduling for Data Center Workloads. In Proceedings
of the 2023 15th International Conference on COMmunication Systems & NETworkS (COMSNETS), Bangalore, India, 3–8 January
2023; IEEE: Piscataway, NJ, USA, 2023; pp. 278–286.

17. Ousterhout, K.; Wendell, P.; Zaharia, M.; Stoica, I. Sparrow: Distributed, low latency scheduling. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles, Farmington, PA, USA, 3–6 November 2013; pp. 69–84.

18. Delgado, P.; Didona, D.; Dinu, F.; Zwaenepoel, W. Job-aware scheduling in eagle: Divide and stick to your probes. In Proceedings
of the Seventh ACM Symposium on Cloud Computing, Santa Clara, CA, USA, 5–7 October 2016; pp. 497–509.

19. Chen, Y.; Ganapathi, A.; Griffith, R.; Katz, R. The case for evaluating mapreduce performance using workload suites. In
Proceedings of the 2011 IEEE 19th Annual International Symposium on Modelling, Analysis, and Simulation of Computer and
Telecommunication Systems, Singapore, 25–27 July 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 390–399.

20. Reiss, C.; Wilkes, J.; Hellerstein, J.L. Google Cluster-Usage Traces: Format+ Schema; White Paper; Google Inc.: Menlo Park, CA, USA,
2011; Volume 1, pp. 1–14.

21. Delgado, P.; Dinu, F.; Kermarrec, A.M.; Zwaenepoel, W. Hawk: Hybrid datacenter scheduling. In Proceedings of the 2015
USENIX Annual Technical Conference (USENIX ATC 15), Santa Clara, CA, USA, 8–10 July 2015; pp. 499–510.

22. Hindman, B.; Konwinski, A.; Zaharia, M.; Ghodsi, A.; Joseph, A.D.; Katz, R.; Shenker, S.; Stoica, I. Mesos: A platform for
{Fine-Grained} resource sharing in the data center. In Proceedings of the 8th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 11), Boston, MA, USA, 25–27 April 2011.

23. Vavilapalli, V.K.; Murthy, A.C.; Douglas, C.; Agarwal, S.; Konar, M.; Evans, R.; Graves, T.; Lowe, J.; Shah, H.; Seth, S.; et al.
Apache hadoop yarn: Yet another resource negotiator. In Proceedings of the 4th Annual Symposium on Cloud Computing, Santa
Clara, CA, USA, 1–3 October 2013; pp. 1–16.

24. Hao, C.; Shen, J.; Chen, C.; Zhang, H.; Wu, Y.; Li, M. Pcssampler: Sample-based, private-state cluster scheduling. In Proceedings
of the 2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID), Madrid, Spain, 14–17
May 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 599–608.

25. Reiss, C.; Tumanov, A.; Ganger, G.R.; Katz, R.H.; Kozuch, M.A. Heterogeneity and dynamicity of clouds at scale: Google trace
analysis. In Proceedings of the Third ACM Symposium on Cloud Computing, San Jose, CA, USA, 14–17 October 2012; pp. 1–13.

26. Delimitrou, C.; Kozyrakis, C. Paragon: QoS-aware scheduling for heterogeneous datacenters. ACM SIGPLAN Not. 2013, 48, 77–88.
[CrossRef]

27. Cuomo, A.; Di Modica, G.; Distefano, S.; Puliafito, A.; Rak, M.; Tomarchio, O.; Venticinque, S.; Villano, U. An SLA-based broker
for cloud infrastructures. J. Grid Comput. 2013, 11, 1–25. [CrossRef]

28. Garefalakis, P.; Karanasos, K.; Pietzuch, P.; Suresh, A.; Rao, S. Medea: Scheduling of long running applications in shared
production clusters. In Proceedings of the Thirteenth EuroSys Conference, Porto, Portugal, 23–26 April 2018; pp. 1–13.

29. Li, S.; Wang, L.; Wang, W.; Yu, Y.; Li, B. George: Learning to place long-lived containers in large clusters with operation constraints.
In Proceedings of the ACM Symposium on Cloud Computing, Seattle, WA, USA, 1–3 November 2021; pp. 258–272.

30. Tumanov, A.; Zhu, T.; Park, J.W.; Kozuch, M.A.; Harchol-Balter, M.; Ganger, G.R. TetriSched: Global rescheduling with adaptive
plan-ahead in dynamic heterogeneous clusters. In Proceedings of the Eleventh European Conference on Computer Systems,
London, UK, 18–21 April 2016; pp. 1–16.

http://dx.doi.org/10.3390/iot4020010
http://dx.doi.org/10.1109/JIOT.2018.2872545
http://dx.doi.org/10.1109/JIOT.2023.3304373.
http://dx.doi.org/10.1109/JIOT.2022.3161050
http://dx.doi.org/10.1145/2499368.2451125
http://dx.doi.org/10.1007/s10723-012-9241-4

IoT 2023, 4 557

31. Swain, C.K.; Gupta, B.; Sahu, A. Constraint aware profit maximization scheduling of tasks in heterogeneous datacenters.
Computing 2020, 102, 2229–2255. [CrossRef]

32. EPFL Labos. Hawk/Eagle Simulator. 2017. Available online: https://github.com/epfl-labos/eagle/tree/master/simulation
(accessed on 11 September 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s00607-020-00838-1
https://github.com/epfl-labos/eagle/tree/master/simulation

	Introduction
	Background
	Megha's Architecture
	Pigeon's Architecture
	Real-World and Synthetic Cluster Workloads
	Metrics

	Related Works
	Data Center Scheduling
	Constraint-Aware Scheduling

	Constraint-Aware Scheduling with Megha and PigeonC
	Representation
	Representation in Megha
	Representation in PigeonC

	Constraint-Awareness in PigeonC
	Matching Algorithm
	Random
	Minimum Constraints

	Enhancements Made to Megha
	Limitations

	Evaluation Setup
	Results
	Discussion
	Conclusions
	References

