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Abstract: We present an information geometric analysis of off-resonance effects on classes of exactly
solvable generalized semi-classical Rabi systems. Specifically, we consider population transfer
performed by four distinct off-resonant driving schemes specified by su (2; C) time-dependent
Hamiltonian models. For each scheme, we study the consequences of a departure from the
on-resonance condition in terms of both geodesic paths and geodesic speeds on the corresponding
manifold of transition probability vectors. In particular, we analyze the robustness of each driving
scheme against off-resonance effects. Moreover, we report on a possible tradeoff between speed and
robustness in the driving schemes being investigated. Finally, we discuss the emergence of a different
relative ranking in terms of performance among the various driving schemes when transitioning
from on-resonant to off-resonant scenarios.
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1. Introduction

It is well-known that the resonance phenomenon concerns the amplification that occurs when the
frequency of an externally applied field (for instance, a magnetic field) is equal to a natural characteristic
frequency of the system on which it acts. When a field is applied at the resonant frequency of another
system, the system oscillates at a higher amplitude than when the field is applied at a non-resonant
frequency. In an actual experimental laboratory, off-resonance effects can occur for a number of
reasons. For instance, a common source of off-resonance effects is the presence of unforeseen magnetic
field gradients that are not part of the externally applied magnetic field. These gradients can cause
signal loss and, as a consequence, signals at the “wrong” resonant frequency (that is, off-resonance).
Furthermore, when the intensity of an applied magnetic field gradient is changed in a laboratory,
decaying eddy currents can produce time-varying off-resonant effects [1]. Additionally, the presence
of concomitant gradients can create off-resonance effects in the form of xy-spatial variations in the
Larmor frequency when a magnetic field gradient in the z-direction is applied [2]. For the interested
reader, we discuss two illustrative examples concerning the departure from the on-resonance condition
in the context of classical and quantum mechanics in Appendix A.

The resonance phenomenon happens to play a key role in problems where one seeks to drive
an initial source state towards a final target state. For instance, typical problems of this kind can
be found when controlling population transfer in quantum systems [3–5] or when searching for
a target state [6,7]. In the framework of quantum control theory, it is commonly believed that
an off-resonant driving scheme cannot help achieving population transfer with high fidelity between
two quantum states. However, there do exist theoretical investigations relying on the phenomenon of
superoscillations [8] where population transfer occurs by using only off-resonant driving fields [9].
In particular, during resonant superoscillations, the quantum system is temporarily excited and behaves
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as if truly driven at resonance [9]. Furthermore, the existence of suboptimal transfer efficiencies, caused
by the sequential use of two lasers in order to physically realize a transition from highly excited
Rydberg states to ground states [10,11], leads to question the possibility of transition from a ground
state to the Rydberg state by means of lasers far-off-resonant with respect to the transition frequency.
Indeed, motivated by such possibility, driving schemes specified by periodic square-wells and Gaussian
pulses in order to implement coherent transfer with far-off-resonant driving fields have been proposed
in reference [12].

It is also well-known that on-resonance driving is not a good control strategy for a quantum
system if, from an experimental standpoint, one allows the Rabi frequency (that is, the frequency
that describes the coupling between the driving field and the two-level system) to be higher than
the Larmor frequency (that is, the characteristic transition frequency of the two-level system in the
absence of the external driving field) [13]. This is called the strong driving regime. In such a scenario,
the so-called rotating wave approximation (RWA, [14]) is not applicable and the system is driven
with an external field whose amplitude is greater than or equal to the energy splitting between the
system’s states. For an analysis on the deviation from sinusoidal Rabi oscillations by studying the
time-evolution dynamics of a strongly driven dressed electron spin in silicon, we refer to reference [15].
Furthermore, for an explicit manifestation of strong sensitivity to the initial phase of the driving field
in the dynamics of a general semi-classical Rabi model in regimes of arbitrary strong driving, we refer
to reference [16].

Based upon our considerations, it is clear that off-resonance phenomena exhibit both experimental
(for instance, limited control of spurious electromagnetic signals and strong driving regimes) and
theoretical (for instance, sensitivity to initial conditions and emergence of more complex dynamical
scenarios) interest. In the framework of analog quantum searching, we have recently presented
a detailed investigation concerning the physical connection between quantum search Hamiltonians
and exactly solvable time-dependent two-level quantum systems in reference [7]. In references [17,18],
instead, we analyzed the possibility of modifying the original Farhi-Gutmann Hamiltonian quantum
search algorithm [19] in order to speed up the procedure for producing a suitably distributed
unknown normalized quantum mechanical state provided only a nearly optimal fidelity is sought. In
reference [20], we presented an information geometric characterization of the oscillatory or monotonic
behavior of statistically parametrized squared probability amplitudes originating from special
functional forms of the Fisher information function: constant, exponential decay, and power-law decay.
Furthermore, for each case, we computed both the computational speed and the availability loss of the
corresponding physical processes by exploiting a convenient Riemannian geometrization of useful
thermodynamical concepts. Finally, building upon our works presented in references [7,17,18,20],
we presented in reference [21] an information geometric analysis of geodesic speeds and entropy
production rates in geodesic motion on manifolds of parametrized quantum states. These pure states
emerged as outputs of suitable su (2; C) time-dependent Hamiltonian evolutions used to describe
distinct types of analog quantum search schemes viewed as driving strategies. In particular, by
evaluating the geodesic speed and the total entropy production along the optimum transfer paths in
a number of physical scenarios of interest in analog quantum search problems (for instance, constant,
oscillatory, power-law decay, and exponential decay of the driving magnetic fields), we showed
in an explicit quantitative manner that to a faster transfer there corresponds necessarily a higher
entropy production rate. Thus, we concluded that lower entropic efficiency values do appear to
accompany higher entropic geodesic speed values in quantum transfer processes. Our information
geometric analysis in reference [21] was limited to the case in which the on-resonance driving condition
was satisfied for all quantum driving strategies. However, based upon our previous considerations,
it would be of theoretical interest to investigate from an information geometric perspective the effects
of off-resonance effects on these driving strategies. In particular, we would like to address the
following questions:
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(i) What are the main effects of deviations from the on-resonance condition in these su (2;C)
time-dependent Hamiltonian evolutions?

(ii) Do off-resonance effects modify (with respect to the on-resonance scenario) the relative ranking
in terms of performance (quantified in terms of geodesic speed and/or minimum transfer time)
among the driving schemes being considered?

(iii) Are there driving schemes that are especially robust against deviations from the on-resonance
condition and that, in addition, are capable of reaching sufficiently high fidelity values?

The rest of the paper is organized as follows. In Section 2, we present our driving strategies in
terms of classes of exactly solvable generalized semi-classical Rabi systems. Specifically, we consider
the population transfer performed by four distinct off-resonant driving schemes specified by su (2; C)
time-dependent Hamiltonian models. In Section 3, we propose our information geometric analysis
of off-resonance effects on such classes of systems. For each scheme, we study the consequences of
a departure from the on-resonance condition in terms of both geodesic paths and geodesic speeds on
the corresponding manifold of transition probability vectors. In particular, we analyze the robustness
of each driving scheme against off-resonance effects. Moreover, we report on a possible tradeoff
between speed and robustness in the driving schemes being investigated. Finally, we discuss the
emergence of a different relative ranking in terms of performance among the various driving schemes
when transitioning from the on-resonant to the off-resonant scenarios. Our conclusive remarks
appear in Section 4. Auxiliary illustrative examples together with some technical details are placed in
Appendices A and B.

2. The su(2; C) Quantum Driving

In this section, we introduce our driving strategies in terms of classes of exactly solvable
generalized semi-classical Rabi systems [22,23].

The quantum evolution we take into consideration is specified by means of an Hamiltonian
operator Hsu(2; C) written as the most general linear superposition of the three traceless and
anti-Hermitian generators

{
iσx, − iσy, iσz

}
of su (2; C), the Lie algebra of the special unitary group

SU (2; C),
Hsu(2; C) (t)

def
= a (t) (iσx) + b (t)

(
−iσy

)
+ c (t) ( iσz) . (1)

In Equation (1), a (t), b (t), and c (t) are time-dependent complex coefficients while ~σ
def
=(

σx, σy, σz
)

denotes the Pauli vector operator. In particular, by putting a (t) def
= −iωx (t), b (t) def

= iωy (t),

and c (t) def
= −iΩ (t), Equation (1) yields

Hsu(2; C) (t)
def
= ωx (t) σx + ωy (t) σy + Ω (t) σz. (2)

In the framework of su (2; C) Hamiltonian models, ω (t) def
= ωx (t)− iωy (t) = ωH (t) eiφω(t) and

Ω (t) are the so-called complex transverse field and real longitudinal field, respectively. Obviously,
ωH (t) denotes the modulus of ω (t). In what follows, we assume that longitudinal fields Ω (t) are
oriented along the z-axis while transverse fields ω (t) lie in the xy-plane. Taking into consideration the
quantum evolution of an electron (or, more generally, a spin-1/2 particle) in an external time-dependent
magnetic field ~B (t), the HamiltonianHsu(2; C) (t) in Equation (2) can be rewritten as

Hsu(2; C) (t)
def
= −~µ · ~B (t) , (3)

where ~µ
def
= (e}/2mc)~σ denotes the magnetic moment of the electron with µBohr

def
= |e| }/(2mc) '

9.27× 10−21 [cgs] being the so-called Bohr magneton. The quantity m ' 9.11× 10−31 [MKSA] is the
mass of an electron while |e| ' 1.60× 10−19 [MKSA] denotes the absolute value of the electric charge
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of an electron. Moreover, c ' 3× 108 [MKSA] and } ' 1.05× 10−34 [MKSA] are the speed of light and
the reduced Planck constant, respectively. The magnetic field ~B (t) in Equation (1) can be recast as

~B (t) def
= ~B⊥ (t) + ~B‖ (t) , (4)

with ~B⊥ (t) def
= Bx (t) x̂ + By (t) ŷ and ~B‖ (t)

def
= Bz (t) ẑ. Equating the Hamiltonians in Equations (2)

and (3) and making use of the magnetic field decomposition in Equation (4), the connection between
the set of field intensities {ωH (t) , ΩH (t)} and the set of magnetic field intensities

{
B⊥ (t) , B‖ (t)

}
becomes clear. More specifically, we observe that B⊥ (t) ∝ ωH (t) and B‖ (t) ∝ ΩH (t) def

= |Ω (t)|.
The exact connection between the components

{
Bx (t) , By (t) , Bz (t)

}
and

{
ωx (t) , ωy (t) , Ω (t)

}
is

expressed by

Bx (t) = −
2mc
e} ωx (t) , By (t) = −

2mc
e} ωy (t) , and Bz (t) = −

2mc
e} Ω (t) . (5)

Moreover, in terms of field intensities, we get

B⊥ (t) =
2mc
|e| }ωH (t) , and B‖ (t) =

2mc
|e| }ΩH (t) . (6)

Studying the quantum evolution of an electron governed by the Hamiltonian in Equation (3)
by means of exact analytical expressions of complex probability amplitudes and/or real transition
probabilities from an initial source state to a final target state can be quite challenging. In particular,
the canonical matrix representations of Hsu(2; C) in Equation (2) and U (t), the unitary evolution

operator arising fromHsu(2; C), with i}U̇ (t) = Hsu(2; C)U (t) and U̇ def
= ∂tU , are given by

[
Hsu(2; C)

]
def
=

(
Ω (t) ω (t)
ω∗ (t) −Ω (t)

)
, and [U (t)] def

=

(
α (t) β (t)
−β∗ (t) α∗ (t)

)
, (7)

respectively. The unitarity of the quantum evolution demands that the complex probability amplitudes
α (t) and β (t) fulfill the normalization condition, |α (t)|2 + |β (t)|2 = 1. Once the unitary evolution
operator U (t) in Equation (7) is given, the temporal evolution of a quantum source state |s〉,

|s〉 def
= x |w〉+

√
1− x2 |w⊥〉 , (8)

can be characterized by the following transformation law,(
x√

1− x2

)
→
(

α (t) x + β (t)
√

1− x2

−β∗ (t) x + α∗ (t)
√

1− x2

)
, (9)

with x def
= 〈w|s〉 denoting the quantum overlap. The set of orthonormal state vectors {|w〉 , |w⊥〉}

generate the two-dimensional search space of the N = 2n-dimensional complex Hilbert space Hn
2 .

Therefore, using Equations (7), (8), and (9), the probability that the source state |s〉 transitions into the
target state |w〉 under U (t) becomes

P|s〉→|w〉 (t)
def
= |〈w|U (t) |s〉|2 = |α (t)|2 x2 + |β (t)|2

(
1− x2)+ [α (t) β∗ (t) + α∗ (t) β (t)] x

√
1− x2. (10)

It is evident from Equation (10) that in order to calculate the exact analytical expression of
transition probabilities, one must have the exact analytical formula of the evolution operator U (t)
expressed in terms of the complex probability amplitudes α (t) and β (t). Ideally, having specified
the fields ω (t) and Ω (t) by means of physical arguments, one would solve the coupled system of
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first order ordinary differential equations with time-dependent coefficients emerging from the relation
i}U̇ (t) = Hsu(2; C)U (t) with U (0) = I ,

i}α̇ (t) = Ω (t) α (t)−ω (t) β∗ (t) , and i}β̇ (t) = ω (t) α∗ (t) + Ω (t) β (t) , (11)

where α (0) = 1 and β (0) = 0. However, it is often the case that this general approach does not yield
exact analytical solutions. It is recognized that it is rather difficult to find exact analytical solutions
in time-dependent two-level quantum systems specified by equations as the ones in Equation (11).
A very powerful technique for investigating these types of quantum evolutions is the so-called rotating
coordinates technique. This method, originally proposed by Rabi, Ramsey, and Schwinger in magnetic
resonance problems, can be presented as a three-step technique: First, recast the original problem
from a stationary to a rotating frame of reference by performing a suitable change of coordinates;
second, find the solution to the simplified problem viewed in a rotating frame of reference by means of
rotating coordinates; third, solve the original problem by an inverse transformation from the rotating
to the stationary frame. Usually, the rotating frame of reference rotates about the axis specified by the
magnetic field ~B‖ with the angular frequency characterized by the magnetic field ~B⊥. In quantum
terms, assume that in a static frame of reference the quantum evolution of the qubit is ruled by the
Schrödinger equation,

i}∂t |ψ (t)〉 = H (t) |ψ (t)〉 . (12)

Then, considering a unitary transformation T between two distinct vector bases {|ψ (t)〉} and
{|ψ′ (t)〉}, the Schrödinger equation in the new frame of reference can be written as

i}∂t
∣∣ψ′ (t)〉 = H′ (t) ∣∣ψ′ (t)〉 , (13)

with |ψ′ (t)〉 def
= T |ψ (t)〉 andH′ (t) def

=
[
TH (t) T† + i} (∂tT) T†]. More specifically, assuming that the

unitary transformation T def
= e−iσz

φω (t)
2 is a rotation by an angle φω (t) about the z-axis, the Hamiltonians

in Equations (2) and (3) can be recast as

H′su(2; C) (t)
def
=

[
Ω (t) +

}
2

φ̇ω (t)
]

σz + ωH (t) σx, (14)

and,

H′su(2; C) (t)
def
=

[
− e}

2mc
B‖ (t) +

}
2

φ̇ω (t)
]

σz +
e}

2mc
B⊥ (t) σx, (15)

respectively, where φ̇ω
def
= dφω/dt. In the so-called original Rabi scenario, φω (t) def

= ω0t with the
angular frequency ω0 being a negative real constant while the magnetic field intensities B‖ and B⊥ are
constant. In particular, assuming the so-called static resonance condition,

ω0 =
e

mc
B‖, (16)

the Hamiltonian in Equation (15) specifies a time-independent quantum mechanical problem. Unlike
the original Rabi scenario, in the so-called generalized Rabi scenario proposed by Messina and
collaborators in references [22,23], B‖, B⊥, and φω are arbitrary time-dependent dynamical variables.
In particular, assuming the so-called generalized Rabi condition,

φ̇ω (t) = − 2
}Ω (t) , (17)

the Hamiltonians in Equations (14) and (15) do not yield a time-independent quantum mechanical
problem. Inspired by our research reported in reference [7] and exploiting the findings in
references [22,23], we take into consideration here four quantum mechanical scenarios where the
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transition probability P|w⊥〉→|w〉 (t) from an initial state |w⊥〉 to a final state |w〉, with 〈w⊥|w〉 = δw⊥ , w,
σz |w〉 = + |w〉, and σz |w⊥〉 = − |w⊥〉, can be analytically described. In all four cases, we assume to
be in a physical scenario in which,

φ̇ω (t) = ω0, and Ω (t) = −}
2

ω0, (18)

with ω0 being a negative real constant. We point out that, from a pure mathematical viewpoint, more
general temporal behaviors of φ̇ω (t) and Ω (t) in Equation (18) could have been selected provided
Equation (17) is fulfilled. However, the choice adopted in Equation (18) seems to be more suitable
from an experimental standpoint. The four scenarios can be formally distinguished by means of
the temporal behavior of the intensity ωH (t) of the complex transverse field ω (t). In the first case,
we assume a constant field intensity ωH (t),

ω
(1)
H (t) def

= Γ. (19)

This first case specifies the original Rabi scenario where P|w⊥〉→|w〉 (t) is given by,

P (1)
|w⊥〉→|w〉

(t) = sin2
(

Γ
} t
)

. (20)

In the remaining three cases, we take into consideration three generalized Rabi scenarios where
the field intensity ωH (t) manifests oscillatory, power law decay, and exponential law decay behaviors,

ω
(2)
H (t) def

= Γ cos (λt) , ω
(3)
H (t) def

=
Γ

(1 + λt)2 , and ω
(4)
H (t) def

= Γe−λt, (21)

respectively. Note that ω
(2)
H (t) in Equation (21) is a positive quantity on a temporal scale with

0 ≤ t ≤ (π/2) λ−1. In all three cases, it can be proven that the transition probability P (j)
|w⊥〉→|w〉

(t) is
given by [23],

P (j)
|w⊥〉→|w〉

(t) = sin2

[∫ t

0

ω
(j)
H (t′)
} dt′

]
, (22)

for any j ∈ {2, 3, 4}. Interestingly, being on resonance, the transition probabilities In Equations (20)
and (22) for all four cases depend only on the integral of the transverse field intensity ωH (t).

Before beginning our information geometric analysis, we formally introduce here an adimensional
parameter β0 that quantifies the departure from the on-resonance condition,

β0
def
=

}
2ωH (t)

[
φ̇ω (t) +

2
}Ω (t)

]
. (23)

When β0 assumes a nonzero constant value, the generalized expression of the transition
probability in Equation (22) is given by [23],

P (j)
|w⊥〉→|w〉

(t; β0)
def
=

1
1 + β2

0
sin2

[√
1 + β2

0

∫ t

0

ω
(j)
H (t′)
} dt′

]
. (24)

We emphasize that β0 in Equation (23) is generally a time-dependent quantity. However, in what
follows, we shall limit our information geometric analysis to the case in which β0 is a constant
parameter with transition probabilities given in Equation (24). For further details on the link between
β0 in Equation (23) and its analogue counterpart in the framework of Rabi’s original static off-resonance
condition, we refer to Appendix A.
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3. Information Geometric Analysis

In this section, we present our information geometric analysis of off-resonance effects on the
chosen quantum driving strategies. For each scheme, we analyze the consequences of a departure from
the on-resonance condition in terms of both geodesic paths and geodesic speeds on the corresponding
manifold of transition probability vectors.

3.1. Preliminaries

In order to provide some conceptual background for our forthcoming information geometric
analysis that emerges from quantum driving strategies, we begin by introducing some
preliminary remarks.

Assume to consider an N def
= 2n-dimensional complex Hilbert space Hn

2 together with two
neighboring normalized pure states |ψ (θ)〉 and |ψ′ (θ)〉 where,

|ψ〉 def
=

N

∑
l=1

√
pleiϕl |l〉 and

∣∣ψ′〉 def
=

N

∑
l=1

√
pl + dplei(ϕl+dϕl) |l〉 , (25)

respectively. In Equation (25), {|l〉} with 1 ≤ l ≤ N denotes an orthonormal basis of Hn
2 while

pl = pl (θ) and ϕl = ϕl (θ) are real functions of a continuous real parameter θ. The distinguishability
metric on this manifold of Hilbert space rays is specified by the Fubini–Study metric [24],

ds2
FS

def
=
{

cos−1 [∣∣〈ψ′|ψ〉∣∣]}2
= g(FS)

ab (θ) dθadθb, (26)

where the Fubini–Study metric tensor components g(FS)
ab are related to the Fisher–Rao metric tensor

components Fab (θ) by the condition,

g(FS)
ab (θ) =

1
4

[
Fab (θ) + 4σ2

ab (θ)
]

. (27)

The quantities Fab (θ) and σ2
ab (θ) in Equation (27) are given by,

Fab (θ)
def
=

N

∑
l=1

1
pl (θ)

∂pl (θ)

∂θa
∂pl (θ)

∂θb , (28)

and,

σ2
ab (θ)

def
=

N

∑
l=1

∂ϕl (θ)

∂θa
∂ϕl (θ)

∂θb pl (θ)−
(

N

∑
k=1

∂ϕl (θ)

∂θa pl (θ)

)(
N

∑
k=1

∂ϕl (θ)

∂θb pl (θ)

)
, (29)

respectively. In what follows, we assume that the non-negative term σ2
ab (θ) in Equation (29) (which

denotes the variance of the phase changes) is equal to zero. This working assumption can be justified
by rephasing in a suitable fashion the basis vectors used to write the state |ψ (θ)〉. Specifically,
the rephasing procedure demands that Im [〈ψ (θ) |l〉 〈l|dψ⊥ (θ)〉] = 0, for any 1 ≤ l ≤ N. The state

|dψ⊥〉
def
= |dψ〉 − 〈ψ|dψ〉 |dψ〉 denotes the projection of |dψ〉 orthogonal to |ψ〉where |dψ〉 def

= |ψ′〉 − |ψ〉
while |ψ〉 and |ψ′〉 are given in Equation (25). In summary, for a convenient choice of the basis vectors
{|l〉} used for the decomposition in Equation (25), g(FS)

ab (θ) becomes proportional to Fab (θ) as evident
from Equation (27). We refer to reference [24] for further details. For the sake of completeness,
we emphasize that if the basis {|l〉}satisfies the above mentioned conditions, the basis vectors
can always be rephased so that both 〈l|ψ〉 and 〈l|dψ⊥〉 are real. These latter conditions, in turn,
are reminiscent of the so-called parallel transport conditions that occur in the context of Berry’s
description of a geometric effect in the shape of an additional phase factor emerging after an adiabatic
and cyclic transport of a quantum system [25]. Specifically, in the framework of Berry’s phase analysis
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generalized by Aharonov and Anandan by removing the adiabaticity constraint in the cyclic quantum
evolution [26], it is possible to show that there exists one distinct curve in the Hilbert spaceH fulfilling
the parallel transport conditions. Namely, two neighboring states |ψ (θ)〉 and |ψ (θ + dθ)〉inH have
the same phase, that is to say, 〈ψ (θ) |ψ (θ + dθ)〉 is real and positive. For such a curve, the dynamical
phase vanishes. In summary, for special Hamiltonians that satisfy a special gauge choice (that is,
the parallel transport conditions), the dynamical phase vanishes [27].

In our paper, the parameter θ is the statistical version of the elapsed time t. That is, we assume
θ is a parameter that can be experimentally specified by measurement of a suitable observable that
changes with time (for instance, the transverse magnetic field intensity B⊥ (t)). For further details
on the concept of statistical elapsed time, we refer to reference [28]. In particular, we suppose that
the output |ψ (θ)〉 of a quantum driving Hamiltonian acting on the input defined by the normalized

source state |s〉 def
= |ψ (θ0)〉 can be described as,

|ψ (θ0)〉 7→ |ψ (θ)〉 def
= eiϕw(θ)

√
pw (θ) |w〉+ eiϕw⊥ (θ)

√
pw⊥ (θ) |w⊥〉 . (30)

In general, the normalized output state |ψ (θ)〉 is an element of the two-dimensional subspace
of the n-qubit complex Hilbert space Hn

2 accommodating the source state |s〉 and generated by the
set of orthonormal state vectors {|w〉 , |w⊥〉}. The modulus squared of the probability amplitudes

pw (θ)
def
= |〈w|ψ (θ)〉|2 and pw⊥ (θ)

def
= |〈w⊥|ψ (θ)〉|2 stand for the success and failure probabilities of

the given driving strategy, respectively. Furthermore, ϕw (θ) and ϕw⊥ (θ) denote the real quantum
phases of the states |w〉 and |w⊥〉, respectively. We note that the quantum state |ψ (θ)〉 in Equation (30)
is parameterized by means of a single continuous real parameter that emerges from the elapsed time
of the driving strategy. As previously mentioned, this parameter θ mimics a statistical macrovariable
used to distinguish neighboring quantum states |ψ (θ)〉 and |ψ (θ)〉+ |dψ (θ)〉 along a path through the
space of pure quantum states. In summary, we focus on the space of probability distributions {p (θ)},

|ψ (θ)〉 7→ p (θ) def
= (pw (θ) , pw⊥ (θ)) =

(
|〈w|ψ (θ)〉|2 , |〈w⊥|ψ (θ)〉|2

)
, (31)

where the natural Riemannian distinguishability metric between two neighboring probability
distributions p (θ) and p (θ + dθ) is given by the Fisher–Rao information metric in Equation (28).
For an overview of the use of information geometric techniques to analog quantum search problems,
we refer to references [20,29–31].

In any quantum driving scheme considered in this paper, following references [22,23], we assume
the success probability p0 (θ) and the failure probability p1 (θ) can be recast as

p0 (θ)
def
= A sin2 [Σ (θ)] and, p1 (θ)

def
= 1−A sin2 [Σ (θ)] , (32)

respectively. In Equation (32), the quantity θ denotes the temporal parameter while the quantity A is
defined as

A = A (β0)
def
=

1
1 + β2

0
, (33)

with β0 being the (assumed) constant parameter that quantifies the deviation from the on-resonance
condition. The quantity Σ (θ), instead, specifies the type of driving being considered. The Fisher
information F (θ) corresponding to the probability vector (p0 (θ) , p1 (θ)) is given by [32,33],

F (θ)
def
=

ṗ2
0 (θ)

p0 (θ)
+

ṗ2
1 (θ)

p1 (θ)
, (34)
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with ṗ def
= dp/dθ. Substituting Equation (32) into Equation (34), the Fisher information F (θ) becomes

F (θ)
def
= 4A2

(
dΣ
dθ

)2
{

cos2 [Σ (θ)]

A +
cos2 [Σ (θ)] sin2 [Σ (θ)]

1−A sin2 [Σ (θ)]

}
. (35)

Note that when we are on-resonance, β0 = 0, A = 1, and F (θ) reduces to

F (θ)
def
= 4

(
dΣ
dθ

)2
. (36)

In particular, when Σ (θ) is linear in θ, F (θ) = 4 as reported in reference [20]. Finally, once the
expression of the Fisher information F (θ) is given, the geodesic equation to integrate becomes

d2θ

dξ2 +
1

2F (θ)

dF (θ)

dθ

(
dθ

dξ

)2
= 0. (37)

For more details on how to derive Equation (37) and how to express the quantum mechanical
infinitesimal Fubini–Study line element in terms of the Fisher information and/or the Fisher–Rao
information metric, we refer to reference [20]. For the sake of completeness, we observe that
Equation (37) can be recast as,

θ̈ +
Ḟ

2F θ̇ = 0, (38)

where θ̇
def
= dθ/dξ and Ḟ def

= dF/dξ. Defining w def
= θ̇ and after some straightforward algebraic

manipulations, Equation (38) reduces to

dF
F = −2

dw
w

. (39)

Integration of Equation (39) yields a closed-form implicit relation between the dependent variable
θ and the independent variable ξ,

c (θ, ξ) =
∫ θ(ξ)

θ(ξ0)

√
F (θ)dθ −

∫ ξ

ξ0

a0dξ = 0, (40)

with a0 being a real constant of integration. Equation (40) is an implicit constraint equation between the
variables θ and ξ. Despite the closed-form implicit relation in Equation (40), in what follows we shall
numerically find the geodesic paths satisfying Equation (37) for the four driving strategies defined in
Equations (19) and (21).

3.2. Geodesic Paths

In what follows, after specifying Σ (θ) in Equation (32) and F (θ) in Equation (35), we shall focus
on numerically finding from Equation (37) the geodesic paths θ = θ (ξ) that correspond to the various
off-resonant driving schemes.

3.2.1. Constant Behavior

In the first case , we assume Σ (θ) is defined as

Σ (θ)
def
= Bθ. (41)

Therefore, from Equations (32) and (41), the probabilities p0 (θ) and p1 (θ) are given by

p0 (θ)
def
= A sin2 [Bθ] and, p1 (θ)

def
= 1−A sin2 [Bθ] , (42)
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respectively. In Equation (42), the quantity A is defined in Equation (33) while B is given by

B = B (β0, Γ, }) def
=
√

1 + β2
0

Γ
} , (43)

respectively. In Figure 1, we plot the success probability p0 (θ) versus the temporal parameter θ in
the case of constant driving with the assumption that β0 ∈ {0, 1/4, 1/2, 1}. From Figure 1, we note
that the maximum value of the success probability decreases with respect to increasing values of the
parameter β0. Furthermore, the periodic oscillatory behavior of the success probability is also affected
by nonzero values of β0. In particular, to higher values of β0 there correspond smaller (higher) values
of the period (frequency) of oscillation. In this first case, putting Equation (42) into Equation (35),
the Fisher information becomes

F (off-resonance)
constant (θ)

def
= 4AB2

{
1 + cos (2Bθ)

2−A [1− cos (2Bθ)]

}
. (44)

For the sake of completeness, note that when β0 = 0,A = 1, and F (θ) in Equation (44) reduces to

F (on-resonance)
constant (θ) = 4B2. (45)

Finally, employing Equations (37) and (44), the geodesic equation to integrate becomes

d2θ

dξ2 −
(1−A)B tan (Bθ)

1−A sin2 (Bθ)

(
dθ

dξ

)2
= 0. (46)

The output arising from the numerical integration of Equation (46) is plotted in Figure 2.
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Figure 1. Plot of the success probability p versus the temporal parameter θ in the case of constant
driving for β = 0 (dotted), β0 = 0.25 (dashed), β0 = 0.5 (thin solid), and β0 = 1 (thick solid).

3.2.2. Oscillatory Behavior

In this second scenario, we assume Σ (θ) is given by

Σ (θ)
def
=
B
λ

sin (λθ) . (47)

Therefore, from Equations (32) and (47), the probabilities p0 (θ) and p1 (θ) become

p0 (θ)
def
= A sin2

[
B
λ

sin (λθ)

]
and, p1 (θ)

def
= 1−A sin2

[
B
λ

sin (λθ)

]
, (48)
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respectively. In this case, employing Equation (47), the Fisher information in Equation (35) becomes

F (off-resonance)
oscillatory (θ)

def
=

{
d(A sin2[ Bλ sin(λθ)])

dθ

}2

A sin2
[
B
λ sin (λθ)

] +

{
d(1−A sin2[ Bλ sin(λθ)])

dx

}2

1−A sin2
[
B
λ sin (λθ)

] , (49)

that is, after some straightforward but tedious algebra,

F (off-resonance)
oscillatory (θ) = 8AB2 cos2 (λθ)

cos2
[
B
λ sin (λθ)

]
2−A

{
1− cos

[
2Bλ sin (λθ)

]} . (50)

Observe that when β0 = 0, A = 1, and, recalling that 1 + cos (2x) = 2 cos2 (x), F (θ) in
Equation (50) reduces to

F (on-resonance)
oscillatory (θ) = 4B2 cos2(λθ). (51)

Finally, employing Equations (37) and (50), the geodesic equation to integrate in this second
scenario can be formally written as

d2θ

dξ2 +
1

2Fo (θ)

dFo (θ)

dθ

(
dθ

dξ

)2
= 0, (52)

with Fo (θ)
def
= F (off-resonance)

oscillatory (θ) as in Equation (50). Using a symbolic mathematical software
(Mathematica, for instance) together with the analytical knowledge of what happens in the limiting
case of β0 = 0 [21], Equation (52) can be finally recast as

d2θ
dξ2 −

{
λ tan (λθ) +

(1−A)B cos(λθ) tan[ Bλ sin(λθ)]
1−A sin2[ Bλ sin(λθ)]

}(
dθ
dξ

)2
= 0. (53)

The output emerging from numerically integrating Equation (53) is plotted in Figure 2.
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Figure 2. Numerical plots of the geodesic paths θ versus the affine parameter ξ for the four driving
strategies: Power-law (dotted line), exponential (dashed line), oscillatory (thin solid line), and constant
(thick solid line). In the LHS (left-hand-side), we consider the on-resonance scenario with β0 = 0.
In the RHS (right-hand-side), we consider the off-resonance scenario with β0 = 1/2. In both sides,
we set Γ/} = 1, λ = 2/π, θ0 = 0, and θ̇0 = 1.

3.2.3. Power Law Decay

In this third scenario, we assume Σ (θ) is defined as

Σ (θ)
def
=
B
λ

(
1− 1

1 + λθ

)
. (54)
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Therefore, the probabilities p0 (θ) and p1 (θ) in Equation (32) can be rewritten as

p0 (θ)
def
= A sin2

[
B
λ

(
1− 1

1 + λθ

)]
and, p1 (θ)

def
= 1−A sin2

[
B
λ

(
1− 1

1 + λθ

)]
, (55)

respectively. In this case, the Fisher information in Equation (35) can be formally recast as

F (off-resonance)
power-law-decay (θ)

def
=

{
d(A sin2[ Bλ (1− 1

1+λθ )])
dθ

}2

A sin2
[
B
λ

(
1− 1

1+λθ

)] +

{
d(1−A sin2[ Bλ (1− 1

1+λθ )])
dx

}2

1−A sin2
[
B
λ

(
1− 1

1+λθ

)] , (56)

that is, after some tedious algebra,

F (off-resonance)
power-law-decay (θ) =

4AB2

(1 + λθ)4

1 + cos
(

2 Bθ
1+λθ

)
2−A

[
1− cos

(
2 Bθ

1+λθ

)] . (57)

Once again, for the sake of completeness, we point out that when β0 = 0, A = 1, and F (θ) in
Equation (57) reduces to

F (on-resonance)
power-law-decay (θ) =

4B2

(1 + λθ)4 . (58)

Finally, making use of Equations (37) and (57), the geodesic equation to integrate in this third
scenario can be formally written as

d2θ

dξ2 +
1

2Fpld (θ)

dFpld (θ)

dθ

(
dθ

dξ

)2
= 0, (59)

with Fpld (θ)
def
= F (off-resonance)

power-law-decay (θ) as in Equation (57). Employing a symbolic mathematical software
(Mathematica, for instance) together with the analytical knowledge of what occurs in the on-resonance
case where β0 = 0 [21], Equation (59) can be finally recast as

d2θ

dξ2 −

 2λ

1 + λθ
+

(1−A)B tan
(
Bθ

1+λθ

)
(1 + λθ)2

[
1−A sin2

(
Bθ

1+λθ

)]

(

dθ

dξ

)2
= 0. (60)

In Figure 2, we plot the output that arises from the numerical integration of Equation (60).

3.2.4. Exponential Decay

In this last scenario, we assume

Σ (θ)
def
=
B
λ

(
1− e−λθ

)
. (61)

Therefore, the success and failure probabilities probabilities p0 (θ) and p1 (θ) are given by

p0 (θ)
def
= A sin2

[
B
λ

(
1− e−λθ

)]
and, p1 (θ)

def
= 1−A sin2

[
B
λ

(
1− e−λθ

)]
, (62)

respectively. In this case, the Fisher information in Equation (35) is formally given by

F (off-resonance)
exponential-decay (θ)

def
=

{
d(A sin2[ Bλ (1−e−λθ)])

dθ

}2

A sin2
[
B
λ

(
1− e−λθ

)] +

{
d(1−A sin2[ Bλ (1−e−λθ)])

dx

}2

1−A sin2
[
B
λ

(
1− e−λθ

)] , (63)
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that is,

F (off-resonance)
exponential-decay (θ)

def
= 4AB2e−2λθ

1 + cos
[

2B
λ

(
1− e−λθ

)]
2−A

{
1− cos

[
2B
λ

(
1− e−λθ

)]} (64)

Observe that when β0 = 0, A = 1, F (θ) in Equation (64) reduces to

F (on-resonance)
exponential-decay (θ) = 4B2e−2λθ . (65)

Lastly, using Equations (37) and (64), the geodesic equation to integrate in this third scenario can
be formally written as

d2θ

dξ2 +
1

2Fexp (θ)

dFexp (θ)

dθ

(
dθ

dξ

)2
= 0, (66)

with Fexp (θ)
def
= F (off-resonance)

exponential-decay (θ) as in Equation (64). Making use of a symbolic mathematical
software (Mathematica, for instance) together with the analytical knowledge of what happens in the
limiting case of β0 = 0 [21], Equation (66) can be finally recast as

d2θ

dξ2 −

λ +
(1−A)Be−λθ tan

[
B
λ

(
1− e−λθ

)]
1−A sin2

[
B
λ

(
1− e−λθ

)]

(

dθ

dξ

)2
= 0. (67)

In Figure 2, we report the numerical plots of the geodesic paths θ versus the affine parameter ξ

for the four driving strategies with geodesic equations in Equations (46), (53), (60) and (67). In the
LHS of Figure 2, we consider the on-resonance scenario with β0 = 0. In the RHS of Figure 2, instead,
we consider the off-resonance scenario with β0 = 1/2. In both sides, we set Γ/} = 1, λ = 2/π,
θ0 = 0, and θ̇0 = 1. The most noticeable feature in Figure 2 is the deviation from the straight line
behavior of the geodesic path that emerges from the constant driving scheme when the on-resonance
condition is satisfied. In particular, a first visual comparison of the corresponding plots in the two cases
(on-resonance v.s. off-resonance) seems to suggest that the constant driving scheme might be the
least robust to departures from the on-resonance condition. Indeed, this preliminary remark will be
quantitatively confirmed in our forthcoming information geometric analysis.

3.3. Geodesic Speeds

In what follows, after specifying Σ (θ) in Equation (32) and F (θ) in Equation (35), we shall focus
on finding the geodesic speeds v,

v def
=

1
2

√
F (θ)

dθ

dξ
, (68)

corresponding to the various off-resonant driving schemes. For some technical details on the proof of
the fact that geodesic paths have constant speed, we refer to Appendix B.

3.3.1. Constant Case

In this first case, using Equations (33), (43) and (44), the on-resonance geodesic speed v from
Equation (68) is given by

vON =
Γ
} θ̇. (69)

In the off-resonance regime, instead, the geodesic speed v from Equation (68) can be recast as

vOFF = Γ
}

 1+cos
(

2 Γ
}
√

1+β2
0θ
)

2− 1
1+β2

0

[
1−cos

(
2 Γ
}
√

1+β2
0θ
)]


1
2

θ̇. (70)
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Furthermore, setting Γ/} = 1, θ̇ (ξ0) = θ̇0 = 1, and θ (ξ0) = θ0, vON and vOFF in Equations (69)
and (70) become

v(constant)
ON

def
= 1, (71)

and,

v(constant)
OFF (β0, θ0)

def
=

 1+cos
(

2
√

1+β2
0θ0

)
2− 1

1+β2
0

[
1−cos

(
2
√

1+β2
0θ0

)]


1
2

, (72)

respectively. From Equations (71) and (72), we note that the geodesic speed becomes sensitive to the
initial condition θ0 when departing from the on-resonance scenario in the case of a driving strategy
with constant complex transverse field intensity. Finally, employing Equations (72) and (71), we define
the robustness coefficient as the ratio

rconstant (β0, θ0)
def
=

v(constant)
OFF (β0, θ0)

v(constant)
ON (θ0)

, (73)

that is,

rconstant (β0, θ0) =

 1+cos
(

2
√

1+β2
0θ0

)
2− 1

1+β2
0

[
1−cos

(
2
√

1+β2
0θ0

)]


1
2

. (74)

In Figure 3, we plot the analytical (thin solid) and numerical (filled circle) values of the geodesic
speed vOFF in Equation (70) versus the initial condition θ0 in the case of constant driving. In the plot,
we set β0 = 1/2, Γ/} = 1, and θ̇0 = 1. The plot in Figure 3 clearly illustrates the emergence of the
sensitivity on the initial condition θ0 of the geodesic speed vOFF for the constant driving scheme when
the on-resonance condition is violated. For the sake of completeness, we point out that despite the fact
that this sensitivity is present in the remaining three driving strategies even when the on-resonance
condition is fulfilled, off-resonance effects substantially enhance this sensitivity as evident from our
information geometric analysis of geodesic speeds presented here.
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Figure 3. Plot of the analytical (thin solid) and numerical (filled circle) values of the geodesic speed
vOFF versus the initial condition θ0 in the case of constant driving. In the plot, we set β0 = 1/2, Γ/} = 1,
and θ̇0 = 1.

3.3.2. Oscillatory Behavior

In this second case, making use of Equations (33), (43) and (50), the on-resonance geodesic speed
v from Equation (68) becomes

vON =
Γ
} |cos (λθ)| θ̇. (75)
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In the off-resonance regime, instead, the geodesic speed vOFF is given by

vOFF =
Γ
} |cos (λθ)|


2 cos2

[
1
λ

Γ
}

√
1 + β2

0 sin (λθ)
]

2− 1
1+β2

0

{
1− cos

[
2
λ

Γ
}

√
1 + β2

0 sin (λθ)
]}


1
2

θ̇. (76)

Moreover, letting Γ/} = 1, λ = 2/π, θ̇ (ξ0) = θ̇0 = 1, and θ (ξ0) = θ0, vON and vOFF in
Equations (75) and (76) become

v(oscillatory)
ON

def
=

∣∣∣∣cos
(

2
π

θ0

)∣∣∣∣ , (77)

and,

v(oscillatory)
OFF (β0, θ0)

def
=

∣∣∣∣cos
(

2
π

θ0

)∣∣∣∣


2 cos2
[

π
2

√
1 + β2

0 sin
( 2

π θ0
)]

2− 1
1+β2

0

{
1− cos

[
π
√

1 + β2
0 sin

( 2
π θ0
)]}


1
2

, (78)

respectively. Finally, using Equations (77) and (78), we introduce the robustness coefficient as the ratio

roscillatory (β0, θ0)
def
=

v(oscillatory)
OFF (β0, θ0)

v(oscillatory)
ON (θ0)

, (79)

that is,

roscillatory (β0, θ0) =


2 cos2

[
π
2

√
1 + β2

0 sin
( 2

π θ0
)]

2− 1
1+β2

0

{
1− cos

[
π
√

1 + β2
0 sin

( 2
π θ0
)]}


1
2

. (80)

From Equations (77) and (78), we observe that v(oscillatory)
OFF (β0, θ0) ≤ v(oscillatory)

ON and 0 ≤
roscillatory (β0, θ0) < 1.

3.3.3. Power Law Decay

In this third case, Equations (33), (43) and (57) lead to an expression of the on-resonance geodesic
speed v from Equation (68) given by

vON =
Γ
}

1

(1 + λθ)2 θ̇. (81)

In the off-resonance regime where β0 6= 0, instead, the geodesic speed vOFF from Equation (68)
becomes

vOFF =
Γ
}

1

(1 + λθ)2


1 + cos

(
2 Γ
}
√

1+β2
0θ

1+λθ

)
2− 1

1+β2
0

[
1− cos

(
2 Γ
}
√

1+β2
0θ

1+λθ

)]


1
2

θ̇. (82)

In addition, assuming Γ/h̄ = 1, λ = 2/π, θ̇ (ξ0) = θ̇0 = 1, and θ (ξ0) = θ0, vON and vOFF in
Equations (81) and (82) become

v(power-law-decay)
ON

def
=

1(
1 + 2

π θ0
)2 , (83)
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and,

v(power-law-decay)
OFF (β0, θ0)

def
=

1(
1 + 2

π θ0
)2


1 + cos

(
2
√

1+β2
0θ0

1+ 2
π θ0

)
2− 1

1+β2
0

[
1− cos

(
2
√

1+β2
0θ0

1+ 2
π θ0

)]


1
2

, (84)

respectively. Lastly, employing Equations (83) and (84), we define the robustness coefficient as the ratio

rpower-law-decay (β0, θ0)
def
=

v(power-law-decay)
OFF (β0, θ0)

v(power-law-decay)
ON (θ0)

, (85)

that is,

rpower-law-decay (β0, θ0) =


1 + cos

(
2
√

1+β2
0θ0

1+ 2
π θ0

)
2− 1

1+β2
0

[
1− cos

(
2
√

1+β2
0θ0

1+ 2
π θ0

)]


1
2

. (86)

From Equations (83) and (84), we observe that v(power-law-decay)
OFF (β0, θ0) ≤ v(power-law-decay)

ON and
0 ≤ rpower-law-decay (β0, θ0) < 1.

3.3.4. Exponential Decay

In this fourth and last case, making use of Equations (33), (43) and (64), the on-resonance geodesic
speed v from Equation (68) becomes

vON =
Γ
} e−λθ θ̇. (87)

In the off-resonance regime, instead, the geodesic speed vOFF is given by

vOFF =
Γ
} e−λθ


1 + cos

[
2
λ

Γ
}

√
1 + β2

0
(
1− e−λθ

)]
2− 1

1+β2
0

{
1− cos

[
2
λ

Γ
}

√
1 + β2

0
(
1− e−λθ

)]}


1
2

θ̇. (88)

Assuming Γ/} = 1, λ = 2/}, θ̇ (ξ0) = θ̇0 = 1, and θ (ξ0) = θ0, vON and vOFF in Equations (87)
and (88) become

v(exponential-decay)
ON

def
= e−

2
π θ0 , (89)

and,

v(exponential-decay)
OFF (β0, θ0)

def
= e−

2
π θ0


1 + cos

[
π
√

1 + β2
0

(
1− e−

2
π θ0
)]

2− 1
1+β2

0

{
1− cos

[
π
√

1 + β2
0

(
1− e−

2
π θ0
)]}


1
2

, (90)

respectively. Finally, by means of Equations (89) and (90), we define the robustness coefficient as
the ratio

rexponential-decay (β0, θ0)
def
=

v(exponential-decay)
OFF (β0, θ0)

v(exponential-decay)
ON (θ0)

, (91)

that is,

rexponential-decay (β0, θ0) =


1 + cos

[
π
√

1 + β2
0

(
1− e−

2
π θ0
)]

2− 1
1+β2

0

{
1− cos

[
π
√

1 + β2
0

(
1− e−

2
π θ0
)]}


1
2

. (92)
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In Figure 4, going from left to right, we plot: (L) Plot of the geodesic speeds vON in Equations (69),
(75), (81) and (87) versus the initial condition θ0 with β0 = 0; (C) Plot of the geodesic speeds vOFF in
Equations (70), (76), (82) and (88) versus the initial condition θ0 with β0 = 1/2; (R) Plot of the robustness
coefficients r in Equations (73), (79), (85) and (91) versus the affine parameter ξ. Plots that correspond
to the constant, oscillatory, exponential decay, and power law decay driving strategies appear in
dotted, dashed, thin solid, and thick solid lines, respectively. In all plots, we set Γ/} = 1, λ = 2/π,
and θ̇0 = 1. The plots in Figure 4 help exhibiting the effects of the off-resonance condition on the speed
of geodesic paths that correspond to the variety of driving strategies being considered in this paper.
In particular, we observe that to faster (slower) driving strategies, there seem to correspond smaller
(larger) robustness coefficients. In other words, slower driving strategies appear to be more robust
against departures from the on-resonance condition. The ranking of the various driving strategies is
quite straightforward in the on-resonance condition. However, when departing from this condition,
off-resonance effects lead to a richer set of dynamical scenarios. This, in turn, makes the comparison of
the performance of our chosen driving schemes more delicate. For example, despite our illustrative
depiction in Figure 4, it is possible to uncover two-dimensional parametric regions P (β0, θ0) specified
by the parameters β0 and θ0 where the constant driving scheme is not only the least robust but also the
slowest one. Indeed, we plot in Figure 5 a two-dimensional parametric region P (β0, θ0),

P (β0, θ0)
def
=
{
(β0, θ0) ∈ R+ ×R+ : v(strategy-i)

OFF ≥ v(strategy-j)
OFF and, r(strategy-i) ≥ r(strategy-j)

}
, (93)

with i 6= j ∈ {1, 2, 3, 4} and where the oscillatory (light grey), the exponential decay (grey), and the
power law decay (black) driving strategies outperform the constant driving scheme in terms of both
geodesic speed and robustness. More specifically, in Figure 5 we have

Ppower-law-decay (β0, θ0) ⊆ Pexponential-decay (β0, θ0) ⊆ Poscillatory (β0, θ0) , (94)

and, in addition,

rpower-law-decay (β0, θ0) ≥ rexponential-decay (β0, θ0) ≥ roscillatory (β0, θ0) . (95)
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Figure 4. From left to right: (L) Plot of the geodesic speed vON versus the initial condition θ0 with
β0 = 0; (C) Plot of the geodesic speed vOFF versus the initial condition θ0 with β0 = 1/2; (R) Plot of the
robustness coefficient r versus the affine parameter ξ. Plots that correspond to the constant, oscillatory,
exponential decay, and power law decay strategies appear in dotted, dashed, thin solid, and thick solid
lines, respectively. In all plots, we set Γ/} = 1, λ = 2/π, and θ̇0 = 1.

In all region plots, we set Γ/} = 1, λ = 2/π, and θ̇0 = 1. In addition, the maximum success
probability of each driving scheme is assumed to be greater than 25/26, that is, 0 ≤ β0 . 0.20 in
Figure 5. The main take-home message from Figure 5 is that in the off-resonance scenario it is possible
to uncover two-dimensional parametric regions P (β0, θ0) where the best on-resonance driving scheme
(that is, the constant one) can be outperformed both in terms of speed and robustness.
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Figure 5. Plot of the two-dimensional parametric regions P (β0, θ0) where the oscillatory (light grey),
the exponential decay (grey), and the power law decay (black) driving strategies outperform the
constant driving scheme in terms of both geodesic speed and robustness. Note that the light grey
region contains the grey region while the grey region contains the black region. Furthermore, the black
region specifies a driving strategy more robust than that specified by the grey region while the grey
region specifies a driving strategy more robust than that specified by the light grey region. In all region
plots, we set Γ/} = 1, λ = 2/π, and θ̇0 = 1. Finally, the maximum success probability of each driving
scheme is assumed to be greater than 25/26 ' 0.96, that is, 0 ≤ β0 . 0.20.

4. Conclusions

In this paper, we presented an information geometric analysis of off-resonance effects on classes
of exactly solvable generalized semi-classical Rabi systems. Specifically, we considered population
transfer performed by four distinct off-resonant driving schemes specified by su (2; C) time-dependent
Hamiltonian models. For each scheme, we studied the consequences of a departure from the
on-resonance condition in terms of both geodesic paths and geodesic speeds on the corresponding
manifold of transition probability vectors. In particular, we analyzed the robustness of each driving
scheme against off-resonance effects. Moreover, we reported on a possible tradeoff between speed and
robustness in the driving schemes being investigated. Finally, we discussed the emergence of a different
relative ranking in terms of performance among the various driving schemes when transitioning from
the on-resonant to the off-resonant scenarios.

Our main findings can be outlined as follows.

(1) In the presence of off-resonance effects, the success probability of the various quantum strategies
is affected both in terms of amplitude and periodicity. In particular, focusing on the constant
driving case, the success probability p0 (θ) in Equation (42) is dampened by the Lorentzian-like
factor 1/(1 + β2

0). Moreover, the periodicity of the oscillations of this probability changes from 2π

to 2π/
(
1 + β2

0
) 1

2 . In summary, oscillations become smaller in amplitude but higher in frequency.
These facts are clearly visible in Figure 1.
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(2) Departing from the on-resonance condition (that is, β0 = 0), we observe a change in the geodesic
paths on the underlying manifolds. The presence of off-resonance effects (that is, β0 6= 0) generates
geodesic paths with a more complex structure. In particular, unlike what happens when the
on-resonance condition is satisfied, numerical integration of the geodesic equations is required.
In particular, the numerical plots of the geodesic paths θ versus the affine parameter ξ for the four
driving strategies with geodesic equations in Equations (46), (53), (60) and (67) appear in Figure 2.

(3) Each and every numerical value of the geodesic speeds corresponding to the various quantum
driving strategies considered in this paper becomes smaller when departing from the on-resonance
condition (see Figure 3, for instance). In general, quantum driving strategies characterized by
a high geodesic speed appear to be very sensitive to off-resonance effects. Instead, strategies
yielding geodesic paths with smaller geodesic speed values seem to be more robust against
departures from the on-resonance condition. These observations can be understood from Figure 4.

(4) In the off-resonance regime, there emerges a sensitive dependence of the geodesic speeds on
the initial conditions. This, in turn, can cause a change in the ranking of the various quantum
driving strategies. In particular, the strategy specified by a constant Fisher information is no
longer the absolute best strategy in terms of speed. Indeed, it is possible to find two-dimensional
(2D) parametric regions where this strategy is being outperformed by all the remaining strategies
both in terms of speed and robustness. In general, these 2D regions are more extended for
the less robust strategies (see Equations (94) and (95)). For instance, we can identify 2D
regions where the speed-based ranking becomes: (1) Oscillatory strategy; (2) exponential-law
decay strategy; (3) power-law decay strategy. Instead, considering the very same 2D regions,
the robustness-based ranking is given by: (1) Power-law decay strategy; (2) exponential-law decay
strategy; (3) oscillatory strategy. In these 2D regions, the constant strategy is the worst, both in
terms of speed and robustness. These findings are illustrated in Figure 5.

In conclusion, our information geometric analysis suggests that speed and robustness appear
to be competing features when departing from the on-resonance condition. Ideally, a quantum
driving strategy should be fast, robust, and thermodynamically efficient [34–36]. Since speed and
thermodynamic efficiency quantified in terms of minimum entropy production paths seem to be
conflicting properties as well [20,21], it appears reasonable to think there might be a connection
between robustness and thermodynamic efficiency. We leave the exploration of this conjectured link to
future scientific efforts.
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Appendix A. Violating a Resonance Condition

In this Appendix, we provide two illustrative examples concerning the violation of a resonance
condition.
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Appendix A.1. A Classical Scenario

In the framework of classical mechanics, one can imagine violating a resonance condition in
a number of manners. For instance, consider a mass-spring system in the presence of damping and
sinusoidal forcing term,

mẍ + λẋ + kx = f0 cos (γt) . (A1)

In Equation (A1), ẋ def
= dx/dt. Furthermore, m, λ, k, and f0 denote the mass, the damping

coefficient, the spring constant, and the amplitude of the forcing term, respectively. The classical
resonance curve C (γ),

C (γ) def
=

[(
k−mγ2

)2
+ b2γ2

]−1/2
, (A2)

for this specific physical system is proportional to the amplitude A (γ)
def
= f0C (γ) of the steady-state

solution to Equation (A1). Moreover, the resonance condition γ = γ∗ with

γ∗ = γ∗ (m, k, λ)
def
=

(
k
m
− λ2

2m2

)1/2

, (A3)

is specified by imposing the maximum C̄ def
= C (γ∗) of the resonance curve C (γ) in Equation (A2).

Therefore, we clearly note from Equation (A3) that departures from the resonance condition γ = γ∗

can happen by varying the stiffness (k), the mass (m), and/or the damping (λ).

Appendix A.2. A Quantum Scenario

In the framework of quantum mechanics, one can imagine violating a resonance condition
in a number of manners. For instance, consider a two-level quantum system described by
a time-dependent Hamiltonian,

H (t) def
= H0 + V (t) , (A4)

where H0 is the part of the Hamiltonian H that does not contain time explicitly while V (t) is the
time-dependent sinusoidal oscillatory potential. The quantitiesH0 and V (t) are defined as,

H0
def
= E1 |1〉 〈1|+ E2 |2〉 〈2| , V (t) def

= γeiωt |1〉 〈2|+ γe−iωt |2〉 〈1| , (A5)

respectively, where γ and ω belong to R+\ {0}. Furthermore, |1〉 and |2〉 are two eigenstates of H0

with corresponding eigenvalues E1 and E2, respectively, with E2 > E1. The quantum resonance curve
Q (ω),

Q (ω)
def
=

[
1 +

(
}
γ

)2 (ω−ω21)
2

4

]−1

, (A6)

for this specific physical system described by the Hamiltonian in Equation (A4) is the amplitude
squared that characterizes the transition probability P|1〉→|2〉 (assuming that at t = 0 only the level

|1〉 is populated) between the two quantum states |1〉 and |2〉 with ω21
def
= (E2 − E1) /} being the

characteristic frequency of the system. Moreover, the resonance condition ω = ω∗ with

ω∗ = ω21 = ω21 (E1, E2)
def
= (E2 − E1) /}, (A7)

is specified by imposing the maximum Q̄ def
= Q (ω21) of the resonance curve Q (ω) in Equation (A6).

Therefore, we clearly note from Equation (A7) that departures from the resonance condition ω = ω∗
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can happen by varying the larger (E2) and the smaller (E1) energy levels. We point out that considering
the following correspondences

ω → ω, γ→ |e| }B⊥
2mc

, and ω21 →
|e| B‖

mc
, (A8)

it can be shown that the Hamiltonian in Equation (A4) describes a two-level quantum mechanical
system represented by a spin-1/2 particle immersed in an external magnetic field ~B (t) given by,

~B (t) def
= B‖ ẑ + B⊥ [cos (ωt) x̂ + sin (ωt) ŷ] . (A9)

The resonance condition ω = ω∗ is satisfied whenever the positively assumed frequency ω of
the rotating magnetic field in the xy-plane equals Larmor’s precessional frequency specified by the
intensity of the uniform magnetic field B‖ ẑ [2],

ω∗ = ω∗
(
|e| , B‖, m, c

)
def
=
|e| B‖

mc
. (A10)

Finally, we emphasize that the analogue of the adimensional parameter β0 used throughout our
paper becomes in this quantum mechanical framework the quantity defined as

β0
def
=

mc
|e| B⊥

(ω−ω∗) =
mc
|e| B⊥

(
ω−

|e| B‖
mc

)
. (A11)

Observe that Equation (A11) is the static version of Equation (23). For further details on
the quantum mechanical motion in two-level quantum systems described by time-dependent
Hamiltonians, we refer to reference [2].

Appendix B. Speed of Geodesics

In the Appendix, we briefly show that geodesics have constant speed. For further details, we refer
to reference [37].

Recall that if Θ (ξ)
def
=
(
θ1 (ξ) ,..., θn (ξ)

)
is a curve in a n-dimensional Riemannian manifoldM,

the speed of Θ at any time is the length of its velocity vector
∥∥Θ̇ (ξ)

∥∥,

∥∥Θ̇ (ξ)
∥∥ def
=
〈
Θ̇ (ξ) , Θ̇ (ξ)

〉 1
2 =

[
gab (θ) θ̇a θ̇b

] 1
2 , (A12)

where gab (θ) denotes a Riemannian metric on the manifold M while {θa (ξ)} are the component
functions of the curve Θ (ξ). We say Θ (ξ) is constant speed if

∥∥Θ̇ (ξ)
∥∥ in Equation (A12) does not

depend on ξ, and unit speed if the speed is identically equal to one.
It is well-known that all Riemannian geodesics are constant speed curves. Indeed, let M be

a manifold with a linear connection ∇, and let Θ be a curve onM. The acceleration of Θ is the vector
field Dξ Θ̇ along Θ (that is, the covariant derivative of Θ̇ (ξ) along Θ). A curve Θ is called a geodesic
with respect to∇ if its acceleration Dξ Θ̇ equals zero (that is, the velocity vector field Θ̇ is parallel along
the curve Θ). Therefore, for any geodesic Θ (ξ), we have

d
dξ

[∥∥Θ̇ (ξ)
∥∥2
]
=

d
dξ

[〈
Θ̇ (ξ) , Θ̇ (ξ)

〉]
=
〈

DξΘ̇ (ξ) , Θ̇ (ξ)
〉
+
〈
Θ̇ (ξ) , Dξ Θ̇ (ξ)

〉
= 0, (A13)
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that is,
d

dξ

[∥∥Θ̇ (ξ)
∥∥2
]
= 0. (A14)

From Equation (A14), we conclude that geodesics {Θ (ξ)} have constant speed
{∥∥Θ̇ (ξ)

∥∥}.
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