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Abstract: The dynamics of free and forced vibrations of a chain of particles are investigated in a
harmonic model taking into account the retardation of interactions between atoms. It is found that the
retardation of interactions between particles leads to the non-existence of stationary free vibrations
of the crystal lattice. It is shown that in the case of a stable lattice, forced vibrations, regardless of
the initial conditions, pass into a stationary regime. A non-statistical dynamic mechanism of the
irreversible thermodynamic equilibration is proposed.
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1. Introduction

The basic principles of the dynamic theory of crystal lattices with instantaneous
interactions between particles were developed, mainly, in the works of Born and their co-
authors [1,2]. A further development of crystal dynamics was aimed at taking into account
the features of crystal structures, models of interatomic potentials, defects in crystals,
nonlinear effects, etc. [3–5]. Within the framework of this theory, a system of interacting
particles is equivalent to a system of noninteracting oscillators. The dispersion law of
oscillators (phonons) is related to the characteristics of interatomic potentials. It is known
that interactions between particles are of field origin and, therefore, instant interactions are
impossible. However, there are practically no works on the manifestation of the retardation
effect of interactions in crystal dynamics.

Due to the field nature of the interaction between particles, the field is a full-fledged
component of the system. Thus, the system of interacting particles itself is not closed due to
the presence of an additional inevitable component—a field with an infinite set of degrees
of freedom.

The study of the dynamics of few-body systems immersed in an elastic medium with
an infinite set of degrees of freedom was begun in the early 20th century [6,7] (the Lamb
model with an oscillator attached to an infinite string). A generalization of the Lamb model
in the case of nonlinear oscillators and an inhomogeneous string was carried out in recent
works [8,9]. A characteristic feature of the behavior of such systems is the damping of
oscillations due to the irreversible transfer of the oscillator energy to an elastic medium.
In [10–14], several few-body problems were investigated, taking into account the field
retardation of interactions, and it was shown that in all the models studied there is an
irreversible transfer of energy from particles to the field through which the particles interact.
It should be noted that the retardation of interactions leads not only to the phenomenon of
irreversibility, but also manifests itself in a qualitative change in the spectrum of elementary
excitations in crystals; in particular, as shown in [15], it is responsible for the splitting of
the optical branches in the dispersion curves of ionic crystals near the electromagnetic
dispersion line ω = ck.
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It should be noted that, even in the case of a finite number of particles, the set of
degrees of freedom of the field generated by them is infinite. The evolution of the system
as a whole is described by equations of particles dynamics and equations of field dynamics.
These equations are invariant with respect to time reversal. In particular, the complete
set of solutions of equations for the potentials of the electromagnetic field contains both
retarded and advanced potentials. However, the advanced potentials do not satisfy the
fundamental principle of causality and, therefore, should be omitted in the study of the
dynamics of systems [16]. Thus, the dynamics of a system of particles with a field origin of
interactions is described by functional differential equations of the retarded type.

We emphasize that the common property of functional differential equations of the
retarded type and their solutions is non-invariance with respect to time reversal, i.e.,
irreversibility. Note also that it is this property that radically distinguishes the laws of
thermodynamics from the Newtonian laws of classical mechanics. Therefore, the study
of the dynamics of systems of particles with retarded interactions between them is of
interest in connection with the possible consistent microscopic substantiation of the laws of
thermodynamics on a new basis. In this regard, we note that the statistical substantiation
of thermodynamics is not mathematically perfect, not only because of the lack of correct
resolution of the well-known paradoxes of Loschmidt and Zermelo [17–20]. Additional
doubts about the correctness of the statistical approach to the microscopic substantiation
of thermodynamics are raised by the Kac ring model [21,22]. This dynamic model has an
exact analytical solution that is reversible in time and agrees with the Poincaré recurrence
theorem. However, when very plausible assumptions such as molecular chaos are used in
this model, a result is obtained that is close to the exact solution only at short times, but
over time, the deviation from the exact solution increases.

This work is devoted to the study of the influence of the retardation of interatomic
interactions on the dynamics of a one-dimensional crystal lattice in order to find a micro-
scopic dynamic substantiation of the mechanism for achieving thermodynamic equilibrium
in a system of particles.

2. Free Oscillations of a Chain with Retarded Interactions between the Particles

Consider a one-dimensional system of identical particles interacting with each other,
whose stable equilibrium positions form an ideal lattice with the Born–von Karman bound-
ary conditions [1]:

x(0)n = n a
(

a = const, x(0)n+N = x(0)n , 1 ≤ n ≤ N
)

, (1)

where a is the distance between the nearest neighbors of the lattice, and N is the total
number of particles in the system.

The local value of the potential of the field created by all particles at the site x(0)n for
instantaneous interactions has the form:

ϕ
(

x(0)n

)
= ∑

n′
(n′ 6=n)

v
(

x(0)n − x(0)n′

)
, (2)

where v(x) is the energy of a pair interaction of two atoms located at a distance x from
each other.

In this case, the dynamics of the system in the harmonic approximation are described
by Equation [2]:

mÜn(t) = ∑
n′>0

v′′
(
n′
)
[Un−n′(t)− 2Un(t) + Un+n′(t)], (3)
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where m is the mass of the atom, v′′(n) is the second derivative of the function v(x) at
x = na, and Un(t) is the displacement of the n-th particle from its equilibrium position:

Un(t) = xn(t)− x(0)n , |Un(t)| � a. (4)

It is known that solutions of the equations of crystal lattice dynamics with instanta-
neous interactions in the harmonic approximation lead to the concept of phonons. However,
real interactions between particles always have the property of retardation due to the finite
speed of propagation of interactions. This property leads to a radical change in the dynam-
ics, even in the simplest case of a two-body problem, including the irreversible behavior of
the system [10,14].

To take into account the effect of the retardation of interactions between particles of a
one-dimensional lattice in Equation (3), we determined the replacement:

Un±n′(t) −→ Un±n′
(
t− τ

(
n′a
))

, (5)

where τ(n′a) is the retardation time of interaction between points located at a distance n′a
from each other.

By virtue of Condition (4), we assumed that the retardation of interactions between
each pair of particles depended only on the equilibrium distances between them. Since
the retardation of the interaction between points was proportional to the distance between
them, we determined:

τ
(
n′a
)
=

an′

c
= τ1 n′, (6)

where c is the speed of the propagation of interactions between particles, that is, the speed
of light, and τ1 is the retardation time of the interaction between the nearest neighbors of
the lattice.

Thus, the equations of the dynamics of a one-dimensional chain of interacting par-
ticles in the harmonic model, taking into account the retardation of interactions, had the
following form: mÜn(t) = ∑

n′>0
v′′
(
n′
) [

Un−n′
(
t − n′τ1

)
− 2Un(t) + Un+n′

(
t − n′τ1

)]
;

Un+N(t) = Un(t).
(7)

We sought a solution to this system of equations in the form:

Un(t) = Qk(t) ei kna, (8)

where Qk(t) are normal coordinates. It followed from the Born–von Karman boundary
conditions that:

k = 2π
s

aN
(9)

(s is an arbitrary integer) and:

− π

a
≤ k <

π

a
. (10)

Substituting (8) into Equation (7), we obtained:

mQ̈k(t)− ∑
n′>0

v′′
(
n′
)[

Qk
(
t− n′τ1

)
e−ikan′ − 2 Qk(t) + Qk

(
t− n′τ1

)
eikan′

]
= 0. (11)

We substituted:
Qk(t) = qk e−iωt (12)
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and obtained an equation for the dispersion law ω(τ1, k):

mω2(τ1, k)− 2 ∑
n′>0

v′′
(
n′
)[

1− eiω(τ1, k)τ1n′ cos
(
kan′

)]
= 0. (13)

This equation in the general case (that is, at τ1 6= 0) is transcendental, and the set of its
roots is infinite.

For the existence of stationary oscillations in the system, it was necessary that
Equation (13) had at least one real root. We showed that for τ1 6= 0, this equation has
no real roots. We determined:

ω(τ1, k) = Ω(τ1, k)− iΓ(τ1, k) (14)

and reduced Equation (13) with respect to the complex unknown ω(τ1, k) to the system of
equations with respect to two real unknowns, Ω(τ1, k) and Γ(τ1, k):

m
[
Ω2(τ1, k)− Γ2(τ1, k)

]
−2 ∑

n′>0
v′′
(
n′
)[

1− eΓ(τ1, k)τ1n′ cos
(
kan′

)
cos
(
Ω(τ1, k)τ1n′

)]
= 0;

m Ω(τ1, k)Γ(τ1, k)
+ ∑

n′>0
v′′
(
n′
)
eΓ(τ1, k)τ1n′ cos

(
kan′

)
sin
(
Ω(τ1, k)τ1n′

)
= 0.

(15)

An elementary analysis showed that for τ1 6= 0, the function Γ(τ1, k) satisfies
the condition:

Γ(τ1, k) 6≡ 0. (16)

Therefore, the retardation of interactions led to the impossibility of stationary free
oscillations of a one-dimensional lattice. Since the retardation effect was unavoidable, the
only two scenarios were possible in the harmonic approximation of the lattice dynamics.

1. If:
Γ(τ1, k) > 0 (17)

for all values k, then all oscillations in the system were damped and at t → ∞ the
oscillations ceased.

2. If there were such values of k for which:

Γ(τ1, k) < 0, (18)

then the lattice would disintegrate.

We enumerated the roots of the characteristic Equation (13) under the condition τ1 6= 0:

ωs(τ1, k) = Ωs(τ1, k)− iΓs(τ1, k), s = 1, 2, . . . . (19)

To preserve the integrity of the lattice, it was necessary that Condition (17) was true
for all Γs(τ1, k):

Γs(τ1, k) > 0, (20)

therefore, only this case was of interest.
Each of the roots ωs(τ1, k) corresponded to an equation of free vibrations of the form:

Q̈(s)
k (t) + 2Γs(τ1, k)Q̇(s)

k (t) +
[
Ω2

s (τ1, k) + Γ2
s (τ1, k)

]
Q(s)

k (t) = 0. (21)

This form of the equations was used to study forced lattice vibrations.
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3. Dynamics of Forced Oscillations of a Chain with Retarded Interactions

Consider the problem of the dynamics of a one-dimensional atomic chain immersed
in an alternating external force field. We denoted the external force acting on the normal
coordinate Q(s)

k (t) by f (s)k (t). Then, the equations of the dynamics of the system had
the form:

Q̈(s)
k (t) + 2Γs(τ1, k) Q̇(s)

k (t) +
[
Ω2

s (τ1, k) + Γ2
s (τ1, k)

]
Q(s)

k (t) =
f (s)k (t)

m
. (22)

Of interest was the case of (20), when the free vibrations of the atoms in the chain were
damped, that is, the lattice did not disintegrate.

Because of the term Q̇(s)
k (t), this equation had the same form as the equations of forced

oscillations under friction. However, in contrast to the phenomenological approaches, here,
the damping of oscillations had a microscopic, purely dynamic origin due to the finite rate
of the transfer of interactions.

The general solution of Equation (22) is the sum of the general solution of the corre-
sponding homogeneous system of Equations (which, as shown in the previous section,
tends to zero as t→ ∞) and the particular solution of the inhomogeneous system equations.
Therefore, over time, stationary oscillations are established in the system, determined by
the characteristics of the external field.

We represented the external force in the form of the Fourier expansion:

f (s)k (t) = ∑
s′

C(ss′)
k eiΩ̃s′ t. (23)

Then, the solution of Equation (22) had the form [23]:

Q(s)
k (t) = ∑

s′

C(ss′)
k eiΩ̃s′ t+iδs(τ1, k)

m

√[
Ω2

s (τ1, k) + Γ2
s (τ1, k)− Ω̃2

s′

]2
+ 4Γ2

s (τ1, k)Ω̃2
s′

, (24)

where

tan δs(τ1, k) =
2Γs(τ1, k)Ω̃s′

Ω̃2
s′ −Ω2

s (τ1, k)− Γ2
s (τ1, k)

. (25)

Thus, in the limit t→ ∞, the system went over to a stationary state, which was in a
dynamic equilibrium with an external field.

4. Results

The main results of this work were as follows.

1. It was found that the retardation of interactions between particles leads to a radical
restructuring of the dynamics of a one-dimensional harmonic chain. In particular,
due to the retardation of interactions, stationary free oscillations in the chain are
impossible.

2. Since the presence of free oscillations with increasing amplitudes means the destruc-
tion of the chain, a criterion for the absence of growing oscillations in the system was
obtained. This criterion is a condition for the stability of the chain.

3. It was shown that, when a stable chain of particles with retarded interactions between
them is immersed in an alternating external field, the system passes into a stationary
state, which depends both on the properties of the system and on the characteristics
of the external field. This stationary state was interpreted as a dynamic equilibrium
between a chain and an external field.

Thus, within the framework of the dynamics of a one-dimensional crystal lattice with
retarded interactions between particles, the following phenomena took place:
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• The phenomenon of irreversibility;
• The existence of a thermodynamic equilibrium.

Both of these phenomena are postulates both in phenomenological thermodynamics
and in statistical mechanics as the zeroth law of thermodynamics. The results of this work
showed that the zeroth law of thermodynamics could be substantiated, explained and
described on the basis of two fundamental physical principles:

• The field nature of the interaction between particles;
• The principle of causality.

5. Discussion

Within the framework of pre-relativistic physics, the essence of the potential energy of
interactions between particles remained a kind of “thing in itself”. This is some function
that depends on the instantaneous configuration of the system and has a hidden origin.
In this regard, it is appropriate to note one of the first attempts to find a mechanical
interpretation of the interaction of distant bodies: in the outstanding treatise [24], Heinrich
Hertz proved that the potential energy of interacting bodies is mathematically equivalent
to the kinetic energy of hidden particles.

In the framework of relativistic physics, an instantaneous interaction of particles
distant from each other is impossible. The potential energy of a system of interacting
particles, depending on their instantaneous positions, does not exist [25,26]. Therefore,
a description of the dynamics of a system of atoms on the basis of the Hamiltonian of a
system of particles is possible only in the non-relativistic approximation. Instead of Hertz’s
“hidden bodies”, the field acts as a mediator in particle interactions. Therefore, a correct
description of the dynamics of a system of particles interacting through the field must
take into account the dynamics of the field. In particular, for the classical system of point-
charged particles, such a complete system of equations consists of the equations of the
relativistic dynamics of particles and the Maxwell equations for the electromagnetic field.

In article [16], a classical relativistic dynamic theory of a system of point charges inter-
acting through the electromagnetic field created by them is constructed. The relativistic
dynamics of such a system are described in terms of microscopic (i.e., not averaged) distri-
bution functions. Within the framework of this approach, an exact analytical elimination of
field variables was performed and a finite closed system of differential functional equations
of the retarded type with respect to microscopic distribution functions of particles was
obtained. This system of equations is not invariant with respect to time reversal, since the
advanced electromagnetic fields were omitted due to the principle of causality.

The phenomenon of the damping of lattice oscillations with retarded interactions is
qualitatively similar to energy dissipation in classical electrodynamics (dipole radiation).
However, the physical mechanisms of these phenomena are significantly different. In the
case of crystal dynamics, a nonlocal effect takes place, since each particle of the lattice
interacts with the field created by all other particles, taking into account the retardation.
In the case of dipole radiation, on the contrary, a local effect arises due to the accelerated
movement of charges in their own electromagnetic field, that is, self-action [25].

6. Conclusions

Thus, the behavior of the system under study in the framework of relativistic physics
was radically different from the behavior of the same system in the framework of pre-
relativistic physics, in which an isolated chain of atoms oscillated eternally. In relativistic
physics, both irreversibility and a state of dynamic equilibrium exist. There is neither one
nor the other in pre-relativistic physics.
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