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Abstract: Recent developments in machine learning and deep learning have led to the use of multiple
algorithms to make better predictions. Surgical units in hospitals allocate their resources for day
surgeries based on the number of elective patients, which is mostly disrupted by emergency surgeries.
Sixteen different models were constructed for this comparative study, including four simple and
twelve hybrid models for predicting the demand for endocrinology, gastroenterology, vascular,
urology, and pediatric surgical units. The four simple models used were seasonal autoregressive
integrated moving average (SARIMA), support vector regression (SVR), multilayer perceptron (MLP),
and long short-term memory (LSTM). The twelve hybrid models used were a combination of any
two of the above-mentioned simple models, namely, SARIMA–SVR, SVR–SARIMA, SARIMA–MLP,
MLP–SARIMA, SARIMA–LSTM, LSTM–SARIMA, SVR–MLP, MLP–SVR, SVR–LSTM, LSTM–SVR,
MLP–LSTM, and LSTM–MLP. Data from the period 2012–2018 were used to build and test the models
for each surgical unit. The results indicated that, in some cases, the simple LSTM model outperformed
the others while, in other cases, there was a need for hybrid models. This shows that surgical units
are unique in nature and need separate models for predicting their corresponding surgical volumes.

Keywords: time series; seasonal autoregressive integrated moving average; machine learning; hybrid
model; demand; hospital; surgical unit

1. Introduction

Hospitals are faced with the complexity of dealing with elective and emergency
patients. At the same time, as the treatment process varies from patient to patient, they are
faced with the complexity of meeting the individual needs of patients.

In recent years, machine learning algorithms have been used to make predictions in
hospitals. Taylor et al. [1] used a random forest model to predict the in-hospital mortality
of emergency department patients with sepsis. Perng et al. [2] applied a convolutional
neural network with SoftMax, which is a deep learning method, to predict the mortality of
septic patients in an emergency department. Raita et al. [3] tested different models, such as
lasso regression, random forest, gradient-boosted decision tree, and deep neural network
for triage predictions of emergency patients.

Special attention has been paid to predicting the demand within hospitals. Lucini
et al. [4] focused their research on predicting hospital demand. In their study, they com-
pared human prediction versus demand prediction using computer-based algorithms,
such as support vector regression (SVR). Lin et al. [5] predicted the next-day demand
for regional ambulances and used various algorithms, including moving average, SVR,
and multilayer perceptron (MLP), among others. Chen and Lu [6] used various machine
learning algorithms, such as moving average, regression, SVR, and artificial neural network
(ANN), to predict the demand for emergency medical services.

Emergency patients represent stochastic demand in hospitals. The number of emer-
gency patients varies from country to country. In Norway, emergency patients represent
approximately 15% of the demand for surgical units by in-patients. Consideration of the
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demand for surgical units does not describe the actual demand, which is constrained by
the capacity limit of the hospital. Therefore, for this study, the number of surgeries (i.e.,
the case volume) performed on a particular day was considered to be the demand in the
hospital. With the ability to know the actual demand for surgeries, it is easier to allocate
appropriate resources. The consequences of not having an accurate prediction of demand
can lead to postponements of in-patient planned surgeries and an increase in hospital costs.

Researchers have mostly used time-series approaches to predict the admission rates
and bed occupancy within emergency departments in hospitals. Additionally, time-series
forecasting has been implemented to forecast surgical volumes, patient flow and asset
demand in hospitals. These are important research topics as they are associated with
patients’ waiting time, hospital overcrowding and other adverse consequences [7].

Among these approaches, the autoregressive integrated moving average (ARIMA)
and seasonal ARIMA (SARIMA) models [8–13] have been widely used. One of the main
conditions for applying either of these statistical models is linearity, whereas, in a real-world
setting, time-series are complex and contain both linear and non-linear components [14,15].
There are also other limitations associated with both the ARIMA and SARIMA models [12].
Therefore, researchers have used other algorithms, such as machine learning and deep
learning models, for the prediction of demands.

One under-rated machine learning model used for demand prediction in a time-series
approach is the support vector regression (SVR) model. This algorithm has been applied
across different use cases alongside the financial sector for the prediction of stock price
values [16,17], mainly because it provides better generalized performance, compared with
other regression algorithms. While the SVR algorithm is usually cited in related work
regarding demand prediction in hospitals, it has not been frequently applied in these cases.
SVR is widely preferred as it provides a better generalized performance, in comparison
with other regression algorithms. SVR can also be penalized by using cost parameters,
which help to avoid overfitting. One of the drawbacks of this algorithm is its computational
complexity [16].

As time-series data often feature non-linear components, some researchers have
focused on ANNs for forecasting demands [18]. Zhou, Zhao, Wu, Cheng and Huang [12]
showed that ANNs can outperform other models in predicting demand. Among the ANN
models, one that has been widely used for time-series demand prediction is the multilayer
perceptron (MLP). The MLP is a feed-forward neural network, which is a common form of
ANN [19]. Another type of ANN is recurrent/feedback networks. An example of this type
of network is the long short-term memory (LSTM) model [20,21].

In recent years, studies have focused on developing combined models, as they can
overcome the shortcomings of individual models and increase predictive accuracy [18,22].
A common method is to combine one statistical model (such as ARIMA) and one non-
linear model (ANN) for demand prediction in a time-series method. Studies [12,23,24]
have highlighted that these hybrid models can provide better results than the individual
models. By contrast, Taskaya-Temizel and Casey [25] have argued that hybrid models do
not necessarily outperform individual models.

In hospitals, general surgical departments are divided into surgical units based on
groups of diagnoses. The typical surgical units in hospitals are urology, gastroenterology,
vascular, endocrinology, and pediatric units. In surgical units, there are two main types of
patients (i.e., emergency, and elective patients), and there are two main types of surgery
performed (i.e., day surgeries and in-patient surgeries). Additionally, there is seasonal
variability in demand patterns in hospitals [26]. Major factors, such as add-on cases and
cancellation, add to the variability in surgical demand. Due to this, hospitals have to
adjust staffing and other resources to meet this demand within hours or a day of the
surgery [27,28]. In addition, the demands are predicted for the entire hospital, for one
disease, or one entire department, and not for each unit. Therefore, this study focuses on
the demand predictions for each of the surgical units for each variation (i.e., patient type
and surgery type).
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In summary, in recent years, time-series analysis for demand predictions has been
the focus of many studies, as it is a fundamental step in many decision-making processes.
Hence, the focus on improving forecasting accuracy by developing both simple and hybrid
models has not stopped. In addition, there is no universal model that provides the best
demand predictions [18]. Therefore, in this study, our focus was to build different simple
and hybrid models for demand predictions in one of Norway’s largest hospitals.

This study aimed to: (1) build and test different simple and hybrid models to predict
the demand for in-patient surgeries during the dayshift for each surgical unit, (2) investigate
the predictive power of the models for each surgical unit, and (3) identify whether there is
a universal model for predicting the demand for each surgical unit.

2. Materials and Methods

For this study, we used data from a regional hospital in Norway. The data set contained
the records of a general surgical department for over almost 7 years (i.e., for the period
2012–2018). General surgical departments are divided into surgical units based on groups
of diagnoses. We used the data from five groups: endocrinology (EN), gastroenterology
(GA), vascular (KA), urology (UR), and pediatric (BA) surgery. There was a huge difference
in the daily demand for each surgical unit, as illustrated in Table 1. It should be noted that
weekends were ignored in the analysis. The reason is because no elective surgeries were
performed during the weekends. The complexity of the time-series data was due to the
variation within the surgical units and over the week. The gastroenterology unit performed
most of their surgeries on Fridays. while the urology unit prioritized their surgeries on
Mondays and Wednesdays. Among the surgical units, the vascular unit demonstrated an
almost uniform distribution of surgeries.

Table 1. Daily percentage share of surgeries by each surgical unit.

Surgical
Units

Percentage Share of Surgeries (%)

Monday Tuesday Wednesday Thursday Friday Overall

EN 0.77% 3.49% 1.02% 2.87% 1.60% 9.75%
GA 3.52% 4.24% 3.96% 3.84% 12.10% 27.65%
KA 0.51% 1.66% 0.73% 0.74% 0.52% 4.16%
UR 9.77% 3.53% 13.81% 4.22% 4.99% 36.31%
BA 3.64% 3.53% 2.69% 6.77% 5.49% 22.13%

Total 18.21% 16.45% 22.21% 18.44% 24.70% 100.00%

The data were at the patient level and each record included a patient identifier. The
patient-level data consisted of timestamps for each activity the patient underwent, from
admission to discharge from the hospital. We used data on weekdays during the dayshift.
A total of 18,149 records were available, of which 2270 records were emergency patients,
and the remaining 15,879 records were elective patients.

Table 2 presents the breakdown of the emergency and elective patients for each
surgical unit. The vascular and gastroenterology units tended to have a high number of
emergency patients, as compared with other surgical units; therefore, it was challenging
for these units to plan the surgeries to be performed.
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Table 2. Total number of records during the period 2012–2018.

Surgical
Units

Elective
Patients

Emergency
Patients

Total
Patients

% of Emergency
Patients

EN 1705 65 1770 3.67%
GA 3793 1225 5018 24.41%
KA 510 245 755 32.45%
UR 6232 358 6590 5.43%
BA 3639 377 4016 9.39%

Total 15,879 2270 18,149 12.51%

As shown in Table 2, the endocrinology and vascular surgical units had low numbers
of patients who had undergone surgery. Based on our data exploration, on more than 60%
of the days there were no surgeries performed by these surgical units. For the pediatric
surgical unit, on 33% of the days no surgeries were performed, whereas for urology is this
number was 16%, and for gastroenterology it was 13%.

Apart from this, there were minor demand fluctuations in each surgical unit over the
years. Specifically, the demand for the endocrinology surgical unit increased by double,
and there was a minor increase in demand for the gastroenterology surgical unit in the
last 3 years of the study. Additionally, there were demand fluctuations for each of the
other surgical units over the years. There was also a variation in demand patterns during
weekdays over the years for each surgical unit. This makes forecasting the surgical demand
challenging for each surgical unit.

Time-series contains two main components, namely, trend and seasonality. The Cox–
Stuart test is a robust test for trend analysis; meanwhile, the Friedman test is used for
seasonality analysis. For this study, the “seasplot” function under the “tsutils” package for
the R language was used to run both the Cox–Stuart and Friedman tests. Upon testing the
data, the results showed that there is both seasonality and a trend for each of the surgical
units.

The next step is understanding the demand categorization for each of the surgical
units. For this, the Syntetos–Boylan–Crostons classification was used for demand catego-
rization. The classification schema was built on the average inter-demand interval (adi) and
coefficient of variation (cv2). Based on these two measures, the demand can be categorized
into four classes, namely, smooth (p ≤ 1.32 and cv2 ≤ 0.49), intermittent (p > 1.32 and
cv2 ≤ 0.49), erratic (p ≤ 1.32 and cv2 > 0.49) and lumpy (p > 1.32 and cv2 > 0.49). The
smooth pattern represents regular demand and regular time; intermittent means there is
regularity in demand but irregularity in time; erratic demand means there is irregularity in
demand but regular time; and the lumpy pattern indicates that both the demand and time
are irregular [29]. For this, the “idclass” function under the “tsintermittent” package for
the R language was used. Based on the results, it can be interpreted that the time-series
data of the surgical units UR and GA are smooth, whereas BA, KA and EN are intermittent.

Next, the dataset was split into training and test datasets. The training dataset was
used for building the models and the test dataset was used to evaluate the built models.
For training the model, cross-validation on a rolling basis was used. In this cross-validation
method, a subset of the training dataset was used for training the model to forecast the
next datapoints for which the accuracy was to be forecasted. Figure 1 presents a pictorial
representation of this cross-validation method. The same forecasted datapoints were
included as part of the training dataset to forecast the next datapoints. For this study, the
first 80% of the data were considered as the training dataset and the remaining 20% as the
test dataset.
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2.1. Model Building

Several models were constructed for this study, including statistical, machine learning,
and hybrid models. All the models are built to forecast the surgical demand for each
surgical unit 10 weeks in advance. The developed models are described below.

For comparison with the developed models, a baseline model was built. The main
properties of a baseline model are that it must be simple, fast, and repeatable. One of
the simplest baseline algorithms is the persistence algorithm. In this study, the value
60 weekday time step (t − 60) was used to predict the expected value at the current time
step (t).

2.1.1. SARIMA Model

Autoregressive integrated moving average (ARIMA) is the most widely used model
for forecasting demand in all fields. As shown in Section 2, it was understood that all the
time-series demonstrated seasonality and trends. By including a seasonal component, the
ARIMA model became a seasonal autoregressive integrated moving average (SARIMA)
model. This model is usually denoted as SARIMA (p, d, q)(P, D, Q)(s), where p is the order
of the autoregressive (AR) model, P is the order of the seasonal AR model, d represents the
degree of differentiation, D represents the degree of seasonal differentiation, q is the order
of the moving average (MA) model, Q is the order of the seasonal MA model, and s is the
length of the seasonal period.

For this study, the “auto.arima” function, available in the “forecast” package for the R
language, was used to fit the models for different values of p, d, q, P, D, and Q [31]. The
best model was selected by minimizing the value of Akaike’s information criterion (AIC).

2.1.2. SVR Model

The support vector regression (SVR) model is adapted from the support vector ma-
chine (SVM). SVR does not depend on the distribution of the underlying independent and
dependent variables. By contrast, SVR relies on kernel functions. Another advantage of
SVR is that it allows non-linear models to be constructed without changing the explanatory
variables, which helps to better interpret the resulting model. The basic idea behind SVR is
that, if the error (εi) is less than a certain value, there is no need to worry about prediction;
this is known as the maximal margin principle. Regression can also be penalized using
cost parameters, which helps to avoid overfitting. SVR is a useful technique that provides
users with a high degree of flexibility regarding the distribution of basic variables, the
relationship between independent variables and dependent variables, and control over
penalty items.

For the SVR model’s “eps-regression” method, “nu-regression” was considered ini-
tially. If fewer support vectors and a faster solution are required, “nu-regression” is the
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correct choice, whereas if we need to obtain the best performance, then “eps-regression”
is the best choice. For this study, the “svm” function (with the type “eps-regression”),
available in the “e1071” package for the R language, was used in the models.

2.1.3. MLP Model

There are two main types of artificial neural networks (ANNs): feed-forward neural
networks and recurrent/feedback networks. One of the most common forms of ANN is the
multilayer perceptron (MLP), which is a type of feed-forward network. The MLP makes
no assumptions about the distribution of the data, the linearity of the output function or
the predictor variable, or the type (measure) of the output variable. The MLP consists of
multiple parallel layers of nodes connected by weighted links. The input layer contains
independent variables, the middle layer (hidden layer) contains processing units, and the
output layer contains output variables [19]. The MLP model was designed with one input
layer with five inputs, three hidden layers (with 64, 32, and 16 neurons, respectively), and
one output layer.

For this study, the “mlp” function, available in the “RSNNS” package for the R
language, was used in the models.

2.1.4. LSTM Model

One of the most powerful types of recurrent neural networks (RNNs) is the long
short-term memory (LSTM) model. LSTMs are very useful in time-series forecasting tasks
involving autocorrelation—that is, when there is a correlation between a time-series and its
own lagged version—as they can maintain state and recognize patterns throughout the time-
series. The recurrent architecture allows the state to be persistent or to be communicated
between weight updates as each epoch progresses. Additionally, the LSTM cell architecture
improves the RNN by achieving both short- and long-term durability [32]. An LSTM model
was designed with one input layer with five inputs, two hidden LSTM layers (with 64 and
32 neurons, respectively), and one output dense layer with one neuron. The model was
compiled using the “adam” optimizer and “mean_absolute_error” as a loss function.

For this study, the LSTM model was developed using already implemented layers
within Keras and TensorFlow.

2.1.5. Hybrid Model

For this study, several hybrid models were constructed. All the hybrid models were
developed in two stages. In the first stage, one of the models (Model 1) was used to
extract relationships among the original data, and then the residuals from this model
(Model 1) were generated. In the next stage, another model (Model 2) was used to extract
the relationships among the residuals. Eventually, these two predictions (the initial forecast
from Model 1 and the residual forecasts from Model 2) were combined by simple addition
in order to make the final forecast. Figure 2 pictorially represents this hybrid modeling
process. For this study, the following hybrid modeling combinations were prepared:

• SARIMA–SVR;
• SVR–SARIMA;
• SARIMA–MLP;
• MLP–SARIMA;
• SARIMA–LSTM;
• LSTM–SARIMA;
• SVR–MLP;
• MLP–SVR;
• SVR–LSTM;
• LSTM–SVR;
• MLP–LSTM;
• LSTM–MLP.
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2.2. Model Evaluation

To evaluate the performance of these different models, we used two widely used
indices for calculating modeling errors and testing errors, the root mean square error
(RMSE) and mean absolute error (MAE), respectively, which can be calculated using
Equations (1) and (2), as follows:

RMSE =
1
n

√
n

∑
t=1

(yt − ŷt)
2, (1)

MAE =
1
n

n

∑
t=1
|yt − ŷt|, (2)

where:
n is the number of data points;
yt is the actual value;
ŷt is the predicted value.

3. Results

In this study, we considered five surgical units and their demands. In each time-series,
there are two major components—namely, seasonality and trends—which play major roles
in predictions. The seasonal and trend decomposition using loess (STL) is the best method
for understanding seasonality and trend within a time-series [34]. Figure 3 shows the “STL”
plot for the GA surgical unit. The data plotted in the first (top) panel are the daily surgical
demand for the GA surgical unit. The second panel represents the trend component, which
shows low frequency variation in the data along with non-stationary, long-term changes in
the level. This is followed by the seasonal component in the third panel, which presents
variation in the data at or near the seasonal frequency. The fourth (bottom) panel presents
the remainder component, which is the remaining variation in data beyond that in the
trend and seasonal component. This process was completed for each surgical unit for the
entire data, showing that the data were composed of both seasonality and trends.
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3.1. Model Results

In this study, 16 models (four simple models and 12 hybrid models) were developed,
and the performances of these models were compared to identify the best-performing
model for each surgical unit. A comparison of the consolidated results of all these models
is presented in Table 3.
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Table 3. Prediction performance results of the ten models for each surgical unit.

Models
EN GA KA UR BA

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Baseline 0.677 0.971 1.760 2.394 0.543 0.866 1.173 1.585 1.197 1.607
SARIMA 0.587 0.894 1.393 1.787 0.323 0.661 0.997 1.290 0.880 1.208

SVR 1.340 2.759 2.580 3.772 0.880 1.939 2.140 3.632 1.417 2.410
MLP 0.613 0.852 1.620 2.254 0.327 0.663 1.090 1.411 0.913 1.238

LSTM 0.670 0.998 1.347 1.806 0.303 0.646 1.030 1.360 0.890 1.218
SARIMA–SVR 0.730 1.193 3.063 5.749 0.613 1.317 2.927 7.046 1.640 2.725
SVR–SARIMA 0.980 1.701 2.703 4.657 0.863 2.003 2.657 4.978 1.860 3.733
SARIMA–MLP 0.517 0.810 1.413 1.800 0.343 0.661 1.007 1.332 0.873 1.197
MLP–SARIMA 0.597 0.889 1.673 2.205 0.323 0.646 1.040 1.347 0.880 1.200

SARIMA–LSTM 0.663 0.995 1.380 1.780 0.300 0.643 0.963 1.295 0.883 1.221
LSTM–SARIMA 0.583 0.896 1.360 1.791 0.310 0.651 0.980 1.288 0.827 1.134

SVR–MLP 0.883 1.432 3.037 6.211 0.707 1.554 2.013 2.920 2.077 3.894
MLP–SVR 1.180 2.371 2.703 4.234 0.837 1.825 2.410 4.267 1.863 3.349

SVR–LSTM 1.083 1.857 2.353 3.804 1.110 2.937 2.153 3.503 1.867 3.271
LSTM–SVR 1.107 3.474 2.670 4.684 0.737 1.731 1.957 2.854 1.723 3.015
MLP–LSTM 0.637 0.964 1.587 2.117 0.303 0.646 1.000 1.306 0.973 1.349
LSTM–MLP 0.633 0.876 1.477 1.972 0.333 0.663 1.010 1.310 0.887 1.200

The baseline model was built for benchmarking and comparisons with the results of
other models. This model predicted the demand for the KA surgical unit much better than
other surgical units. Among these, the prediction was poor for the GA surgical unit, for
which the error rates were three times more than those of the KA surgical unit.

With respect to the SARIMA model, the main requirement for its implementation
is a stationary time-series. The augmented Dickey–Fuller (ADF) test was conducted
using the “adf.test” function, which showed that the time-series of each surgical unit was
stationary. To identify the optimal SARIMA model for each surgical unit, the “auto.arima”
function was used and the model with the lowest Akaike’s information criterion (AIC)
value was selected. As each surgical unit featured seasonality and trends, each unit was
assigned a unique SARIMA model. For each of the SARIMA models, the residuals, their
corresponding autocorrelation functions (ACFs), and histograms were plotted; the plots for
the GA surgical unit are presented in Figure 4. As with the baseline model, the SARIMA
model also performed better for the KA surgical unit and worse for the GA surgical unit.

With regard to the SVR model, in the model-building phase, the “eps-regression”
type was used for predicting the demand in each surgical unit. The BA surgical unit
demonstrated a lower RMSE, but higher MAE, compared with the EN surgical unit. This
means that the EN surgical unit displayed a larger error in some cases but a smaller
error in many cases, as compared with the BA surgical unit. As with the baseline and
SARIMA models, the KA surgical unit had the lowest MAE and the GA surgical unit had
the highest MAE, compared with all the other surgical units. Additionally, the baseline
model performed better than the simple SVR model.

The forecasts from the MLP model showed that the KA surgical unit displayed
marginally higher error values than the SARIMA model. All the surgical units demon-
strated smaller error values than the baseline model. The BA surgical unit showed the best
performance under this model, compared with the baseline and SVR models.
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The LSTM model forecasted that the KA surgical unit would also demonstrate better
results, compared with the other surgical units. The KA surgical unit showed the best
performance under this model, compared with the baseline, SARIMA, and SVR models.
The BA surgical unit had marginally higher error values than the SARIMA model. The
results showed that the deep learning model does not always provide better results.

With respect to the SARIMA–SVR model, for each of the surgical units, the parameters
from the best-performing simple SARIMA model were used to predict the initial values,
and their corresponding residuals were predicted using an SVR model with the same
parameters as the simple SVR model. The predicted results were added together, in order
to make the final demand prediction. The comparison of the results showed that the simple
SARIMA model performed better than the SARIMA–SVR hybrid model. For example,
consider the GA surgical unit in which the simple SARIMA model outperformed the hybrid
SARIMA–SVR model. Figure 5 presents the actual vs. forecast values for SARIMA and
SARIMA–SVR models, respectively. Here, the hybrid model created more and larger errors
when compared with the simple SARIMA–SVR model.

The SAIMA–SVR model was built for each surgical unit in which the simple SVR
model was used to predict the initial results, and the residual values from this model were
predicted using the SARIMA model. In terms of the SVR–SARIMA model, the error rates
were higher when compared with the SARIMA–SVR model for EN, KA and BA surgical
units. In comparison within the surgical units, this model performed well for the KA
surgical unit. The model did not perform well for GA, UR and BA surgical units when
compared with the simple SVR model.
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The SARIMA–MLP model was similar to the SARIMA–SVR model but, here, the MLP
model was used instead of the SVR to predict the demand. A comparison of the results
showed that the hybrid model performed better than the simple MLP model, but not as
well as the simple SARIMA model. As with all the other cases, the KA unit featured the
best results, compared to all the other surgical units.

The MLP–SARIMA model was similar to the SVR–SARIMA model but, here, the MLP
model was used instead of the SVR to predict the demand. The performance of this model
was not as effective as that of the SARIMA–MLP model except for the KA surgical unit. As
with the SARIMA–MLP model, the KA surgical unit obtained the best results, compared to
all the other surgical units.

The SARIMA–LSTM model was similar to the SARIMA–SVR model but, here, the
LSTM model was used to predict the demand, instead of the SVR. The simple SARIMA
model provided better results, as compared with this hybrid model, for the BA surgical
unit.

The LSTM–SARIMA model was similar to the SVR–SARIMA model but, here, the
LSTM model was used instead of the SVR model to predict the demand. The performance
was similar to that of the SARIMA–LSTM model, but the LSTM–SARIMA model was not as
effective as this SARIMA–LSTM model for KA and UR surgical units. The LSTM–SARIMA
model had marginally higher error values for the BA surgical units when compared with
the SARIMA–LSTM model.

The SVR–MLP model used the simple SVR model to predict the initial values, and
the corresponding residuals were predicted using a simple MLP model. The predicted
values were added together to make the final demand prediction. As with all the other
model results presented so far, the KA surgical unit demonstrated the best performance
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results. In addition, compared with the results of all the models, none of the surgical units
demonstrated better prediction results when using the SVR–MLP model when compared
to all the other models presented above.

In the MLP–SVR model, the simple MLP model was used to predict the initial values
and the corresponding residuals were predicted using the simple SVR model. This model
performed poorly for forecasting the demand when compared with the SVR–MLP model,
except for the GA and BA surgical units. As with all the other models, the MLP–SVR model
was able to forecast the surgical demand of the KA surgical unit.

The SVR–LSTM model was similar to the SVR–MLP model but, here, the LSTM model
was used to predict the demand instead of the MLP. In this model, the KA surgical unit
also provided better performance results.

The LSTM–SVR model was similar to the MLP–SVR model, but, here, the LSTM
model was used instead of the MLP model to predict the demand. The LSTM–SVR model
performed poorly when compared to the SVR–LSTM model for the EN and GA surgical
units.

The MLP–LSTM model used the simple MLP model to predict the initial values, while
the corresponding residuals were predicted using the simple LSTM model. The predicted
values were added together to make the final demand prediction. In this model, the KA
surgical unit also offered better results; however, most of the other models outperformed
this hybrid model.

The final hybrid model was the LSTM–MLP model. This hybrid model was similar
to the LSTM–SVR model but, here, instead of the SVR model, the MLP model was used
for forecasting the demand. According to our comparison, the LSTM–MLP model outper-
formed the MLP–LSTM model except for the KA and UR surgical unit. As with all the
other models, the forecast of surgical demand for the KA surgical unit was better than that
of the other surgical units.

3.2. Accuracy Comparison

To select the model, the performance values of all the models (see Table 3) were
compared. A comparison of the models clearly showed that the simple SARIMA–MLP
model provided the best performance for the EN surgical unit; for the KA surgical unit,
the SVR–LSTM provided the best performance; and, for the BA surgical unit, the LSTM–
SARIMA hybrid model provided the best performance.

The remaining surgical units were the GA and UR units. For the GA unit, the simple
LSTM model provided the lowest MAE and the SARIMA–LSTM model provided the
lowest RMSE. For the UR surgical unit, the SARIMA–LSTM model provided the lowest
MAE and the LSTM–SARIMA provided the lowest RMSE. As the preferred performance
parameter was MAE, the simple LSTM model was preferred for the GA surgical unit and
the SARIMA–LSTM hybrid model was the preferred model for the UR surgical unit.

4. Discussion

In this study, four simple models and twelve hybrid models were studied for five
surgical units. The results indicated that the surgical unit GA had the best prediction
results when using the simple LSTM model, surgical unit EN had the best prediction
results when using the SARIMA–MLP model, two surgical units—UR and KA—had the
best prediction results using the SARIMA–LSTM hybrid model, and surgical unit BA
had the best prediction results when using the LSTM–SARIMA model. This shows that
there is no universal model that can provide the best predictions for all surgical units.
Therefore, hospitals need to use different models for each surgical unit in order to predict
their demand.

The SARIMA–LSTM model predicted the demand more effectively for the UR surgical
unit, which featured the highest number of elective surgeries. This hybrid model was able
to decrease the errors by 18%. According to the results, the simple SARIMA model was
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able to decrease the MAE by 15%, while 3% of the improvement was due to the LSTM
model.

The LSTM–SARIMA model predicted the demand more effectively for the BA surgical
unit. This unit featured only half the number of elective surgeries and almost the same
number of emergency surgeries as the UR surgical unit. Here, both the simple SARIMA
and simple LSTM model had similar error rates in which the models were able to decrease
the MAE by 26% when compared with the baseline model. Whereas the LSTM–SARIMA
model was able to decrease the MAE by 31% when compared with the baseline model.

Nearly one third of the surgeries performed by the KA surgical unit are emergency
surgeries. Therefore, an accurate demand prediction for this unit is important. All the
models were more effective than baseline at predicting demand in the KA surgical unit.
Except for the simple SVR model and hybrid models with SVR model, every other model
was able to reduce the MAE by more than 40%; however, among all the models, the
SARIMA–LSTM hybrid model demonstrated the lowest MAE values, with a 45% reduction
compared with the baseline.

In contrast to the work of Taskaya-Temizel and Casey [25], this study showed that
at least one hybrid model outperformed the simple SARIMA model for all surgical units.
Figure 6 presents the actual vs. SARIMA and actual vs. SARIMA–LSTM forecasted surgical
demand values for the GA surgical unit. The difference between the performance of these
model is not easily identifiable from this Figure 6 because the hybrid SARIMA–LSTM
outperformed the simple SARIMA model by reducing the MAE by nearly 1%.
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The SVR–SARIMA, MLP–SARIMA, and LSTM–SARIMA models performed poorly
when compared with the SARIMA–SVR, SARIMA–MLP, and SARIMA–LSTM, respectively.
These performances were expected because the initial non-linear models were able to
forecast both the linear and non-linear components of the time-series data, whereas the
SARIMA model was not able to forecast the random error values and the residuals from
the initial non-linear model. Therefore, when building a hybrid model with a linear model
and a non-linear model, it is more effective to build the linear model and then use the
non-linear model to forecast the residuals and the random error in the time-series.

However, there were some limitations to this study. First, only in-patient surgeries
were studied, and not the demand for day surgeries. As some of the surgical units per-
formed quite a substantial number of day surgeries each day, this might have had an impact
on the surgeries’ resource allocations. Second, only 16 different models were explored for
this study. Finally, the selected models should be updated periodically, in order to improve
the accuracy of the demand prediction.

5. Conclusions

In this study, we found that hybrid modeling performed more effectively for most
cases and the single LSTM model performed better in one case for the demand prediction
of in-patient dayshift surgeries in a Norwegian hospital. The results showed that there is a
need to have unique models for demand prediction in each surgical unit of a hospital, as
each unit has unique demand patterns. With the predicted demand values, each surgical
unit can predict the demand values in advance, thus ensuring better resource allocation.
Future studies should focus on eliminating the limitations presented in the Discussion
section.
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