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Abstract: Natural language understanding technologies play an essential role in automatically solv-
ing math word problems. In the process of machine understanding Chinese math word problems,
comma disambiguation, which is associated with a class imbalance binary learning problem, is
addressed as a valuable instrument to transform the problem statement of math word problems
into structured representation. Aiming to resolve this problem, we employed the synthetic minority
oversampling technique (SMOTE) and random forests to comma classification after their hyper-
parameters were jointly optimized. We propose a strict measure to evaluate the performance of
deployed comma classification models on comma disambiguation in math word problems. To verify
the effectiveness of random forest classifiers with SMOTE on comma disambiguation, we conducted
two-stage experiments on two datasets with a collection of evaluation measures. Experimental results
showed that random forest classifiers were significantly superior to baseline methods in Chinese
comma disambiguation. The SMOTE algorithm with optimized hyperparameter settings based on
the categorical distribution of different datasets is preferable, instead of with its default values. For
practitioners, we suggest that hyperparameters of a classification models be optimized again after
parameter settings of SMOTE have been changed.

Keywords: comma disambiguation; feature engineering; hyperparameter tuning; imbalanced learn-
ing; natural language understanding; random forests

1. Introduction

Automatically solving math word problems (MWPs), which dates back to 1960s [1],
gains intensive attention from international scholars [2,3]. In a math word problem solver,
natural language understanding technologies were adapted to automatically transform
MWPs into a structured representation that facilitates quantitative reasoning. The formal-
ized representation is essentially derived from a list of textual propositions within a sen-
tence or several sentence fragments. With reference to the Rhetorical Structure Theory [4],
textual propositions in a math word problem can be defined as quantitative discourse units
(QDUs) analogically.

In the transformation process, commas serve as an important cue for detecting QDUs
in the problem statement of MWPs. In a general way, MWPs can be split into several QDUs
by periods (e.g., Mike’s father is 3 times as old as Mike. 4 years ago, he was 4 times older. How
old is Mike?). However, it is unsuitable for a comma to be directly regarded as a delimiter
among QDUs in MWPs. The main reason is that the comma has diverse syntactic roles
and depicts different semantic relations in the narrative [5,6]. The Chinese comma also
identifies the boundary of a sentence just as a period, an exclamation point or question
mark does [7]. Additionally, sentence fragments surrounding commas express essential
relations for understanding the meaning of the sentence [6]. In Chinese MWPs, comma
placement among coordinated phrases tends to describe a “whole-part” relation, whereas
prosodic relations, such as a pause between two clauses, are also marked with a comma. In
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this sense, the utility of the Chinese comma is complex and diverse, which leads to comma
ambiguity in MWPs. Therefore, comma disambiguation is necessary for detecting QDUs
in Chinese MWPs, and it is addressed as a fundamental step towards the fine-grained
semantic parsing with the purpose of mapping problem statements into the structured
representation.

Developing a supervised or semi-supervised learning model for comma disambigua-
tion benefits a wide range of downstream natural language processing (NLP) applications,
such as discourse analysis and machine translation. To recognize loosely coordinated
clauses separated by commas, Xue and Yang trained a maximum entropy classifier using
the Chinese Treebank and achieved promising results for comma disambiguation [8]. In-
spired by Xue’s effort, Xu et al. introduced different features (e.g., semantic information of
two words before and after the comma) to establish a hidden Markov model for Chinese
sentence segmentation [9]. Building on their previous work, Yang and Xue further imple-
mented subject–predicate features, mutual information features, span features and lexical
features to disambiguate the Chinese comma that was viewed as a delimiter of elementary
discourse units, in the sense of the Rhetorical Structure Theory [7]. Likewise, Li et al. ex-
tracted rich linguistic features to recognize discourse relations with the maximum entropy
classifier [10]. Arivazhagan et al. combined syntactic features and semantic features to
train an averaged perception classifier for the prediction of comma roles [6]. Towards
Chinese–English patent machine translation, rich linguistic information was exploited to
identify commas, which facilitated the quality improvement of translation outputs [11].

To sum up, comma disambiguation is generally transformed into a classification
problem, and the maximum entropy classifier is the most frequently used method for
comma classification. Meanwhile, most of the above-mentioned studies focused on fea-
ture construction and selection to improve the performance of the target classifiers on
comma disambiguation. However, there is little work on comma disambiguation asso-
ciated with the imbalanced learning problem. This problem exerts a negative impact on
comma disambiguation directly, and further suppresses the effectiveness of downstream
NLP applications such as machine translation, syntactic parsing and semantic analysis.
Especially, both syntactic parsing and semantic analysis are conducive to fined-grained
information extraction from short text, which is a significant part in the process of machine
understanding MWPs. Therefore, there is a demand for an effective, reliable and practica-
ble technique to detect ambiguous commas in MWPs whilst coping with the imbalance
learning problem.

In this paper, we addressed comma disambiguation in MWPs as an imbalanced
binary classification problem and employed the synthetic minority oversampling technique
(SMOTE) and random forests to resolve this problem. Firstly, we converted each comma
in MWPs into feature vectors, and then dealt with the class imbalance problem based
on SMOTE. Secondly, we jointly tuned hyperparameters of SMOTE and random forest
classifiers, and subsequently performed comparisons with other classification models,
including decision trees, maximum entropy, naïve Bayes and support vector machine.
Thirdly, we proposed a novel measure to strictly evaluate the effectiveness of deployed
classifiers on comma disambiguation in MWPs. Finally, based on our experimental results,
we conclude that random forest classifiers with SMOTE outperform other classification
methods in comma classification. Additionally, it is more reliable and acceptable to adopt
random forest classifiers rather than alternative methods such as naïve Bayes, maximum
entropy and support vector machine to disambiguate commas in MWPs. We also suggest
that, when using SMOTE to cope with the class imbalance problem, hyperparameters
of classification algorithms should be re-optimized corresponding to the alteration of
parameter settings in SMOTE. To the best of our knowledge, this is the first study focused
on comma disambiguation in MWPs, which contributes to the field of natural language
understanding.
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2. Notations and Problem Statement

With the necessity of comma disambiguation for QDUs detection in MWPs, we
grouped the Chinese comma into two categories: non-boundary of QDU (non-B-QDU) and
boundary of QDU (B-QDU). The categorization of the Chinese comma in MWPs is similar
to that used for the recognition of element discourse units [12]. As shown in Figure 1, we
observed that class B-QDU significantly outnumbers class non-B-QDU by a large margin.
This observation implies that Chinese comma classification is involved in an imbalanced
learning problem. Imbalanced learning is defined as a supervised learning process with
severe data distribution skews to develop effective decision boundaries between a majority
class and a minority class. Preferably, we employed the notation of imbalanced ratio to
precisely describe the data skewness between class B-QDU (the majority class) and class
non-B-QDU (the minority class). The IR can be computed as the number of the majority
divided by the number of the minority. Thus, Chinese comma disambiguation can be cast
as an imbalanced binary classification task and mathematically formulated.
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We used a Chinese comma dataset derived from a corpus of MWPs and denoted as
D = ∪n

i = 1(xi, yi), where xi is a list of attributes used to represent a comma and class
labels of the comma are represented as yi ∈ {0, 1}, where 0, 1 indicate the class B-QDU,
non-B-QDU, respectively. The goal of our task is to construct a standard classification
model on the dataset D, which is in essence to figure out a decision model to minimize a
loss function that measures the cost of decision error, subject to the imbalanced ratio of the
dataset D, denoted as IR(D). Its mathematical description is presented as follows:

min
f∈F

1
n ∑

xi∈D
L(yi, f (xi)) + λΩ( f )

s.t. IR(D) = |N0(D)|
|N1(D)| > 1

(1)

where f (xi) is the decision model, L(yi, f (xi)) is the loss function, F is a family of decision
models dependent upon a parametric space, Ω( f ) is a penalty term measuring the model
complexity, λ is a coefficient to weight the empirical risk against the complexity of the
decision model and N0(D) and N1(D) are the number of the class B-QDU instances and
the number of the class non-B-QDU instances, respectively. Hence, with the purpose of
disambiguating Chinese comma in MWPs, we need to refine the imbalanced learning
problem through a classification model that is biased toward the class non-B-QDU without
sacrificing its performance on the class B-QDU. Class imbalance significantly compromises
the performance of most standard learning algorithms, which assume or expect balanced
class distributions or equal misclassification costs. Currently, strategies to meet the class
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imbalance problem have been roughly grouped into sampling, cost-sensitive and active
learning methods. Sampling methods can be subdivided into four categories: oversampling,
undersampling, informed undersampling and synthetic sampling. In this paper, we
employed a synthetic sampling method and random forest classifiers to achieve our goals.

3. Methods

To cope with comma disambiguation in MWPs, we firmly developed an effective
method using the SMOTE algorithm and random forest classifiers. In our method, random
forest classifiers were built for comma classification in which the imbalanced learning
problem was tackled by dint of the SMOTE algorithm. Moreover, we jointly optimized
the hyperparameters of the SMOTE algorithm and random forest classifiers to enhance
their performance in comma disambiguation. Detailed information about our methods is
presented in the following subsections.

3.1. Feature Construction

Comma features automatically obtained from MWPs were categorized into shallow
context features, lexical features and phrasal features. Recent studies showed that commas
represented as these categories of features are used for comma classification in different
NLP tasks. As for machine translation, lexical, phrasal and syntactic features are imple-
mented to train classifiers [11]. Beyond these features, other features such as mutual
information features, span features and semantic features are proposed to perform dis-
course analysis successfully [7]. Admittedly, lexical features as well as phrasal features
greatly contributed to a variety of NLP tasks. In practice, both lexical and phrasal features
strongly depend on syntactic analysis, but syntactic analyzers such as tokenizers and
constituent parsers practicably achieve poor performance in Chinese MWPs. In an attempt
to alleviate this concern, it is acceptable to introduce shallow context features besides the
lexical and phrasal features. As a result, comma features in our method are summarized as
follows:

• Shallow context features refer to the surface information of a text segment before or
behind a comma. Given a text segment before a comma, it can be turned into a list of
surface features including the position of the comma (PC), the string length (SL), the
number of words (NW) and whether it contains numeric or English letters (NoE).

• Lexical features are of word level and emphasize the part-of-speech (POS) and length
of the first word (WL) before or behind a comma.

• Phrasal features are derived from syntactic constituents of a text segment before
or behind a comma. For each textual math word problem, a subject–predicate (SP)
structure is identical to simple and unbroken discourse units that can be turned into a
set of QDUs. Thus, the number of SP structures was chosen as the essential phrasal
feature instead of other phrases such as noun phrase and prepositional phrase.

We implemented a text preprocessor using two attainable steps to construct comma
features. During preprocessing, we firstly established word segmentation without stop
words filtering, and concurrently performed syntactic parsing on the raw textual MWPs.
POS tagging set covers 22 categories, and each category contains some sub-categories [13].
In addition, the syntactic parsing was based on the Penn Chinese Treebank. For the
elaboration of the primitive features we constructed, this is best illustrated with an example
plotted in Figure 2. Given the numbered commas such as 1, 2 and 3 within the exhibited
example, we excavated the primitive features from shallow span, lexical and phrasal levels,
and also summarized them in Table 1. Subsequently, the Cartesian product was performed
on the primitive features to yield new features. These derived features are loaded with
the contextual and syntactical information about the corresponding comma. For instance,
given two plain features such as before-NoE (true, false) and behind-NoE (true, false), there
might be useful information lying in the induced features (true-false, true-true, false-true,
false-false). In short, different categorical features were automatically extracted from the
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two text spans surrounding a comma through general NLP techniques, and gave access to
comma disambiguation in Chinese MWPs.
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Table 1. Examples of primitive features representing commas numbered in Figure 2.

Features
non-B-QDU B-QDU

1 2 3 1 2

PC 5 8 32 44 60
NoE false false true true true
SL 2 23 11 15 27

NW 1 13 5 8 19
POS ntc ntc m n n
WL 2 2 4 1 1
SP 0 2 0 0 1

3.2. SMOTE

The synthetic minority oversampling technique (SMOTE) [14] was employed to solve
the imbalanced learning problem in the task of comma disambiguation. SMOTE is a
powerful synthetic sampling method and has shown great success in various applications.
In theoretical terms, a synthetic sample S based on SMOTE is a linear combination of two
similar samples denoted as X and XK from the minority class. The linear combination
is expressed as Equation (2), where δ is a random seed between 0 and 1, and XK is a
random selection among the K-nearest neighbors of X in the minority class. This is the
kernel part of the SMOTE algorithm which is described in Algorithm 1. The similarity
among samples was measured based on the Euclidean distance in order to figure out the
K-nearest neighbors of X in the minority class. SMOTE is efficient in reducing the class
imbalance problem for most classifiers trained on low-dimensional data but failed with
high-dimensional data [15]. Despite its failure to perform with high-dimensional datasets,
we believe that SMOTE is beneficial to our class imbalance datasets from an empirical point
of view.

S = X + δ×
(

XK − X
)

(2)
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Algorithm 1 SMOTE in Pseudo-code

Input: The minority class in the dataset Dmin, the percentage of synthetic minority class P, and
the number of nearest neighbors K
Output: The synthetic samples of minority class Syn
1: if P < 100 then
2: Randomize the minority class dataset Dmin;
3: |Dmin| = (P/100)× |Dmin|;
4: P = 100;
5: end if
6: Syn is initialized to an array for the synthetic samples of minority class;
7: P = (int)P/100;
8: i← 0 ;
9: for each d ∈ Dmin do
10: Compute the K-nearest neighbors Ddk for d : Ddk ⊂ Dmin;
11: while P 6= 0 do
12: Randomize an integer n between 0 and K− 1: n ∈ [0, K− 1];
13: Compute the difference between d and Ddk[n] : di f ← Ddk[n]− d ;
14: Randomize a number gap between 0 and 1: gap ∈ [0, 1];
15: Generate a synthetic minority: Syn[i] = d + di f × gap;
16: i← i + 1 ;
17: P← P− 1 ;
18: end while
19: end for
20: return Syn;

3.3. Random Forests

We established random forest classifiers to disambiguate commas in MWPs. In essence,
a random forest classifier is a special situation of bagging, which is an ensemble learning to
combine prediction from multiple decision trees built on bootstrapped training datasets.
As illustrated in Figure 3, the training pipeline of random forest classifiers is separated
into three steps: (1) drawing bootstrapped datasets, (2) training a set of classification and
regression tree (CART) models, and (3) aggregating all predictions made by CART models.
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Firstly, bootstrap sampling was performed to create different training datasets. Boot-
strapping is a technique used for drawing training datasets from the original dataset by
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randomly resampling with replacements. Some samples in the original dataset may be
used more than once to construct a decision tree. Theoretically, approximately two-thirds
of samples are selected to generate decision trees in the forest, while the rest of samples
known as out-of-bag samples can be used to estimate the generalization performance or
facilitate the pruning of decision trees.

Secondly, bootstrapped training datasets were fed into a collection of CART models.
Each CART classification model is built on a bootstrapped training dataset in a divide-and-
conquer way. The root node of CART corresponds to the entire training dataset, and each
node of CART is divided into child nodes corresponding to a partitioning of the available
dataset under a splitting criterion. In the process of establishing the CART classification
model, the splitting criterion is objectively established by introducing the Gini index. As
with the intension of entropy, the Gini index is a measure of uncertainty. The Gini index
identifies the probability of a misclassified sample that is randomly selected from a dataset;
the smaller the Gini index is, the less likely a misclassified sample is. Given a training
dataset D = ∪N

i = 1(xi, yi) in which its samples are grouped into M (M ≥ 2) categories
(C = ∪M

m = 1cm), the training dataset D can be represented as D = ∪M
m = 1Dcm , where

Dm is a set of samples belonging to class cm. Thus, the Gini index of the dataset D can be
computed as Equation (3), where |D| and |Dcm | are the number of samples in the dataset
D and Dcm , respectively. Based on the Gini index, the splitting criterion is that the split
attribute should achieve the highest Gini index among all candidate split attributes. As a
result, a CART in the forest keeps growing from the bottom up using the splitting criterion.
This grown CART divides the training dataset D into a set of region units (R = ∪K

k = 1Rk),
and each region unit Rk corresponds to a class ck. Consequently, the generated CART and
its loss function on the training dataset D can be described using Equations (4) and (5),
respectively, where I(·) is a characteristic function.

Gini(D) =
M

∑
m = 1

|Dcm |
|D|

(
1− |Dcm |

|D|

)
= 1−

M

∑
m = 1

(
|Dcm |
|D|

)2
(3)

f (x) =
K

∑
k = 1

ck I(x ∈ Rk) (4)

L(y, f (x)) =
K

∑
k = 1

∑
x∈Rk

I(y 6= f (x)) (5)

Thirdly, majority voting is applied to reach a final prediction that is the output of
a random forest classifier. In the random forest classifier, a collection of CART models
denoted as F = ∪T

t = 1 ft(x) contribute with the same amount of predictions for an input
sample. These CART models F can be deemed as a committee decision to determine
the sample class ci by the majority vote method. In mathematical terms, the collective
prediction H(x) can be represented as Equation (6).

H(x) = argmaxci

(
1
T

T

∑
t = 1

I( ft(x) = ci)

)
(6)

The procedure of training random forest classifiers reveals that the diversity of each
decision tree results from the randomness of sample bootstrapping and attribute selecting.
The randomness increases the otherness among base classifiers, a set of decision trees,
and further enhances the generalization performance in the ensemble accordingly. With
the exception of suitable performance on generalization, random forest classifiers are not
only similar to or better than Adaboost in accuracy and faster than bagging or boosting,
but they are also relatively robust to outliers and noise. Taking these strengths into
consideration, random forest classifiers have been successfully engaged in a wide variety
of practical problems, such as medical informatics [16], cheminformatics [17], ecology [18],
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geoinformatics [19] and bioinformatics [20]. In particular, random forest classifiers are built
from highly imbalanced data for disease risk prediction [21].

3.4. Hyperparameter Tuning

The effectiveness of SMOTE and random forest classifiers is affected by their hyperpa-
rameter settings. Optimal hyperparameter settings of random forest classifiers are sensitive
to the distribution of the training dataset, while SMOTE is doomed to change the sample
size and distribution of the training dataset. It is thus indispensable to optimize all the
hyperparameters of SMOTE and random forest classifiers simultaneously.

The hyperparameters of SMOTE are the percentage of synthetic minority class P
and the number of nearest neighbors K. Obviously, the parameter space in SMOTE is
of the Cartesian product of the parameter settings P and K (P × K). The parameter P
relies on the amount of negative and positive samples, and the required balanced rate
between the negative and positive samples. With regard to the imbalanced ratio of our
experimental datasets, the synthetic minority class in SMOTE was thus incrementally
specified as 100, 200, 300, 400 and 500 percent of its original size. As for the number
of nearest neighbors K, it is such an awkward setting that we had to randomly assign
a value to it. An improper value initiated to the parameter K results in synthesizing
minority samples in the region of the majority class, regarded as noise, and further hinders
the classification effect correspondingly [22]. In the original SMOTE algorithm [14], the
recommended value of parameter K is 5. Nevertheless, parameter K was set to different
integer values from 3 to 9 in order to capture an optimal choice.

Likewise, there are two significant hyperparameters named nTrees and nAttrs in
random forest classifiers. While increasing the number of trees nTrees, the generalization
error converges, and over-training can also be neglected [23]. In other words, the more
trees added to the forest, the weaker the tendency of overfitting. On the other hand,
random forest classifiers are completely susceptible to the number of randomly investigated
attributes nAttrs. Decreasing the nAttrs decreases the correlation among trees in the forest
and as well as decreases their strength. The decrease in nAttrs is easily caught in a dilemma
that the corresponding decreasing correlation and strength may further lead to adverse
effects on the accuracy of random forest classifiers. In this situation, the hyperparameter
settings, nTrees and nAttrs, ranged from 5 to 100 with 20 steps and from 1 to 15 with 15
steps, respectively, when we proceeded with hyperparameter tuning.

To achieve a competent random forest classifier, its hyperparameter values must
be specified before beginning training. However, it is a complicated and heavy mission
to capture an optimal hyperparameter setting, which varies for different datasets. The
process of hyperparameter tuning can be roughly divided into three steps: (1) training
and evaluating on all hyperparameter settings by hold-out or cross-validation in a loop,
(2) seeking out the best hyperparameter setting according to different measure metrics
and (3) retraining a classifier on all available dataset (training and validating dataset)
under the best hyperparameter setting. At present, hyperparameter tuning methods can
be conventionally sorted into more three main categories: grid search, random search and
smart search. The grid search method, even in most cases, is expensive in computation
time, but seems naïve and can be easily parallelized. It may be a risk to utilize approaches
that take advantage of approximations or heuristics to avoid an exhaustive parameter
search, and the required computational cost of grid search is not much more than that of
smart methods when there are only two hyperparameters to be optimized [24]. Therefore,
the grid search method is attractive and available and thus was adopted to optimize the
hyperparameters of random forest classifiers.

4. Experimental Setup

As described in Figure 4, the process of our experiments has two stages. The first
stage, known as the development of predictive models, was to increase the performance
on comma classification by tweaking random forest (RF) classifiers and SMOTE algorithm,
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and to select the best-performing model from the feature space given by our experimental
dataset. To make it more concrete in the first stage, the dataset was split into training
data, validation data and test data. We conducted an experiment on the training data and
validation data to tune the hyperparameters of SMOTE and RF classifiers simultaneously.
Successively, classification algorithms, including decision trees (C4.5), maximum entropy
(ME), naïve Bayes (NB) and support vector machine (SVM), were built on training data, and
served as baseline models compared to an RF classifier with optimized hyperparameter
settings. These baseline models had been successfully applied to identify ambiguous
commas for various NLP tasks [7,11]. Accordingly, another experiment was launched on
the test data in order to compare the performance achieved by the RF classifier with those
by baseline models using different evaluation measures.
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Figure 4. An overview of our experimental process.

All the comma classification models built in the first stage were deployed in the second
stage. We intended to estimate their generalization performance on future or live data, and
tried to answer a question such as, “Is the RF classifier with SMOTE better than baseline models
for comma disambiguation in MWPs?” This question is related to a statistical hypothesis
testing. Hence, we hypothesized that the RF classifier with SMOTE leads to a statistically
significant improvement in comma disambiguation in MWPs. With this hypothesis testing,
an evaluation measure was devised to assess the actual effectiveness of deployed models
on comma disambiguation in MWPs. We performed bootstrap sampling on a new dataset,
and the bootstrapped datasets were simulated as live data to quantify and compare the
performance uncertainty of deployed models based on the proposed evaluation measure.

All experiments were conducted in WEKA, an open source machine learning li-
brary in Java [25], on a Dell laptop with 2 GHz Intel Core i7 CPU and 8 GB of mem-
ory. Information about our experimental datasets and evaluation measures is detailed in
Sections 4.1 and 4.2 respectively.
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4.1. Dataset Description

Concerning comma disambiguation in MWPs, there is, to our knowledge, no bench-
mark corpus for this goal in published scientific literature. On this occasion, we built a raw
dataset concerned with Chinese comma disambiguation in MWPs. Each math word prob-
lem in this unsorted raw dataset is about stratified sampling. These textual problems were
collected from Chinese college entrance mathematics exams of the past ten years and two
mathematic educational websites. Each comma in 263 MWPs was manually annotated as
class B-QDU or non-B-QDU. Consequently, the human-annotated dataset, which we called
CODIS, consisted of 1184 commas. There were 172 positive samples with an identical label
non-B-QDU and 1012 negative samples with another label. In the experimental process,
the CODIS dataset was split into a training dataset with 710 samples, a validation dataset
with 237 samples to tune hyperparameters and a test dataset with 237 samples to compare
the generalization ability of our method with the baseline methods on different metrics.
Moreover, another dataset with 100 MWPs was constructed and named APP-CODIS. In
the APP-CODIS dataset, each MWP was absent from the CODIS dataset, and served as live
data to evaluate the performance of deployed classifiers on comma disambiguation.

4.2. Evaluation Measures

For imbalanced learning problems, overall classification accuracy might not be an
adequate evaluation metric because the predictive accuracy is biased towards the majority
class. In this paper, the metrics we employ to compare the performance among the
classifiers include Recall (R), F-measure (F), True Positive Rate (TPR), True Negative Rate
(TNR), Weighted Accuracy (WA), G-mean (GM), and Matthews Correlation Coefficient
(MCC). These metrics have been widely used to evaluate the performance of classification
algorithms on class imbalance data [26,27].

Recall and F-measure have been commonly adopted in the realm of information re-
trieval. A desirable classifier built from an imbalanced dataset should be capable of achiev-
ing high prediction accuracy for the majority and reasonable accuracy for the minority.
With this desire, the weighted accuracy was proposed [28] and computed as Equation (7),
in which different weights are specified to TPR and TNR in order to compensate for the
bias in the imbalanced dataset. The adjustable weight of TPR is commonly set to 0.5,
which means that the importance of prediction accuracy on the minority is equal to that
on the majority. Moreover, we used the MCC as another measure to assess classification
performance on our class imbalance datasets. MCC takes mutual accuracies and error rates
on all classes into consideration and hence is less influenced by imbalanced dataset [29].
Additionally, a receiver operating characteristic (ROC), a two-dimensional graph known as
an ROC curve, was employed to illustrate the performance of classifiers. The ROC curve
and its area under curve (AUC) have proven to be credible performance metrics as they
are insensitive to diversifications of class distribution [20,30].

WA = β× TPR + (1− β)× TNR (7)

SA =
∑N

n = 1 ∏M
m = 1 I(H(xnm) = ynm)

N
(8)

Since commas are regarded as delimiters among quantitative discourse units (QDUs)
in a math word problem, it makes sense to measure the accuracy of deployed classifiers to
detect ambiguous commas in the word problem. This means that only when all commas
have been correctly classified can the math word problem be accurately segmented into a
list of QDUs. We thus propose a practical and strict measure to evaluate the performance
of deployed classifiers on the APP-CODIS dataset. The proposed measure herein is capable
of highlighting the strict accuracy (SA) of deployed classifiers on comma disambiguation,
which also meets the demand of applications in production settings. Suppose that there are
N textual problems in the APP-CODIS dataset, and each textual problem has M commas
that need to be disambiguated. The computation of SA for a deployed classification model
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H(x) is shown in Equation (8), where xnm is a feature vector of the m-th comma in the n-th
MWP, ynm is the actual class of comma xnm and I(·) is a characteristic function.

5. Results and Discussion

In this section, we present experimental results to select optimal hyperparameters for
SMOTE and RF classifiers and compare the performance of RF classifiers with baseline
methods. We show that the combination of random forest classifiers and the algorithm
SMOTE is competitive against alternative methods in comma disambiguation. The details
of the experimental results are summarized in the following subsections.

5.1. Selection of Optimal Hyperparameters

Table 2 shows the performance of optimized RF classifiers and its corresponding
hyperparameter settings of SMOTE on the validation dataset. This table gives a general
view of the performance of optimized RF classifiers on evaluation metrics, including TPR,
TNR, WA, GM, MCC and AUC. Standard deviations of these performance metrics were
less than 4.5%, indicating that classification performances achieved by the optimal RF
classifiers do not have significant variation. That is, no matter what the hyperparameter
settings of SMOTE are, the performances of its corresponding optimal RF classifiers turn
out smoothly.

Table 2. Performance of optimized random forest classifiers on the validation dataset under different hyperparameter
settings of SMOTE.

Hyperparameters of SMOTE Performance Metrics Optimal Hyperparameter Settings of
Random Forests

P K TPR TNR WA GM MCC AUC nTrees nAttrs

100

3 0.867 0.971 0.919 0.918 0.815 0.986 70 1
4 0.800 0.957 0.879 0.875 0.727 0.980 80 1
5 0.800 0.961 0.881 0.877 0.741 0.981 80 1
6 0.800 0.952 0.876 0.873 0.713 0.980 65 1
7 0.833 0.947 0.890 0.888 0.723 0.981 100 2
8 0.833 0.952 0.893 0.891 0.736 0.979 85 1
9 0.933 0.952 0.943 0.942 0.802 0.982 30 4

200

3 0.833 0.952 0.893 0.891 0.736 0.983 60 1
4 0.800 0.957 0.879 0.875 0.727 0.981 80 1
5 0.833 0.947 0.890 0.888 0.723 0.981 85 1
6 0.867 0.966 0.917 0.915 0.800 0.983 50 1
7 0.833 0.957 0.895 0.893 0.749 0.977 20 1
8 0.833 0.947 0.890 0.888 0.723 0.977 30 1
9 0.900 0.961 0.931 0.930 0.807 0.982 30 1

300

3 0.867 0.952 0.910 0.909 0.758 0.983 95 1
4 0.867 0.957 0.912 0.911 0.771 0.980 40 1
5 0.867 0.952 0.910 0.909 0.758 0.982 100 1
6 0.867 0.952 0.910 0.909 0.758 0.985 90 1
7 0.833 0.952 0.893 0.891 0.736 0.983 40 1
8 0.900 0.947 0.924 0.923 0.767 0.983 95 1
9 0.900 0.957 0.929 0.928 0.793 0.984 75 1

400

3 0.900 0.952 0.926 0.926 0.780 0.982 75 1
4 0.900 0.947 0.924 0.923 0.767 0.981 25 1
5 0.933 0.947 0.940 0.940 0.789 0.979 25 4
6 0.867 0.952 0.910 0.909 0.758 0.985 75 1
7 0.933 0.942 0.938 0.937 0.777 0.983 40 1
8 0.833 0.957 0.895 0.893 0.749 0.984 95 1
9 0.900 0.942 0.921 0.921 0.755 0.980 40 1

500

3 0.833 0.952 0.893 0.891 0.736 0.978 20 2
4 0.833 0.952 0.893 0.891 0.736 0.979 55 1
5 0.867 0.942 0.905 0.904 0.733 0.981 75 1
6 0.867 0.952 0.910 0.909 0.758 0.983 95 1
7 0.900 0.942 0.921 0.921 0.755 0.982 55 1
8 0.933 0.947 0.940 0.940 0.789 0.985 85 1
9 0.900 0.952 0.926 0.926 0.780 0.983 95 1
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For more specific insight into the entire distribution of classification performance after
tuning hyperparameters, three plot comparisons of classification performance on TPR and
TNR are shown in Figures 5–7. We excluded other performance metrics such as MCC,
AUC, WA and GM by taking two aspects into consideration: (1) we emphasized classifiers’
performance on positive and negative samples under diverse hyperparameter settings of
SMOTE and RF; and (2) both WA and GM are determined by TPR and TNR. A line and
scatter plot with an error bar in Figure 5 show the overall fluctuation trends of optimal RF
classifiers’ performance on TPR and TNR. As illustrated in Figure 5, the performances on
TPR achieved by optimal RF classifiers are more sensitive to parameter settings of SMOTE
than on TNR. Boxplots in Figures 6 and 7, where short dash lines signify the mean values
of performance metrics, allow for a clear comparison of performance on TPR and TNR
at various points in the distribution. For instance, boxplots in Figure 6A clearly exhibit
that the TPR distribution at P = 400 is much more favorable than that at P = 100. More
specifically, the 25th, 50th and 75th percentiles of the TPR distribution at P = 400 are
much larger than those at P = 100.

Through the integral analysis of hyperparameter tuning results seen in Table 2 and
Figures 5–7, we acquired four other observations, summarized as follows:

• AUC values in Table 2 imply that there is no significant variation in the performance
of optimal RF classifiers under different parameter settings of SMOTE; in all cases,
the hyperparameters of RF are adaptable for obtaining considerable performance,
especially the values of nTrees, which range from 20 to 100, while nAttrs are of conver-
gence in 1, 2 or 4. The optimal numbers of nTrees and nAttrs differ from their default
values in many applications of RF [31]. For the convergence of nAttrs, it is in line
with a thorough investigation claiming that this hyperparameter has a minor impact
on the performance, though larger values may be associated with a reduction in the
predictive performance [32]. While using MCC to measure performance, optimal RF
classifiers achieve a completely acceptable performance.

• The hyperparameter settings of SMOTE have more influence on the variation of
TPR than that of TNR. It may ascribe the flaw of SMOTE in which the synthetic
samples derived from the minority samples may be of repeatability, noisy or even
fuzzy boundaries between the minority and majority classes [33]. Although there is
no apparent variation in TNR in all the cases, classification performance for negative
samples tends to be hampered slightly. Thus, the SMOTE adds essential information to
the original dataset that enhances RF classifiers’ performance on the minority samples,
but is also likely to reduce the performance on classifying the majority samples.

• Comparing the TPR performance achieved by optimal RF classifiers at P = 400 and
P = 100, there is a statistically significant difference (p = 0.028 at 95% confidence).
For the performance on TPR, optimal RF classifiers were improving when P was
increasing from 100 to 400. TNR values, corresponding to the rise in P, are depressed,
but still significantly considerable. Figure 6 shows that the best performance tradeoff
between TPR and TNR occurred at P = 400. The training dataset augmented by
SMOTE (P = 400) was almost fully balanced and induced an optimal RF classifier,
achieving the best performance on TPR. It is consistent with the experimental finding
that the best oversampling rate made the enlarged dataset fully balanced in order to
detect as many positive diabetes patients as possible [34].

• As shown in Figure 7, optimal RF classifiers built at K = 9 achieved better perfor-
mance on TPR without sacrificing the performance on TNR. In spite of parameter
P values, parameter K has slightly more influence on the classification of negative
samples since the number of negative samples in a training dataset has no change
after conducting SMOTE with the diversity of parameter P values. This observation is
not compatible with the literature recommendations in which the number of nearest
neighbors for SMOTE is set to five [14].
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Figure 5. Fluctuation trends of optimal random forest classifiers’ performance on TPR and TNR.

Figure 6. Boxplots of optimal random forest classifiers’ performance on TPR (A) and TNR (B) under different settings of
parameter p in the SMOTE algorithm.

Figure 7. Boxplots of optimal random forest classifiers’ performance on TPR (A) and TNR (B) under different settings of
parameter K in the SMOTE algorithm.

Based on these observations, the optimal parameter setting of SMOTE is
(P, K) = (400, 9) and the corresponding optimal hyperparameter setting of RF clas-
sifiers is (nTrees, nAttrs) = (40, 1). These optimized parameter settings were further used
to retrain optimal RF classifiers and compare their performance on the test dataset with
baseline models.
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5.2. Comparison of Random Forests and Baseline Models on Comma Classification

To evaluate the efficacy of RF and SMOTE in the context of comma classification,
the performance results achieved by RF classifiers were compared with those of baseline
models. Before comparisons, all models were to perform hyperparameter tuning based on
the grid search method. Subsequently, these optimized classifiers were evaluated on the
test dataset, and their performance results are presented in Table 3.

Table 3. Performance comparisons between random forest classifiers and baseline models.

Classification Models
Performance Metrics

R (TPR) F TNR WA GM MCC AUC

C4.5 0.707 0.716 0.944 0.826 0.817 0.658 0.824
ME 0.683 0.709 0.949 0.816 0.805 0.651 0.946
NB 0.610 0.714 0.980 0.795 0.773 0.680 0.930

SVM 0.829 0.773 0.934 0.882 0.880 0.724 0.881
RF 0.780 0.821 0.974 0.877 0.872 0.787 0.978

RF + Undersampling 0.707 0.753 0.964 0.836 0.826 0.708 0.954
RF+SMOTE

(nTrees = 40, nAttrs = 1, P = 400, K = 9) 0.805 0.825 0.980 0.893 0.888 0.817 0.976

Overall, comparison results in Table 3 show that RF classifiers produce a higher level
of classification results on all evaluation measures, whereas SVM achieves the best perfor-
mance in TPR at 0.829 with a rational TNR at 0.934, but has the second lowest area under the
ROC curve (AUC) at 0.881. Unlike the SVM classifier, the NB classifier has the highest TNR
at 0.980 but the lowest TPR at 0.610. Both the AUC in Table 3 and the ROC curve in Figure 8
indicate that RF classifiers with the algorithm SMOTE outperform the baseline models. Fur-
thermore, the performances achieved by RF classifiers with different sampling techniques
are quite diverse, as shown in Table 3. The performance of RF classifiers with undersam-
pling is inferior to that of RF classifiers with or without SMOTE. A possible explanation for
this is that undersampling removes instances from the majority class and thus causes RF
classifiers to miss important concepts pertaining to the majority class [35]. With the aid
of the SMOTE algorithm, the performance of the RF classifier on TPR improves by 3.2%
when the parameter setting was set to (nTrees = 40, nAttrs = 1, P = 400, K = 9),
though the performance in AUC also depressed slightly. This observation implies that RF
classifiers could have better performance on TPR, WA and GA when the training dataset
was fully balanced by SMOTE. These findings are consistent with those of Blagus and
Lusa [14], who concluded that SMOTE is efficient in reducing the class imbalance problem
with low-dimensional features.

Based on these results, we concluded that RF classifiers with SMOTE comprise the
best overall classifier compared to other alternatives in comma classification. Similar
conclusions have been reached on the comparison of RF classifiers with other popular
classification techniques in a variety of fields. For instance, in the quantitative analysis
of civil war, RF classifiers offer superior predictive power compared to several forms of
logistic regression [36]; for predicting highly imbalanced data, RF classifiers outperformed
SVM, bagging and boosting in terms of ROC and AUC [20,37,38]. Additionally, ME
and NB classifiers have been used to automatically disambiguate Chinese commas for
different tasks of NLP, but consequently demonstrated relative underperformance on
comma classification in MWPs.
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Figure 8. Comparisons of ROC performance.

5.3. Comparison of Deployed Models on Comma Disambiguation

For the comparison of deployed models on comma disambiguation in MWPs, we
acquired 200 bootstrapped datasets from the APP-CODIS dataset. In each bootstrapped
dataset, there were 100 MWPs used to measure the strict accuracy (SA) of deployed
classifiers at comma disambiguation. It turned out that either the deployed RF or baseline
models rigidly produced 200 SA scores in the detection of ambiguous commas. Standard
deviations of these SA scores generated by deployed classifiers are at the same level, about
0.04. Figure 9 depicts an average of SA scores for each deployed classification model.
Specifically, RF classifiers performed best at SA scores by (0.649± 0.042). To assess the
difference between RF classifiers and the baseline models in terms of performance at
SA scores, we conducted Mann–Whitney rank sum tests (at 95% confidence) on these
SA scores that had failed to pass the normality test (all the p-values are less than 0.05 at
95% confidence). All the p-values produced by the rank sum test re plotted in Figure 9.
Statistically significant differences between RF classifiers and alternative methods for
comma disambiguation can be observed from Figure 9. Compared with SVM, the mean of
SA scores gained by RF classifiers significantly improved by 10%. The average SA score of
NB is the worst classifier and compares poorly, with a 30.9% difference from RF classifiers
(p < 0.001).

With reference to these comparative results, we confirmed that using a RF classifier
with SMOTE for comma disambiguation in MWPs was more reliable and acceptable than
alternative methods such NB, ME and SVM. From a practical perspective, the combination
of RF classifiers and SMOTE has reached moderate and considerable accuracy in identifying
ambiguous commas in MWPs.
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Figure 9. Comparisons of deployed models on comma disambiguation in MWPs. Extremely signifi-
cant difference is indicated by “****”.

6. Conclusions and Future Work

Comma disambiguation is certainly conducive to machine understanding Chinese
MWPs. In this paper, we began with the aim of comma disambiguation in MWPs by taking
class imbalance learning into consideration. To the best of our knowledge, this is the first
study related to comma disambiguation in Chinese MWPs. Comma disambiguation in
MWPs can be transformed into a binary classification problem in essence. Such a problem
involves in the class imbalance learning with a fundamental issue of how to improve the
performance of learning algorithms on the minority classes. We thus employed the SMOTE
algorithm and random forests to disambiguate commas in MWPs. The hyperparameters of
SMOTE and random forest classifiers were optimized by means of the grid search method.
Moreover, we proposed a strict measure to evaluate the performance of deployed classi-
fication models on comma disambiguation in Chinese MWPs. Our experimental results
implied that random forest classifiers with SMOTE gained a considerable performance
in comma disambiguation. Our experimental results also provided evidence of the idea
that it is more preferable to use the SMOTE algorithm, tuning its hyperparameters based
on the categorical distribution of different datasets, rather than directly using the default
parameter values. Another noteworthy finding is that hyperparameters of a classification
models should be optimized again after parameter settings of SMOTE have been changed.

To the best of our knowledge, this is the first study addressing comma disambiguation
in math word problems, particularly taking the imbalanced learning problem into con-
sideration. Future research can use quantitative discourse units identified in the present
study to trace and evaluate students’ cognitive process of solving math word problems.
Additionally, the present study develops a practicable methodology that contributes to the
hotspot of machine understanding MWPs. Therefore, based on the use of MWPs as a data
source, researchers can propose more effective approaches to find insights and linguistic
patterns for natural language understanding. With regard to practical implications of
our findings, practitioners can use comma disambiguation to identify quantitative dis-
course units in MWPs, so as to establish an intelligent agent for automatically fine-grained
machine understanding MWPs not only at the technical level, but also at educational level.

Notwithstanding its findings and implications, several limitations should be consid-
ered. Firstly, our datasets are confined to math word problems about stratified sampling at
the high school level, which are more ambiguous than primary school math word problems.
Secondly, our datasets are of a suitable size, but may not contain as much information
on commas as possible. The larger the datasets, the better the generalization capacity of
classifiers are. However, manually labeling numerous commas in MWPs is time-consuming
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and expensive. Finally, comma features consist of shallow context features, lexical features
and phrasal features, and one of the drawbacks is the absence of semantic information.
Taking directional cues from these limitations, further research must be conducted to ex-
plore active learning methods used for comma disambiguation, as detailed annotation of
numerous commas in MWPs can be tedious and even redundant.
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