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Abstract: This manuscript compares deterministic artificial intelligence to a model-following control
applied to DC motor control, including an evaluation of the threshold computation rate to let un-
manned underwater vehicles correctly follow the challenging discontinuous square wave command
signal. The approaches presented in the main text are validated by simulations in MATLAB®, where
the motor process is discretized at multiple step sizes, which is inversely proportional to the compu-
tation rate. Performance is compared to canonical benchmarks that are evaluated by the error mean
and standard deviation. With a large step size, discrete deterministic artificial intelligence shows a
larger error mean than the model-following self-turning regulator approach (the selected benchmark).
However, the performance improves with a decreasing step size. The error mean is close to the
continuous deterministic artificial intelligence when the step size is reduced to 0.2 s, which means
that the computation rate and the sampling period restrict discrete deterministic artificial intelligence.
In that case, continuous deterministic artificial intelligence is the most feasible and reliable selection
for future applications on unmanned underwater vehicles, since it is superior to all the approaches
investigated at multiple computation rates.

Keywords: unmanned underwater vehicle (UUV); deterministic artificial intelligence; model-following;
recursive least squares; marine actuators; self-tuning regulators

1. Introduction
1.1. Motivation

Over the past decades, increasing threats and emerging situations have posed a signif-
icant challenge to the coast guard worldwide. Navies are moving to innovate and adapt
new technology to build a more lethal and distributed naval force for the future [1]. The
United States seems to tackle the problem using unmanned technologies and applications.
Unmanned underwater vehicles seem to be one of the reliable solutions for successful
maritime interdiction missions [2], emphasizing the automation of DC motor control.

The vehicle is controlled by the fin-shape actuator shown in Figure 1a,b. The unmanned
underwater vehicle can sail along the disparate trajectory by sending a command signal
to the motors connected to the actuator (e.g., Figure 1). In this manuscript, the efficacy of
motor control techniques is evaluated with respect to system discretization.
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Figure 1. (a) Aries unmanned underwater vehicle [3]; (b) ECI-40 Maxon underwater drive motor 
and gear head [4]; and (c) underwater thruster propeller motor [5]. 
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counter wind and wave disturbances while surfaced, by creating different motor voltages 
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Tan focused on the capability of the vehicle to track and steer itself accurately despite 
constant perturbation by wave motion effects necessitating an accurate acoustic homing 
during the final stages of the docking with high update rates of the acoustic systems. The 
Aries vehicle was experimentally tested to have an update rate of only about 0.3 Hz. These 
delayed data can potentially cause a false commanded reference input to the tracking sys-
tem in between the updates and can cause Aries to miss the moving cage’s entrance mo-
tivating high-interest investigating systems that prove efficacy at such low data rates. 
More recently, Wang et al. [8] proposed a fault-tolerant control based on nonlinear pro-
gramming, motivating the investigation of efficacy at low data rates since such methods 
ubiquitously require increased computational times. 

Dinç proposed a least squares parameter identification to estimate the hydrodynamic 
coefficients for autonomous underwater vehicles in the presence of measurement biases 
[9], while this present manuscript illustrates the application of such techniques to the es-
timation of actuator motor parameters. Gutnik et al. demonstrated how the efficacy of 
such approaches manifests in operational capabilities for autonomous, near-seabed visual 
imaging missions [10], particularly regarding thrust allocation for path following. 

The development of adaptive and learning systems has a long history that is pres-
ently culminating in a very recent and distinguished lineage in the literature [4,11–14] 
whose results are presented in Figure 2, already bestowing three recent major publication 
awards [15,16], validating the contemporary interest in continued developments. Many 
techniques are available from this long lineage as alternative benchmarks for comparing 
newly proposed methods. Rathmore focused on artificial intelligence, applying a robust 
steering control based on tuning of the PID controller using the so-called genetic algo-
rithm and the harmonic search algorithm [11]. In 2020, deterministic artificial intelligence 
was proposed to control autonomous unmanned underwater vehicles [12]. 

The proposed method is based on feedforward self-awareness using process dynamics. 

Koo formatted the feedback signal as an adaptive and learning system (proportional 
derivative feedback and two-norm optimal least squares). [13] As a duplication and con-
tinuation of Koo’s work in [13], this manuscript provides an in-depth comparison between 
the performance of the deterministic artificial intelligence and declared benchmark ap-
proaches with iterated step sizes. The scope of this sequel is exactly that proposed as fu-
ture research by Koo in 2022. The performance evaluation mainly focuses on the ability to 
track the command signals represented by challenging square wave trajectories. 

Figure 1. (a) Aries unmanned underwater vehicle [3]; (b) ECI-40 Maxon underwater drive motor and
gear head [4]; and (c) underwater thruster propeller motor [5].
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1.2. Literature Review

Sarton’s formulation of autopilot techniques used disparate thrust for an Aries au-
tonomous underwater vehicle in 2003 [6], while Tan focused on application of horizontal
steering control during docking [7]. Sarton sought advantages in differential thrusts to
counter wind and wave disturbances while surfaced, by creating different motor voltages
supplied to each propeller motor. Seeking autonomous recovery or docking operations, Tan
focused on the capability of the vehicle to track and steer itself accurately despite constant
perturbation by wave motion effects necessitating an accurate acoustic homing during the
final stages of the docking with high update rates of the acoustic systems. The Aries vehicle
was experimentally tested to have an update rate of only about 0.3 Hz. These delayed
data can potentially cause a false commanded reference input to the tracking system in
between the updates and can cause Aries to miss the moving cage’s entrance motivating
high-interest investigating systems that prove efficacy at such low data rates. More recently,
Wang et al. [8] proposed a fault-tolerant control based on nonlinear programming, motivat-
ing the investigation of efficacy at low data rates since such methods ubiquitously require
increased computational times.

Dinç proposed a least squares parameter identification to estimate the hydrodynamic
coefficients for autonomous underwater vehicles in the presence of measurement biases [9],
while this present manuscript illustrates the application of such techniques to the esti-
mation of actuator motor parameters. Gutnik et al. demonstrated how the efficacy of
such approaches manifests in operational capabilities for autonomous, near-seabed visual
imaging missions [10], particularly regarding thrust allocation for path following.

The development of adaptive and learning systems has a long history that is presently
culminating in a very recent and distinguished lineage in the literature [4,11–14] whose re-
sults are presented in Figure 2, already bestowing three recent major publication
awards [15,16], validating the contemporary interest in continued developments. Many
techniques are available from this long lineage as alternative benchmarks for comparing
newly proposed methods. Rathmore focused on artificial intelligence, applying a robust
steering control based on tuning of the PID controller using the so-called genetic algorithm
and the harmonic search algorithm [11]. In 2020, deterministic artificial intelligence was
proposed to control autonomous unmanned underwater vehicles [12].

The proposed method is based on feedforward self-awareness using process dynamics.

Koo formatted the feedback signal as an adaptive and learning system (proportional
derivative feedback and two-norm optimal least squares) [13]. As a duplication and contin-
uation of Koo’s work in [13], this manuscript provides an in-depth comparison between the
performance of the deterministic artificial intelligence and declared benchmark approaches
with iterated step sizes. The scope of this sequel is exactly that proposed as future research
by Koo in 2022. The performance evaluation mainly focuses on the ability to track the
command signals represented by challenging square wave trajectories.
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Bernat introduced a speed control approach [17] based on a model-reference adaptive
control algorithm for torque load and ripple compensation. Gowri described direct torque
control as one approach focused on discontinuities in rapid modulating commands [18].
Moreover, Rathaiah [19] and Haghi [20] both proposed extremum-seeking adaptive control
of first-order systems, which is similar to the approach applied to the vehicle automation
control described in [21]. The methods are similarly tested and compared with discontinu-
ous step and square wave inputs. For DC motors, tracking the discontinuous step functions
and square wave functions is challenging since overshoot occurs at the square wave’s
discontinuities, significantly influencing the tracking performance of nonlinear adaptive
control approaches. The difficulty is validated by Vidlak’s very contemporary example in
Figures 24 and 26 in [22]. This facet is also elaborated by Vidlak’s work on tracking the
performance of self-turning regulators [22] and model-reference adaptive control [23].

A similar phenomenon is revealed in Section 3 of this manuscript for the error dis-
tribution comparison of different algorithms. This manuscript describes a duplication
and continuation of the work presented in [13], which is also work based on its prequel
research by Shah [14], where model-following self-turning regulators [24] are chosen as the
comparative benchmark approach.

The learning approach evaluated in this manuscript (displayed in Figure 3) stems
from Slotine [25] and the nonlinear adaptive method for robotics [26]. The technique was
quickly transformed to an expression in the coordinates of the body reference frame [27].
In [28], the tunability of the feedback and feedforward elements are demonstrated, sub-
stantiating the self-awareness statements of deterministic artificial intelligence [29]. As
described by Fossen in [30], alternative trajectory tracking control mechanisms based on
classical proportional, integral, and derivative control; a linear-quadratic regulator; feed-
back linearization; nonlinear backstepping; and sliding mode control are presented. Some
approaches are applied to the ocean vehicle mentioned in [31]. The efficacy of such systems
is also simulated in [32]. Lorenz and his students also used and evaluated the feedforward
element in [33–40].

Feedforward self-awareness using process dynamics is foundational for the proposed method.

The fault-tolerance [35], loss reduction [36], loss minimization [37], dead-beat con-
trol [38], and self-sensing [22,39] are evaluated and extended from the vehicle to the actuator
control circuit. As described in [21,22], the precursor of using the physics-based dynamics
for virtual sensing, which follows the illustration of optimality and self-sensing, is applied
explicitly to DC motors.
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1.3. Research Gap and Authors Contribution

This manuscript continues the investigation of Koo [13] using a deterministic artificial
intelligence learning approach following the recommendation provided by Shah [14]. In
Section 3, the comparison analysis of the computational rate is evaluated for the adaptive
and learning methods. More step sizes are applied to the compared approaches to assess
their performance based on the error mean and error standard deviations.

Main Conclusion of the study

As a sequel to Koo [13], multiple propositions are evaluated in Section 2. Validating
research is included in Section 3, with direct comparisons between each algorithm based
on canonical figures of merit.



AI 2023, 4 273

1. Recommendation of key threshold discretization and computational speed to dupli-
cate the results of the original prequel [3].

2. Validation of the first sequel’s [14] identification of paramountcy of discretization and
computational speed.

3. Validation of the second sequel’s [13] identification of deterministic artificial intelli-
gence performance and recommended selection of algorithms.

1.4. Organization

Section 2 describes the research methods and materials used. The discussion opens
with an explanation of the model used as an assumed truth. Next, the comparative bench-
mark, model-following control is explained and is followed by the proposed deterministic
artificial intelligence method. Section three includes the results of a direct performance
comparison using simulation experiments investigating the continuous and discrete forms
measured by several canonical figures of merit (e.g., means and standard deviations of
tracking errors).

2. Materials and Methods

This section includes sufficient detail for others to replicate the published result.
A truth model for motor dynamics and a model-following self-tuner are described in
Sections 2.1 and 2.2, while the newest method (deterministic artificial intelligence) is elab-
orated in Section 2.3. Deterministic artificial intelligence is a learning method that first
asserts self-awareness and then learns in the context of that self-awareness alone.

2.1. Truth Model for Motor Dynamics

As described by [33], consider a continuous-time process and precisely normalized
model for a DC motor [13] whose transfer function is described in Equation (1).

G(s) =
B(s)
A(s)

=
1

s(s + 1)
(1)

Equation (2) shows the z-transform for the discrete-time signal under the frequency
domain. Using the MATLAB® function provided in Appendix A to perform the discretiza-
tion, a time step of 0.5 s was used as the initial continuous-time process. U(z) and Y(z)
represent the control signal and output in discrete-time using the z-transform. The final
form of the difference equation is written as Equation (3), where proximal variables and
nomenclature and defined in periodic tables (e.g., Table 1 in this instance).

G(z) =
Y(z)
U(z)

=
BT

AR + BS
=

0.0984z + 0.0984
z2 − 1.607z + 0.6065

(2)

0.0984u(t) + 0.0984u(t− 1) = y(t + 1)− 1.607y(t) + 0.6065y(t− 1) (3)

Table 1. Table of proximal variables and nomenclature 1.

Variable/Acronym Definition Variable/Acronym Definition

G Transfer function s Differential variable
Y Output z Difference variable
U Input t Discrete time variable

1 Such tables are offered throughout the manuscript to aid readability.

2.2. Model-Following Self Tuner

As shown in Figure 3.3 in reference [24], a dynamic feedforward is typically applied
to the input uc, and negative dynamic feedback is applied on output y. In that case, the
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process input u is produced. The system can be described in Equations (4) and (5), where
U(z) and Y(z) represent the control signal and output under the z-transform domain.

Y(z) =
B
A

(
T
R

U(z)− S
R

Y(z)
)

(4)

G(z) =
Y(z)
U(z)

=
BT

AR + BS
(5)

Due to the designed topology, some cancellation is available in Equation (5), where B+

represents the canceled zeros, B− represents uncancelled zeros, which represents a scalar
multiple to the system, and A0 represents the pole-zero cancellation used to generate the
desired system transfer function [14].

Y(z)
U(z)

=
B+B−A0B′m

A0 AmB+
=

BT
AR + BS

=
Bm

Am
(6)

B+ is set to 1 since no process zero cancellation should be included in the demonstrated
control design. As described in [24], R, S, and T are in the first order. By manipulations of
Equation (6), the coefficient of R, S, and T can be defined as Equations (7)–(9) in terms of
estimated and desired process parameters.

r1 =
b1

b0
+

(
b2

1 − am1 b0b1 + am2 b2
0
)
(−b1 + a0b0)

b0
(
b2

1 − a1b0b1 + a2b2
0
) (7)

s0 =
b1
(
a0am1 − a2 − am1 a1 + a2

1 + am2 − a1a0
)

b2
1 − a1b0b1 + a2b2

0
+

b0(am1 a2 − a1a2 − a0am2 + a0a2)

b2
1 − a1b0b1 + a2b2

0
(8)

s1 =
b1(a1a2 − am1 a2 + a0am2 − a0a2)

b2
1 − a1b0b1 + a2b2

0
+

b0
(
a2am2 − a2

2 − a0am2 a1 + a0a2am1

)
b2

1 − a1b0b1 + a2b2
0

(9)

Then, the control signal fed into the process can be described by Equations (10) and
(11) after combining feedforward and feedback.

RU(z) = TUc(z) + SY(z) (10)

u(t) = βUc(t) + βa0Uc(t− 1) + s0Y(t) + s1Y(t− 1)− r1U(t− 1) (11)

As described in reference [24], β drives the system to unity gain, which is essential for
attaining zero asymptotic tracking error.

2.3. Deterministic Artificial Intelligence

Deterministic artificial intelligence requires self-awareness assertion in the feedfor-
ward, which can be established by isolating u(t) in the left-hand side of Equation (3), where
proximal variables and nomenclature and defined in periodic tables (e.g., Table 2 in this
instance). Duplicating Equations (12)–(14) from reference [13] shows the manipulation to
express the u(t) to the product of matrix of knowns that are assembled into the matrix
[φd], while unknowns are assembled into the vector {θ̂}. The unknown vector, {θ̂}, is
the learned parameters from feedback that can generate the process input. u∗(t) is the
regression form of input u(t).

u(t) =
1

0.0984
y(t + 1)− 1.607

0.0984
y(t) +

0.6065
0.0984

y(t− 1)− u(t− 1) (12)

u∗(t) = â1yd(t + 1)− â2yd(t) + â3yd(t− 1)− b̂1ud(t− 1) (13)
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u∗(t) = [φd]{θ̂} = [yd(t + 1)− yd(t) + yd(t− 1)− ud(t− 1)]


â1
â2
â3

b̂1

 (14)

Table 2. Table of proximal variables and nomenclature 1.

Variable/Acronym Definition Variable/Acronym Definition

u∗ Control input Φd Regressor matrix
yd Desired output θ̂ Parameter vector

â1, â2, â3, b̂1 Estimates a1, a2, a3, b1 True values
kp Proportional gain kd Difference gain
A Coefficients of U(z) B Coefficients of Y(z)

1 Such tables are offered throughout the manuscript to aid readability.

Apply feedforward control and modify the state form y(t) to y(t + 1) in Equation (3).
Then, the desired trajectory can be computed. To learn the updated feedback parameters[
θ̂
]
, the rough initial estimates of the feedback parameters along with the values of output y

and regression u∗(t) are used in recursive least squares [13]. Convert the transfer function in
Equation (1) back into the ordinary differential equation reparametrized as in Equation (13).
The continuous system can be evaluated by using the deterministic artificial intelligence
method. As described in [29], the optimal feedback adjustment can be applied to the system
to learn the feedback parameters in the discrete environment, shown in Equation (15).

u ≡ φd

(
φT

d φd

)−1
φT

d δu (15)

The control input u(t) and sinusoidal trajectory (given by Equation (16)) could be
obtained by putting the updated and optimal feedback parameters back into Equation (13).
The A0 and A in Equation (15) are the original and target states, respectively.

z = (A− A0)[1 + sin(ωt + φ)] (16)

3. Results

This section shows the comparison between the model-following self-tuner control
in Equation (11) and the discrete deterministic artificial intelligence in Equation (15) from
Section 3. Compared with the resultant in [13], a larger step size is applied to validate the
statement mentioned by Koo: discrete deterministic artificial intelligence is more susceptible to
larger step sizes but more efficacious with a smaller step size [13]. Moreover, the comparison
between continuous and discrete deterministic artificial intelligence is shown in Section 3.2.

3.1. Model-Following Self-Tuner Control vs. Deterministic Artificial Intelligence

Comparing the error mean and standard deviation under four different step sizes, the
deterministic artificial intelligence approach shows more tracking errors than the model-
following approach when using larger sampling periods (faster computation rates). As
shown in Table 3, this phenomenon becomes exacerbated with even a slight step size
increase. It is obvious from observing Figure 4 below that there is a discrepancy between
those two approaches at a large step size. The output signal from deterministic artificial
intelligence shows a large oscillation at the beginning, while the model-following output
signal tracks the command signal immediately.
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Table 3. Error distribution of comparison between model-following control (MF) and deterministic
artificial intelligence with different step sizes.

Method Step Size (s) Error Mean Error Standard Deviation

Deterministic
artificial intelligence 0.60 6.3918 4.8100

Model-following 0.60 0.0264 0.0973
Deterministic
artificial intelligence 0.50 0.0956 0.1632

Model-following 0.50 0.0277 0.0917
Deterministic
artificial intelligence 0.27 0.0175 0.0545

Model-following 0.27 0.0471 0.1745
Deterministic
artificial intelligence 0.20 0.0114 0.0487

Model-following 0.20 0.0608 0.2446
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According to Table 3, when the step size increases from 0.5 to 0.6 s, the mean tracking
error rises sharply, becoming 242 times the mean error of the model-following approach.
The standard deviation also increases dramatically, which is 49 times the standard deviation
of the model-following method.

However, the performance becomes significantly more reliable when the step sizes
become smaller. When the step size is reduced to 0.20 s, the mean error of the deterministic
artificial intelligence approach decreases to 10% of it with a 0.5 s step size. The standard
deviation also reduces to 1/3 of it with a 0.5 s step size. For the output of deterministic
artificial intelligence, there is an overshoot at discontinuous, which follows the input signal
with a small tracking error, which Koo [13] also mentions. In contrast, there is a degradation
in the performance of the model-following approach when the step size is reduced from
0.6 to 0.2 s. An oscillation can be observed as the step size becomes smaller.

3.2. Discrete Deterministic Artificial Intelligence vs. Continuous Deterministic Artificial Intelligence

Table 4 shows the comparison of the error distributions between discrete deterministic
artificial intelligence and continuous deterministic artificial intelligence. Overall, as already
discussed in the Materials and Methods section, deterministic artificial intelligence has less
efficacy with a large step size, which can be observed below. When the step size changes
from 0.5 to 0.2 s, discrete and continuous deterministic artificial intelligence performance
increases significantly. According to the error mean in Table 4, the mean error between
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those two deterministic artificial intelligence is close to each other with a small step size.
The difference is just about 7%.

Table 4. Error distribution of comparison between discrete deterministic artificial intelligence and
continuous deterministic artificial intelligence with different step sizes 1.

Deterministic Artificial
Intelligence Type Step Size (s) Error Mean Error Standard

Deviation

Discrete 0.50 0.0956 0.1632
Continuous 0.50 0.0223 0.1654
Discrete 0.20 0.0114 0.0487
Continuous 0.20 0.0122 0.1401

1 Integration solver step size matched to discretization interval.

Although the error standard deviation of discrete deterministic artificial intelligence is
half that of continuous deterministic artificial intelligence, a minor standard deviation does
not represent better performance. The larger standard deviation of continuous determin-
istic artificial intelligence is caused by the more prominent initial oscillation in the initial
transient, shown in Figure 5. After the oscillation section, the performance of continuous
deterministic artificial intelligence is expected to exceed the discrete deterministic artificial
intelligence since it has a marginal tracking error. MATLAB® obtains the results of Section 3.
The code is included in Appendix A to help with replications or further constructions based
on this article.
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Figure 5. The output signal for the deterministic artificial intelligence approaches with a 0.5 s step size.
The black line represents the command signal. (a) Output signal obtained from discrete deterministic
artificial intelligence approach. (b) Output signal generated from continuous deterministic artificial
intelligence approach.

4. Discussion

Tables 5 and 6 show the performance improvement in different algorithms. This
manuscript validates the deterministic artificial intelligence approaches ability to track
the discontinuous command square wave compared with alternative techniques. The
exemplary performance of the continuous control is examined. Further discretization could
be applied to obtain a better performance for the continuous control. As described in
Table 3 of [13], different discretization methods, such as the zero-order hold (ZOH), bilinear
approximation (Tustin), and linear interpolation (FOH), could significantly reduce the
tracking error with large step sizes.



AI 2023, 4 278

Table 5. Performance improvement with different step sizes 1.

Method Step Size (s) Error Mean Error Standard Deviation

DAI 0.60 6586% 2847%
MF 0.60 −72% −40%
DAI 0.50 0% 0%
MF 0.50 −71% −44%
DAI 0.27 −82% −67%
MF 0.27 −51% 7%
DAI 0.20 −88% −70%
MF 0.20 −36% 50%

1 Model-following (MF) control and deterministic artificial intelligence (DAI).

Table 6. Performance improvement for discrete and continuous deterministic artificial intelligence
with different step sizes.

Deterministic Artificial
Intelligence Type Step Size (s) Error Mean Error Standard

Deviation

Discrete 0.50 0% 0%
Continuous 0.50 −77% 1%

Discrete 0.20 −88% −70%
Continuous 0.20 −87% −14%

As shown in Figures 4 and 5, this manuscript included the control effects for different
control algorithms. Moreover, the performance of different algorithms at disparate step
sizes is also compared in previous tables and figures. As further research of the article
written by Koo [13], more step sizes of different control methods were applied in this
manuscript to further validate the deterministic artificial intelligence performance over var-
ious situations. Overall, the discrepancy of the output signal from the different algorithms
decreased when the step size reduced. Eventually, it became negligible. Discrete determin-
istic artificial intelligence seems to have the best performance under a slow computation
rate (small step sizes), and continuous deterministic artificial intelligence is next. However,
since continuous deterministic artificial intelligence is superior with various computation
rate compared with other approaches overall, it might be the most feasible and reliable
selection for future applications on unmanned underwater vehicles.

The future research recommendations are to replicate all the benchmarks for the sequel
study and validate more parameters influenced by different control algorithms. Given
these promising results, it is important to continue researching and refining deterministic
artificial intelligence to improve its performance further. In particular, future research
should focus on eliminating the sole transient that occurs on the initial startup, as this could
lead to even more accurate and stable estimates. Many potential approaches could be used
to address this issue, including the development of new computational techniques, the
incorporation of additional data or model assumptions, and the use of different types of
algorithms or models. By carefully exploring these options, it may be possible to develop
deterministic artificial intelligence that is even more effective at estimating parameters in
various situations.

4.1. Concluding Remarks

This manuscript demonstrates the performance of deterministic artificial intelligence
and the model-following control algorithms on DC motor control over multiple computa-
tion rates, which is inversely proportional to the step size. The discrepancy of the output
signal from the different algorithms decreased when the step size was reduced and even-
tually became negligible. Although discrete deterministic artificial intelligence behaves
satisfactorily under a slow computation rate, continuous deterministic artificial intelligence
is superior with various computation rates. Overall, continuous deterministic artificial
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intelligence is the most feasible and reliable selection for future applications on unmanned
underwater vehicles.

4.2. Recommended Future Research

Continuing the lineage of this research’s efforts, the next logical steps to investigate
include replicating all the new benchmarks in a sequel study and validating more pa-
rameters that are influenced by different control algorithms. Furthermore, an effective
technique that can eliminate the initial interruption caused by the initial transient will im-
prove the accuracy of the control algorithm, which should seemingly significantly increase
the performance.
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Appendix A

The appendix contains topologies that are crucial to understanding and reproducing
the research published in this manuscript. The code should be run by MATLAB®.

Appendix A.1. Discrete Deterministic Artificial Intelligence

clear all; clc; close all;
%% DISCRETIZATION
% B = [0 0.1065 0.0902]; A = poly([1.1 0.8]);
% Gs = tf(B,A);
% a1 = 0; a2 = 0; b0= 0.1; b1 = 0.2; %Shah’s
Bp = [0 0 1];
Ap = [1 1 0];
Gs = tf(Bp,Ap); %Create continuous time transfer function
Ts = 0.5;
Hd = c2d(Gs,Ts,’matched’); % Transform continuous system to discrete system
B = Hd.Numerator{1};
A = Hd.Denominator{1};
b0 = 0.1; b1 = 0.1; a0 = 0.1; a1 = 0.01; a2 = 0.01;
%% RLS
Am = poly([0.2+0.2j 0.2-0.2j]);
Bm = [0 0.1065 0.0902];
am0 = Am(1); am1 = Am(2); am2 = Am(3); a0 = 0;
Rmat = [];
factor = 25;
% Reference
T_ref = 25;
t_max = 100;
time = 0:0.5:t_max;
nt = length(time);
% slew stuff
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Tslew = 1;
Uc = zeros(length(nt));
for j = 1:nt
% pos or neg
if mod(time(j),2*T_ref) < T_ref
pn = 1;
else
pn =−1;
end
% slew
if mod(time(j),T_ref) < Tslew
Uc(j) = pn*-1*sin(pi/2+pi/Tslew*mod(time(j),T_ref));
else
Uc(j) = pn;
end
% initial slew special case
if time(j) < Tslew
Uc(j) = 1/2*-1*sin(pi/2+pi/Tslew*mod(time(j),T_ref)) + 1/2;
end
end
n = 4;lambda = 1.0;
nzeros = 2;
time = zeros(1,nzeros);
Y = zeros(1,nzeros);
Ym = zeros(1,nzeros);
U=ones(1,nzeros);
Uc=[zeros(1,nzeros),Uc];
Noise = 0;
P = [100 0 0 0;0 100 0 0;0 0 1 0;0 0 0 1];
THETA_hat(:,1) = [-a1 -a2 b0 b1]’;
beta = [];
alpha = 0.5;
gamma = 1.2;
for i = 1:201
phi = [];
t = i+nzeros;
time(t ) = i;
Y(t) = [-A(2) -A(3) B(2) B(3)]*[Y(t-1) Y(t-2) U(t-1) U(t-2)]’;
Ym(t) = [-Am(2) -Am(3) Bm(2) Bm(3)]*[Ym(t-1) Ym(t-2) Uc(t-1) Uc(t-2)]’;
BETA = (Am(1)+Am(2)+Am(3))/(b0+b1);
beta = [beta BETA];
%RLS implementation
phi = [Y(t-1) Y(t-2) U(t-1) U(t-2)]’;
K = P*phi*1/(lambda+phi’*P*phi);
P=P-P*phi*inv(1+phi’*P*phi)*phi’*P/lambda; %RLS-EF
error(i) = Y(t)-phi’*THETA_hat(:,i);
THETA_hat(:,i+1) = THETA_hat(:,i)+K*error(i);
a1 = -THETA_hat(1,i+1);
a2 = -THETA_hat(2,i+1);
b0 = THETA_hat(3,i+1);
b1 = THETA_hat(4,i+1);
Af(:,i) = [1 a1 a2]’;
Bf(:,i) = [b0 b1]’;
% Determine R,S, & T for CONTROLLER
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r1 = (b1/b0)+(b1ˆ2-am1*b0*b1+am2*b0ˆ2)*(-b1+a0*b0)/(b0*(b1ˆ2-a1*b0*b1+a2*b0ˆ2));
s0 = b1*(a0*am1-a2-am1*a1+a1ˆ2+am2-a1*a0)/(b1ˆ2-a1*b0*b1+a2*b0ˆ2)+b0*(am1*

a2-a1*a2-a0*am2+a0*a2)/(b1ˆ2-a1*b0*b1+a2*b0ˆ2);
s1 = b1*(a1*a2-am1*a2+a0*am2-a0*a2)/(b1ˆ2-a1*b0*b1+a2*b0ˆ2)+b0*(a2*am2-a2ˆ2-a0*

am2*a1+a0*a2*am1)/(b1ˆ2-a1*b0*b1+a2*b0ˆ2);
R = [1 r1];
S = [s0 s1];
T = BETA*[1 a0];
Rmat = [Rmat r1];
%calculate control signal
U(t) = [T(1) T(2) -R(2) -S(1) -S(2)]*[Uc(t) Uc(t-1) U(t-1) Y(t) Y(t-1)]’;
U(t) = 1.3*[T(1) T(2) -R(2) -S(1) -S(2)]*[Uc(t) Uc(t-1) U(t-1) Y(t) Y(t-1)]’;% Arbitrarily

increased to duplicate text
end
%% deterministic artificial intelligence
%Create command signal, Uc based on Example 3.5 plots . . . square wave with 50 sec

period
t_max = 200;
THETA_hat(:,1) = [-a1 -a2 b0 b1]’;
n = length(THETA_hat);
% Sigma = 1/25; Noise=Sigma*randn(nt,1);
% Noise = 0;
nzeros = 2;
Y_true = zeros(1,nzeros);
Ym = zeros(1,nzeros);
U = zeros(1,nzeros);
P = [100 0 0 0;0 100 0 0;0 0 1 0;0 0 0 1];
lambda = 1;
eb = Y_true(1) - Uc(1);
err = 0;
kp = 2.0;
kd = 6.0;
hatvec = zeros(4,1);
for i = 1:t_max+1 %Loop through the output data Y(t)
t = i+nzeros;
de = err-eb;
u = kp*err + kd*de;
U(t-1) = u;
Y_true(t) = [Y_true(t-1) Y_true(t-2) U(t-1) U(t-2)]*[-A(2) -A(3) B(2) B(3)]’;
phid = [Y_true(t) -Y_true(t-1) Y_true(t-2) -U(t-2)];
newest = phid\u;
hatvec(:,i) = newest;
eb = err;
%disp(t);
err = Uc(t)-Y_true(t);
end
%% PLOT
tspan = linspace(0,100,201);
tspan = [zeros(1,2) tspan];
figure(1); %deterministic artificial intelligence
plot(tspan(1:201),Uc(1:201));
hold on;
plot(tspan(1:201),Y_true(2:202));
hold off
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xlabel(‘Time(sec)’);
legend(‘Uc’,’Y’,’fontsize’,11);
set(gca,’fontsize’,16);
set(gca,’fontname’,’Palatino Linotype’);
xlim([0 max(time)]); grid;
% p = plot(tspan,Uc(1:203),‘-’,tspan,Y,‘-’);
% p(2).LineWidth = 2;
% legend(‘Uc’,‘Y’,‘fontsize’,11);
%deterministic artificial intelligence
axis([0 100,-1.5 1.5]);
figure(2); %RLS estimation
plot(tspan(1:201),Uc(1:201),’k-’,’LineWidth’,1);
hold on;
plot(tspan(1:201),Y(3:203));
hold off
xlabel(‘Time(sec)’);
legend(‘Uc’,’Y’,’fontsize’,11);
set(gca,’fontsize’,16);
set(gca,’fontname’,’Palatino Linotype’);
xlim([0 max(time)]);
grid;
axis([0 100,-1.5 1.5]);
deterministic artificial intelligence_err_mean = mean(abs(Uc(1:201)-Y_true(2:202)))
deterministic artificial intelligence_err_std = std(abs(Uc(1:201)-Y_true(2:202)))
RLS_err_mean = mean(abs(Uc(1:201)-Y(3:203)))
RLS_err_std = std(abs(Uc(1:201)-Y(3:203)))

Appendix A.2. Continuous Deterministic Artificial Intelligence

clear all;clc;close all;
% Enter Given Plant parameters
for k = 1:2
Bp = [0 0 1];
Ap = [1 1 0];
Gs = tf(Bp,Ap); %Create continuous time transfer function
Ts = [0.5 0.2];
Hz = c2d(Gs,Ts(k),’matched’); % Transform continuous system to discrete system
B = Hz.Numerator{1};
A = Hz.Denominator{1};
% Initial estimates of plant parameters for undetermined system from example 3.5
b0 = 0.1; b1 = 0.1; a0 = 0.1; a1 = 0.01; a2 = 0.01;
% Reference
T_ref = 25;
t_max = 100;
time = 0:Ts:t_max;
nt = length(time);
% slew stuff
Tslew = 1;
Yd = zeros(length(nt));
for i=1:nt
% pos or neg
if mod(time(i),2*T_ref) < T_ref
pn = 1;
else
pn = -1;
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end
% slew
if mod(time(i),T_ref)<Tslew
Yd(i) = pn*-1*sin(pi/2+pi/Tslew*mod(time(i),T_ref));
else
Yd(i) = pn;
end
% initial slew special case
if time(i) < Tslew
Yd(i) = 1/2*-1*sin(pi/2+pi/Tslew*mod(time(i),T_ref))+1/2;
end
end
THETA_hat(:,1) = [-a1 -a2 b0 b1]’;
n = length(THETA_hat);
Sigma = 1/12*0;
Noise = Sigma*randn(nt,1);
nzeros = 2;
Y = zeros(1,nzeros);
Y_true = zeros(1,nzeros);
Ym = zeros(1,nzeros);
U = zeros(1,nzeros);
Yd = [zeros(1,nzeros),Yd];
P = [100 0 0 0;0 100 0 0;0 0 1 0;0 0 0 1];
lambda = 1;
for i = 1:nt-1
t = i+nzeros;
% Update Dynamics
Y_true(t) = [Y(t-1) Y(t-2) U(t-1) U(t-2)]*[-A(2) -A(3) B(2) B(3)]’;
Y(t) = Y_true(t)+Noise(i);
phi = [Y(t-1) Y(t-2) U(t-1) U(t-2)]’;
K = P*phi*1/(lambda+phi’*P*phi);
P = P-P*phi/(1+phi’*P*phi)*phi’*P/lambda;
innov_err(i) = Y(t)-phi’*THETA_hat(:,i);
THETA_hat(:,i+1) = THETA_hat(:,i)+K*innov_err(i);
a1 = -THETA_hat(1,i+1);a2 = -THETA_hat(2,i+1);
b0 = THETA_hat(3,i+1);b1 = THETA_hat(4,i+1);% THETA = [-a1 -a2 b0 b1];
% Calculate Model control, U(t) optimally
U(t) = [Yd(t+1) Y(t) Y(t-1) U(t-1)]*[1 a1 a2 -b0]’/b1;
end
Y_true(end+1) = Y_true(end);
FS = 2;
time = [-(nzeros-1)*Ts:Ts:0 time];
figure (k)
plot(time,Yd,’k-’,’LineWidth’,2);
hold on;
h1 = plot(time,Y_true,’LineWidth’,1);
axis([0 100,-1.5 1.5]);
hold off;
grid;
if k==1
legend(h1,’T_s = 0.50s’,’fontsize’,11);
xlabel(‘Time(sec)’);
set(gca,’fontsize’,16);
set(gca,’fontname’,’Palatino Linotype’);
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else
legend(h1,’T_s = 0.20s’,’fontsize’,11);
xlabel(‘Time(sec)’);
set(gca,’fontsize’,16);
set(gca,’fontname’,’Palatino Linotype’);
end
end

Appendix A.3. All Deterministic Artificial Intelligence

clear all;clc;close all;
%% DISCRETIZATION
% B = [0 0.1065 0.0902]; A = poly([1.1 0.8]);
% Gs = tf(B,A);
% a1 = 0;a2 = 0;b0 = 0.1;b1 = 0.2; %Shah’s
Ap = [1 1 0];
Bp = [0 0 1];
Gs = tf(Bp,Ap); %Create continuous time transfer function
Ts = 0.5;
Hd = c2d(Gs,Ts,’matched’); % Transform continuous system to discrete system
B = Hd.Numerator{1};
A = Hd.Denominator{1};
b0 = 0.1; b1 = 0.1;
a1 = 0.01; a2 = 0.01;
%% RLS
Am = poly([0.2+0.2j 0.2-0.2j]);
Bm = [0 0.1065 0.0902];
am0 = Am(1);am1 = Am(2);am2 = Am(3);a0 = 0;
Rmat = [];
factor = 25;
% Reference
T_ref = 25;
t_max = 100;
time = 0:0.5:t_max;
nt = length(time);
% slew stuff
Tslew = 1;
Uc = zeros(length(nt));
for j = 1:nt
% pos or neg
if mod(time(j),2*T_ref)<T_ref
pn = 1;
else
pn =-1;
end
% slew
if mod(time(j),T_ref)<Tslew
Uc(j) = pn*-1*sin(pi/2+pi/Tslew*mod(time(j),T_ref));
else
Uc(j) = pn;
end
% initial slew special case
if time(j)<Tslew
Uc(j) = 1/2*-1*sin(pi/2+pi/Tslew*mod(time(j),T_ref))+1/2;
end
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end
n = 4;
lambda = 1.0;
nzeros = 2;
time = zeros(1,nzeros);
Y = zeros(1,nzeros);
Ym = zeros(1,nzeros);
U = ones(1,nzeros);
Uc = [zeros(1,nzeros),Uc];
Noise = 0;
P = [100 0 0 0;0 100 0 0;0 0 1 0;0 0 0 1];
THETA_hat(:,1) = [-a1 -a2 b0 b1]’;
beta = [];
alpha = 0.5;
gamma = 1.2;
for i = 1:201
phi = [];
t = i+nzeros;
time(t) = i;
Y(t) = [-A(2) -A(3) B(2) B(3)]*[Y(t-1) Y(t-2) U(t-1) U(t-2)]’;
Ym(t) = [-Am(2) -Am(3) Bm(2) Bm(3)]*[Ym(t-1) Ym(t-2) Uc(t-1) Uc(t-2)]’;
BETA = (Am(1)+Am(2)+Am(3))/(b0+b1);
beta = [beta BETA];
%RLS implementation
phi = [Y(t-1) Y(t-2) U(t-1) U(t-2)]’;
K = P*phi*1/(lambda+phi’*P*phi);
P = P-P*phi*inv(1+phi’*P*phi)*phi’*P/lambda; %RLS-EF
error(i) = Y(t)-phi’*THETA_hat(:,i);
THETA_hat(:,i+1) = THETA_hat(:,i)+K*error(i);
a1 = -THETA_hat(1,i+1);a2 = -THETA_hat(2,i+1);
b0 = THETA_hat(3,i+1);b1 = THETA_hat(4,i+1);
Af(:,i) = [1 a1 a2]’;
Bf(:,i) = [b0 b1]’;
% Determine R,S, & T for CONTROLLER
r1 = (b1/b0)+(b1ˆ2-am1*b0*b1+am2*b0ˆ2)*(-b1+a0*b0)/(b0*(b1ˆ2-a1*b0*b1+a2*b0ˆ2));
s0 = b1*(a0*am1-a2-am1*a1+a1ˆ2+am2-a1*a0)/(b1ˆ2-a1*b0*b1+a2*b0ˆ2)+b0*(am1*

a2-a1*a2-a0*am2+a0*a2)/(b1ˆ2-a1*b0*b1+a2*b0ˆ2);
s1 = b1*(a1*a2-am1*a2+a0*am2-a0*a2)/(b1ˆ2-a1*b0*b1+a2*b0ˆ2)+b0*(a2*am2-a2ˆ2-a0*

am2*a1+a0*a2*am1)/(b1ˆ2-a1*b0*b1+a2*b0ˆ2);
R = [1 r1];
S = [s0 s1];
T = BETA*[1 a0];
Rmat = [Rmat r1];
%calculate control signal
U(t) = [T(1) T(2) -R(2) -S(1) -S(2)]*[Uc(t) Uc(t-1) U(t-1) Y(t) Y(t-1)]’;
U(t) = 1.3*[T(1) T(2) -R(2) -S(1) -S(2)]*[Uc(t) Uc(t-1) U(t-1) Y(t) Y(t-1)]’;% Arbitrarily

increased to duplicate text
end
%% deterministic artificial intelligence
%Create command signal, Uc based on Example 3.5 plots . . . square wave with 50 sec

period
t_max = 200;
THETA_hat(:,1) = [-a1 -a2 b0 b1]’;
n = length(THETA_hat);
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% Sigma = 1/25; Noise = Sigma*randn(nt,1);
% Noise = 0;
nzeros = 2;
Y_true = zeros(1,nzeros);
Ym = zeros(1,nzeros);
U = zeros(1,nzeros);
P = [100 0 0 0;0 100 0 0;0 0 1 0;0 0 0 1];
lambda = 1;
eb = Y_true(1) - Uc(1);
err = 0;
kp = 2.0;
kd = 6.0;
hatvec = zeros(4,1);
for i = 1:t_max+1 %Loop through the output data Y(t)
t = i+nzeros;
de = err-eb;
u = kp*err + kd*de;
U(t-1) = u;
Y_true(t) = [Y_true(t-1) Y_true(t-2) U(t-1) U(t-2)]*[-A(2) -A(3) B(2) B(3)]’;
phid = [Y_true(t) -Y_true(t-1) Y_true(t-2) -U(t-2)];
newest = phid\u;
hatvec(:,i) = newest;
eb = err;
%disp(t);
err = Uc(t)-Y_true(t);
end
%% PLOT
tspan = linspace(0,100,201);
tspan = [zeros(1,2) tspan];
figure(1); %deterministic artificial intelligence
plot(tspan(1:201),Uc(1:201),’k-’,’LineWidth’,1);
hold on;
plot(tspan(1:201),Y_true(2:202),’LineWidth’,3);
hold off
xlabel(‘Time(sec)’);
legend(‘Uc’,’Y’,’fontsize’,11);
set(gca,’fontsize’,16);
set(gca,’fontname’,’Palatino Linotype’);
xlim([0 max(time)]);
grid;
% p = plot(tspan,Uc(1:203),‘-’,tspan,Y,‘-’); p(2).LineWidth = 2; legend(‘Uc’, ‘Y’, ‘font-

size’,11);
%deterministic artificial intelligence
axis([0 100,-1.5 1.5]);
figure(2); %RLS estimation
plot(tspan(1:201),Uc(1:201),’k-’,’LineWidth’,1);
hold on;
plot(tspan(1:201),Y(3:203),’LineWidth’,3);
hold off
xlabel(‘Time(sec)’);
legend(‘Uc’,’Y’,’fontsize’,11);
set(gca,’fontsize’,16);
set(gca,’fontname’,’Palatino Linotype’);
xlim([0 max(time)]); grid;
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axis([0 100,-1.5 1.5]);
deterministic artificial intelligence_err_mean = mean(abs(Uc(1:201)-Y_true(2:202)))
deterministic artificial intelligence_err_std = std(abs(Uc(1:201)-Y_true(2:202)))
RLS_err_mean = mean(abs(Uc(1:201)-Y(3:203)))
RLS_err_std = std(abs(Uc(1:201)-Y(3:203)))
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