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Abstract: The allure of team scale and functional diversity has led to the promising adoption of
heterogeneous multi-robot systems (HMRS) in complex, large-scale operations such as disaster search
and rescue, site surveillance, and social security. These systems, which coordinate multiple robots of
varying functions and quantities, face the significant challenge of accurately assembling robot teams
that meet the dynamic needs of tasks with respect to size and functionality, all while maintaining
minimal resource expenditure. This paper introduces a pioneering adaptive cooperation method
named inner attention (innerATT), crafted to dynamically configure teams of heterogeneous robots in
response to evolving task types and environmental conditions. The innerATT method is articulated
through the integration of an innovative attention mechanism within a multi-agent actor–critic
reinforcement learning framework, enabling the strategic analysis of robot capabilities to efficiently
form teams that fulfill specific task demands. To demonstrate the efficacy of innerATT in facilitating
cooperation, experimental scenarios encompassing variations in task type (“Single Task”, “Double
Task”, and “Mixed Task”) and robot availability are constructed under the themes of “task variety”
and “robot availability variety.” The findings affirm that innerATT significantly enhances flexible
cooperation, diminishes resource usage, and bolsters robustness in task fulfillment.

Keywords: inner attention; multi-agent reinforcement learning; adaptive cooperation; heterogeneous
multi-robot team

1. Introduction

A heterogeneous multi-robot system (HMRS) encompasses an assembly of robots
differing in shape, size, and functionality, collaborating to achieve collective goals. Owing
to its functional diversity, scalability in team size, and enhanced control resilience, HMRS
finds extensive applications in executing tasks on a grand scale. Notably, in the context of
search and rescue operations following natural disasters [1–3], HMRS’s ability to conduct
parallel operations allows for the expansive coverage of surveillance areas and the efficient
rescue of numerous victims. Similarly, in the realm of traffic management, including the
regulation of traffic flows and the scheduling of public transport systems [4–6], deploying
a multitude of specialized robots to form a cohesive team proves to be more cost effective
than relying on a single robot endowed with multiple capabilities for the entire operation.
Additionally, when addressing tasks that require comprehensive area coverage and the
navigation of complex search missions [7–9], HMRS demonstrates its capacity to mitigate
task intricacies by distributing responsibilities among the team members.

However, the integration of heterogeneous robots into effective teams for real-world
applications is significantly hampered by the diversity of tasks. Initially, the fluctuat-
ing demands of tasks across various environments complicate the determination of the
necessary type and scale of assistance [10–13]. Furthermore, the challenge extends to pre-
cisely aligning the capabilities of a robot team with the diverse requirements of tasks [14].
Tasks distributed across different locations and times introduce variability in requirements,
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with even identical work areas experiencing dynamic changes in task demands over time.
For instance, traffic management scenarios demonstrate variability in traffic flow between
urban and rural areas and fluctuations at the same intersection over time, necessitating
teams with adaptable and complementary skills for effective cooperation. The dynamic
and evolving nature of these requirements complicates the formation of teams that are
adequately matched in both type and scale to the tasks at hand, thereby posing a challenge
to flexible team composition [15].

In addition, the operational readiness of robots to contribute to tasks is affected by
real-world issues such as motor wear, sensor malfunctions, and the overall working status
of the robots [16–18]. Robots experiencing faults may disseminate inaccurate data within
the team, compromising the team’s ability to fulfill its tasks effectively. The unpredictability
and detrimental effects of such faults constrain the selection of competent team members,
thus hindering the formation of a capable and appropriately sized robot team to meet the
tasks’ demands.

Lastly, the task of aligning robot team capabilities with task requirements is further
complicated by the dynamic nature of task needs, robot availability, and environmental
constraints [14]. The variability of assistance needs due to task changes, the impact of
obstacles and weather conditions on the timing and viability of robot contributions, and the
varying proximities of available robots to the required locations underscore the complex-
ities involved. The disparity between task varieties and the capabilities of robot teams
undermines the effective deployment of HMRS in practical scenarios. Overlooking these
diversities in real-life situations can detrimentally affect the performance of HMRS and
its precise alignment with task necessities, thereby significantly restricting the practical
application of HMRS.

Hence, there exists a critical necessity to flexibly assemble teams of heterogeneous
robots that can adeptly meet task requirements and optimally leverage robot capabilities,
addressing the aforementioned challenges.

This research addresses the highlighted challenges by proposing a novel method for
flexible robot teaming termed inner attention (inner-ATT). This method is realized through
the incorporation of an innovative attention mechanism within a multi-agent actor–critic
reinforcement learning framework, as illustrated in Figure 1. The innerATT mechanism
empowers a robot to focus on communications with its available teammates, thereby
recognizing and integrating cooperative factors essential for team formation; this enables
robots to selectively form teams that are adaptive to the dynamics of the environment.
The attention mechanism central to innerATT is refined and perfected through deployment
training. The contributions of this paper are threefold:

• A novel multi-robot teaming method, innerATT, is developed to guide the flexible
cooperation among heterogeneous robots as the task complexity varies in target
number, target type, and robot work status.

• A theoretical analysis is conducted to validate the robustness of innerATT in guiding
flexible cooperation, providing a theoretical foundation for implementing innerATT
in general disturbance-involved multi-robot teaming in future similar research.

• A deep reinforcement learning-based simulation framework, which integrates the
simulation platform of a multi-agent particle environment, the multi-agent deep
reinforcement learning algorithms, and robot models, is developed to provide a
standard pipeline for simulating flexible robot teaming.

This paper is organized into the following sections to explore the development and
implications of the inner attention (innerATT) method. Following the introduction, Section 2
reviews existing methodologies and highlights the gap innerATT aims to fill. Section 3
details the theoretical foundation and implementation of innerATT and the experimental
design. Section 4 meticulously presents and analyzes the performance of innerATT under
various scenarios, including task variety and robot availability. Section 5 synthesizes the
findings, discusses their practical implications, and suggests directions for future research.
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Figure 1. The architecture of innerATT. The inner attention mechanism determines the attention
weights between robots. As the left figure shows, the input is a robot’s observations, status, actions,
and cooperability-related information from the robot’s teammates. The output is the Q-value network
for cooperation strategy selection, in which a robot pays different-level attention to others to form
a team for a given task. In the right figure, multiple attention heads are used to evaluate different
aspects of the cooperability between a robot and its potential teammates.

2. Related Work

To flexibly compose heterogeneous robot teams, much research was conducted to opti-
mize task allocation among robot members inside a team. From early work on centralized
and homogeneous robot systems to more recent work on decentralized and heterogeneous
robot systems, various kinds of algorithms have been proposed to increase overall task
performance by translating the multi-robot task allocation problem into an optimization
problem. In [19–23], human pre-defined robot utility functions, including flexible teaming,
time efficiency, and resource consumption, and intelligent optimization algorithms, in-
cluding mixed-integer optimization, genetic algorithm, ant colony algorithm, and particle
swarm algorithm were used to enable robot teams to perform tasks that require coopera-
tion. During optimization, the utility function was maximized, and robots were assigned
different sub-tasks based on robot capability. However, the pre-optimized task allocation
strategy can represent general tasks with low applicability, especially for applications with
dynamic task requirements, as these approaches deal primarily with a task allocation prob-
lem based on fixed task requirements. When new tasks are presented or the task location
changes, a revised optimization process is required to reach a flexible teaming strategy
based on the refreshed task requirements. Such a revision is difficult to achieve in order
to satisfy the needs of real-time task executions. To overcome the above-mentioned limits,
a reinforcement learning algorithm has been used to enable robot performance in a dynamic
environment derived from experience in maximizing or minimizing human-designed util-
ity functions equivalently. In [24,25], a Q-learning algorithm was used to discern optimal
policy from which robots select the optimal strategy based on environmental adaptation
and team capability. Refs. [26–29] proved deep reinforcement learning to be effective
in enabling sophisticated behaviors of individual robots in dynamic environments. Al-
though reinforcement learning-based methods can perform real-time robot guidance based
on current observations, including robot status, task type, and location, these approaches
do not correct for sensor and robot failures. The innerATT, multi-robot task allocation
method based on a deep reinforcement learning algorithm, is resilient to these failures by
selectively recruiting functional robot team members and isolating failed robots from the
team. More importantly, the innerATT can also adapt to different task complexities and
real-world disturbances without retraining, which is beneficial to real-world applications.

To reduce the influence of robot failures on HMRS performance, research in HMRS
self-healing has been conducted. Refs. [30–32] investigated methods for mobile robot



AI 2024, 5 558

networks to maintain the logical and physical topology of the network when robots fail
and must be replaced within a formation. They further demonstrate the stability of motion
synchronization under their topological repair mechanism. However, these research works
mainly focused on replacing broken robots, which ignores the danger of partial failures
likely to be encountered in real-world deployments. Recently, Refs. [33–37] limited the
negative influence of partial robot failures on the HMRS team by protecting the swarm
through resilience by restricting robot updates to values of neighbors near their own. Their
results for swarms meeting connectivity requirements and based on communication of
constant or time-varying values by faulty robots showed convergence of the swarm to
correct headings. However, such passive strategies usually require high robot connectivity
and specification of tolerable values that are difficult to qualify in advance. Inspired by [37],
the negative influence was limited by decreasing the communication quality between
the failed robots and other robots. The multi-robot teaming method increased HMRS
team resilience based on inner attention mechanism, which can selectively attend to robot
communication connectivity. In addition, the attention weights used in innerATT can be
automatically obtained, releasing humans from the burden of monitoring robot behaviors
and assigning corresponding weights to their communication connectivity.

The attention mechanism remains associated with the selection of stimulus or re-
sponse to processes. In cognitive theory, the attention mechanism plays a critical role in
the capacity to choose task-relevant versus task-irrelevant information [38]. The atten-
tion mechanism is used in both daily and industrial scenarios to increase robot execution
efficiency and safety [39,40]. Social robots use human-like gestures in a conversation to
increase human engagement by paying attention to the human gaze, facial expressions, and
behaviors [41–43]. In situations (specific) with limited communication channels, an atten-
tion mechanism is used to precisely determine whether the communication is necessary or
not by assigning different weights to various related factors [44–46]. Inspired by the benefits
of the cognitive attention mechanism, in this work, a multi-head attention mechanism [47]
is used to weigh information values differently and selectively discourage low-quality
communications among robots, which is similar to [37]. Finally, robot behaviors with
minimum requirements on human cognitive load are identified. This research develops
a novel attention-based multi-robot teaming method, innerATT, based on a multi-head
attention mechanism with an actor–critic multi-agent deep reinforcement learning frame-
work. With attention-based teaming capability, innerATT supports robot team adaptation
to dynamic task requirements and variable teammate availability by selectively selecting
compatible teammates.

3. Materials and Methods
3.1. Inner Attention-Supported Adaptive Cooperation

When task requirements and real-world situations change, robots are expected to
flexibly select teammates to satisfy task requirements and effectively utilize robot capabili-
ties. The innerATT helps a robot in a team selectively pay different attention to different
robots by using the inner attention mechanism. As shown in Figure 1, given the inputs
of all statuses and observations of the robot, the inner attention mechanism automatically
determines the amount of attention to different robots.

3.1.1. Heterogeneous Teaming Supported by Multi-Agent Reinforcement Learning with
Centralized Training and Decentralized Execution

The basic robot teaming framework is supported by a multi-agent actor–critic deep
reinforcement learning (MAAC) algorithm [48], which has an advantage of modeling
entangled decision-making of multiple members in a heterogeneous robot team. MAAC has
been proven to be effective in guiding the dynamic cooperation of the multi-robot [49,50].
In this paper, deep reinforcement learning is defined by the number of robots, N; state
space, S; a set of actions for all robots, A = {A1, . . . AN}; transition probability function
over the next possible states, T: S × A1 × . . . × AN → P(S); a set of observations for all
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robots, O = {O1, . . . ON}; and reward function for each robot Ri: S × A1 × . . . × AN → R.
The application scenario of multi-robot cooperation in this paper is designed as a fully
observable environment in which each robot i receives an observation, Oi, which is a
simplified communication method for robots to exchange location information, share and
allocate task goals, and maintain connectivity. The discrete action space includes moving
up, down, left, and right at each time step. The observation in this paper includes positions
of obstacles, victims, and robots; the injury level of victims and capacities of robots; and
the speed and acceleration of robots. By using reinforcement learning for guiding the
cooperation, each robot learns an individual policy function, πi: Oi → P(Ai), which
is a probability distribution on potential cooperation actions. The goal of multi-agent
reinforcement learning is to learn an optimal cooperation strategy for each robot which can
maximize their expected discounted returns:

Ji(πi) = Ea∗∼π∗ ;s∼T [
∞

∑
t=0

γtrit(st, a1t, . . . , aNt)] (1)

where Ji(πi) represents the expected cumulative rewards for robot i following policy πi,
which maps observations to actions. Actions a∗ are based on the combined policies π∗ of all
robots, with s∼T indicating state transitions as per the environment dynamics. The discount
factor γ prioritizes immediate versus future rewards, guiding strategic balance. The reward
function ri assesses the immediate utility of actions by all robots in the current state
st, pivotal for optimizing collaborative strategies in heterogeneous multi-robot systems.
Here, * represents {1, . . . N}; γ ∈ [0, 1] is the discount factor that determines the degree to
which the policy favors immediate reward over long-term gain.

The actor-critical policy gradient algorithm is a learning process to solve reinforcement
learning problems, which targets modeling and optimizing the policy directly. To maximally
improve team performance given the current status of all robots, a robot’s policy is updated
by encouraging updating along the gradient:

▽θ J(πθ) = ▽θ log(πθ(at | st))Qψ(st; at) (2)

where θ denotes the parameters for the policy, log(πθ(at|st)) emphasizes the likelihood of
selecting action at under policy πθ , reinforcing effective actions, and Q is an approximation
function of the expected discounted returns, estimating the total expected rewards from
taking action at in state st and following the policy thereafter:

Qψ(st; at) = E[
∞

∑
t′=t

γt′−trt′(st′ , at′)] (3)

It can ameliorate policy gradient methods’ high variance issue by replacing the original
return term in the policy gradient estimator. For each cooperation step, the action value
Q for the robot i needs to observe its neighbors’ status o and actions a and learned by
off-policy temporal difference learning by minimizing the regression loss:

LQ(ψ) = E(s,a,r,s′)∼D[(Qψ(s, a)− y)2] (4)

where y = r(s, a) + γEa′∼π(s′)[Qψ̄(s′, a′)], Qψ̄ is the target Q-value function, which is simply
an exponential moving average of the past Q-functions, D is the experience replay buffer,
which stores the previous robot cooperation experience to further reduce the loss, and ψ̄
and ψ denote the parameters for the target critics and critics, respectively.

In the scenario of multi-robot cooperation, each robot’s environment is non-stationary,
with the dynamics in teammates, task requests, and environmental conditions. This non-
stationary environment challenges the performance of the actor–critic reinforcement learn-
ing algorithm in both learning stability and past experience exploitation. Therefore, in this
paper, an extended actor–critic framework is used to train all the robots in a centralized
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way and to support an individualized cooperation strategy in a distributed way. More con-
cretely, in the gradient of the expected return for robot i, the Qπi (x; a1, . . . , aN) is calculated
centrally with a global objective of improving the whole team’s performance by taking the
actions of all robots as input, in addition to the robots’ statues x, and then outputted the
Q-value for robot i. In the simplest case, x could consist of the observations of all robots,
x = (o1, . . . , oN). However, additional state information could also be included if available.
Given that each robot may have different cooperation requirements, different teammates
available, and limited perceiving capability, each robot distributively implements a cooper-
ation policy. This centrally learned and distributively used methodology support flexible
teaming for heterogeneous robots, such that the cooperators’ and cooperation actions are
adjusted dynamically.

3.1.2. Robot Inner Attention for Team Adaptability Modeling

In the extended actor–critic framework consisting of centralized training with de-
centralized execution, to calculate the Q-value function Qi(o, a) for the robot i, the critic
receives observations, o = (o1, . . . , oN), and actions, a = (a1, . . . , aN), for all robots which
take redundant information into account. In addition, the action space also increases expo-
nentially with the number of robots. Given that, each robot should pay more attention to
task-relevant information based on task requirements and robot availability. For example,
to rescue heavily injured victims, the medical assistant robot should pay more attention to
the closest and available food delivery robots. Therefore, it is necessary to train the critic
for each robot with the ability to filter task-relevant information. That is, each robot is
aware of which robots it should pay attention to rather than simply considering all robots
at every step of decision-making. To achieve that, the inner attention mechanism is used as
a complementary part of the extended actor–critic framework. Intuitively, in the robot’s
decision-making process, the contributions of other robots’ status can be evaluated by the
innerATT generating different attention weights for different robots. The more important
a teammate is, the higher attention weight it should have. With the innerATT, the robots
can selectively cooperate with proper team members to flexibly satisfy dynamic task needs
with limited team sources.

To generate the attention weights, the embedding function gi is a two-layer multiple-
layer perception (MLP), which takes robots’ observations and actions as input. The embed-
ded information is fed into the innerATT to obtain the Q-value function Qi(o; a) for robot i,
which is a function of robot i’s embeddings as well as other robots’ contributions:

Qi(o; a) = w2Tσ(w1,< ei, xi >) (5)

where σ is rectified linear units (ReLU), and w1 and w2 are the parameters of critics.
Similar to the query-key system, the inner attention mechanism also has shared query (wq),
key (wk), and value (wv) matrixes. ⟨ei, xi⟩ represents the interaction between the robot’s
embedding ei and the context xi, encapsulating the robot’s perceived environment and
its own state. Each agent’s embedding ei can be linearly transformed into qi, ki, and vi
separately. The contribution from other robots, xi, is a weighted sum of other robots’ values:

xi = ∑
j ̸=i

αijvj (6)

where vj symbolizes the value vector of robot j, the attention weight αij compares the simi-
larity between k j and qi, and the similarity value can be obtained from a softmax function:

αij =
exp(Sij)

∑N
k=1 exp(Sik)

=
exp(ejwT

k wqei)

∑N
k=1 exp(ekwT

k wqei)
(7)

where the similarity score Sij compares robot i’s query with robot j’s key, influencing
the amount of attention robot i pays to robot j. In the experiments, P set of parameters
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(wp
q , wp

k , wp
v)

P
p=1, which gives rise to an aggregated contribution from all other robots to the

robot i, is used. Then, the contributions from all set parameters can be simply concatenated
as a single vector. Note that the matrix for extracting queries, keys, and values is shared
across all agents, which encourages a common embedding space. The sharing of critical
parameters between robots is possible because multi-robot value-function approximation
is, essentially, a multi-task regression problem.

As for the reward function that encourages the robots to cooperate in dynamic envi-
ronments, in the learning process, the corresponding reward based on their behavior is
given. At the time step t, the robot obtains its observation ot and the contribution from
other robots xt. The robot is likely to execute the action with the highest reward. To describe
the reward function accurately, the expectations for the robots in the cooperation tasks
should be introduced first. Each robot is expected to avoid collisions with other robots and
obstacles in the environment and cooperate with other robots to rescue victims based on
the following rules: (1) One robot can only cooperate with another proper kind of robot;
(2) One robot should rescue its closest victim only if it is not occupied by other tasks.

In other words, the tasks we encourage robots to perform are rewarded positively,
while behavior we wish the robots to avoid is rewarded negatively. So at time step t, each
robot seeks policy π(at | ot, xt) that could reach the expected goals. Reward function Rt for
each robot is as follows:

Rt = Rewards + Collisions + Steps (8)

Here, Rt is the combination of three aspects: rewards from interacting with the environment,
collision with other robots or walls, and step cost for rescuing per victim.

Rewards = −min
j∈C

Dist(roboti, victimj) (9)

which represents the robot’s expected action to rescue the closest victim, cooperate with
proper candidates, and C is a set of victims and robots that need roboti to rescue and
cooperate separately according to expected cooperation.

Collisions =

{
−5 × ∑wall∈Walls I(roboti, wall)
−1 × ∑j ̸=i I(roboti, robotj)

(10)

implies that the robot should avoid collision with obstacles, and I(∗) is the indication func-
tion indicating whether roboti collides with the wall or/and other robots or not. The average
Steps needed for rescuing one victim are used to take resource consumption into account.

3.1.3. Theoretical Analysis of innerATT’s Robustness

To clarify the theoretical foundation underlying our claims about the innerATT
method’s robustness, this section provides a detailed mathematical framework illustrating
its resilience to component failures and sensor inaccuracies within a multi-robot team-
ing context.

Robustness in the context of our hybrid multi-robot system (HMRS) refers to the
system’s capacity to minimize the impact of incorrect or uncertain information transmitted
by malfunctioning robots on the collective’s flexible teaming performance. Specifically, we
demonstrate that the attention weights calculated by operational robots remain substantially
unaffected by a malfunctioning robot. Similar to the critic neural network, a two-layer
ReLU neural network is considered to analyze the robustness of innerATT. The weights of
the first layer can be denoted as w1, the weights of the second layer as w2, and the ReLU
function is represented by σ(∗). Then, the output of the two-layer neural network, when
the input is x, can be written as:

f (x) = w2Tσ(w1, x), x =< ei, xi > (11)
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When employing the inner attention mechanism, the robots’ robustness to failures or
sensor malfunctions are significantly enhanced [51].

We consider that a small perturbation is added to a particular robot j̄’s embedding,
such that e j̄ is changed to e j̄ +△e while all the other robots’ embeddings remain unchanged.
How much will this perturbation affect attention weights αij? For a particular i(i ̸= j), the

Sij = ejwT
k wqei (12)

is only changed by one term since:

S′
ij =

{
Sij +△ewT

k wqei, i f (j = j̄).
Sij, otherwise.

(13)

where S′
ij denotes the value after the perturbation. Therefore, with the perturbed input, each

set of {Sij}N
j=1 only has one term being changed for the perturbation part. Obviously, if there

are two or more broken robots, the number of terms changed in each set of {Sij}N
j=1 is the

same as that of broken robots in HMRS. We assume ∥ △ e∥ ≤ δ1, ∥ei∥ ≤ δ2, and {ei}N
i=1 are

d-dimensional vectors uniformly distributed on a sphere. The value E[S′
i j̄ − Si j̄] = E[Mei]

where M = △ewT
k wq is a fixed vector, and it is easy to derive that ∥M∥ ≤ ∥wq∥∥wk∥δ1.

Due to rotation invariance and ∥ei∥ ≤ δ2, E[eT
i [1, 0, . . . , 0]] ≤ δ2√

d
. If we build the orthogonal

coordinate system based on the direction of M, the expected value becomes

E[S′
ij − Sij] ≤

∥wq∥∥wk∥δ1δ2√
d

(14)

Therefore, as the norm of wq, wk values are not too large (usually regularized by L2
during training) and dimension d is large enough, there is a significant amount of i such
that S′

ij is perturbed negligibly. This theoretical exploration, rooted in the mathematical
properties of high-dimensional spaces and the controlled norm sizes of the network’s
weights, decisively supports the claim of innerATT’s robustness. That means the flexible
teaming performance of the robots in good condition is not affected dramatically by the
wrong information delivered by the broken robot.

3.2. Experiment Settings

To validate innerATT’s effectiveness in improving HMRS adaptability, a cooperative
environment with two typical scenarios, “task variety” and “robot availability variety”,
and three different situations with different task complexities are designed. These two
scenarios and three situations frequently occur and generally represent the deployment
dynamics of HMRS in the real world. Therefore, by validating innerATT effectiveness in
these two scenarios, we hope to obtain a general conclusion on the efficiency of innerATT
in improving HMRS adaptability. Figure 2 illustrates the robot task scenario.

The experimental setting is depicted in Figure 3. In flood disasters, there are trapped
victims with different injury levels. The victims with high injury levels (Task 1) need
rescuing robots providing them with food, water, and emergency medical treatment, while
the victims with low injury levels (Task 2) need other kinds of rescuing robots providing
food, water, and useful information to guide them to safer places. The main robots team is
expected to split into different sub-teams that can rescue these victims effectively. The envi-
ronment leverages the multi-agent particle environment (MPE) framework, an open-source
platform [48]. MPE is characterized by a straightforward multi-agent domain where agents
navigate a continuous observation space with discrete actions, supplemented by basic sim-
ulated physics principles. This framework is advantageous for constructing experimental
scenarios that involve multiple robots, intricate situations, and varied interactions among
robots while simplifying aspects related to control and perception. In the custom-designed
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environment, the implementation of discrete action spaces and a rudimentary physics
engine facilitates the simulation of robots’ movements, incorporating robot momentum
to mirror real-world dynamics closely. The dimensions of the synthetic environment are
established at 2 × 2, which suffices for the number of robots necessary to evaluate innerATT
without leading to insufficient exploration issues. Robot parameters, as delineated in
Table 1, are calibrated to mirror the specifications of actual robots. The environment is
configured as a continuous space, allowing for robots to traverse any location on the map
based on their velocity and acceleration attributes. The overarching objective of the system
is to maximize the number of victims rescued within a specified timeframe.

Figure 2. An illustration of the robot task scenario used by the designed innerATT model. In this
scenario, the food delivery robots can flexibly participate in Task 1, “medical assistance for heavily
injured victims”, or Task 2, “navigation assistance for victims in good conditions”.

Table 1. The configurations of robots.

Type Speed Mass Ability

Food Delivery 1.0 m/s 1.0 kg Food
Safety Guidance 1.5 m/s 0.5 kg Information

Medical Assistance 1.5 m/s 0.5 kg Medicine

In this environment, there are two victims with different injury levels and four rescuing
robots with different capabilities. To fully utilize the robot team’s functionality, each robot
needs to cooperate to rescue victims with different injury levels. Of the rescuing robots,
two are food delivery robots providing living supplies such as food and water, and one
is a safety guidance robot providing victims with useful information about the location
of safer places. The remaining robots are medical assistance robots, which are mainly
used to provide medical treatments to heavily injured victims. As for the victims, one of
them is heavily injured, requiring both food and medical assistance for survival, defined as
“Task 1”, while another victim who is trapped but in good health needs food delivery as
well as safety guidance for moving to a safer place, defined as “Task 2”. As for the typical
“task variety” scenario, food delivery robots are needed for both kinds of tasks. Therefore,
the food delivery robots should flexibly adapt to different tasks and satisfy different task
requirements. As for the “robot availability variety” scenario, the medical assistance robot
or safety guidance robot’s motors could be broken due to mechanical failures, which has
negative impacts on food delivery robots’ cooperator availability. Therefore, this scenario
can be used to evaluate food delivery robots’ robustness to real-world disturbances. The
simulation settings can also be readily extended to demonstrate the feasibility of the
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proposed method in scenarios involving the cooperation of different types of HMRS. In the
simulations, ground robots and UAVs may be assigned specific roles based on their unique
capabilities. For example, UAVs could perform aerial surveillance to identify points of
interest, while ground robots might execute tasks requiring physical interaction, such as
collecting samples or clearing debris. The simulation environment can be configured to
test various scenarios wherein the cooperation between ground robots and UAVs proves
critical, including areas challenging for ground robots to access or tasks necessitating rapid
response times, where UAVs can swiftly scout the area. To facilitate adaptive cooperation,
the innerATT is employed to dynamically configure teams of heterogeneous robots, thereby
enabling them to efficiently form teams that meet specific task demands.

Figure 3. Simulated environment illustration. (a) “(S1) Single Task” in which only one kind of task
pops up. (b) “(S2) Double Task” in which two kinds of tasks always pop up. The robot team always
deals with Task 1 and Task 2. (c) “(S3) Mixed Task,” which is the combination of situations one
and two.

To better analyze the effectiveness of the innerATT method, we design three situations—from
simple to complex—for each scenario. In the first situation, “(S1) Single Task”, only one
task is presented at random locations: “Task 1” or “Task 2” randomly appear in each
episode. In the second situation, “(S2) Double Task”, “Task 1” and “Task 2” always present
together in each episode with random locations. The third situation, “(S3) Mixed Task”, is
a combination of S1 and S2. In addition, two deep reinforcement learning algorithms based
on temporal difference (TD) and proximal policy optimization (PPO) are also designed.
In the method without inner attention, attention weights α are simply fixed to 1

(N−1) . Given
that only the values of attention weights are changed to a fixed value, both innerATT and
methods without inner attention are implemented with an approximately equal number
of parameters. To better analyze the effectiveness of the innerATT method in improving
HMRS adaptability to different task complexities and real-world disturbances, we mainly
train our model in S3 and then analyze its performance in different situations (S1, S2,
and S3) and different scenarios (“task variety” and “robot availability variety”) without
retraining the model.

In the training regimen, the system employs an off-policy variant of the actor–critic
methodology, augmented for maximum entropy reinforcement learning, across a span of
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25,000 episodes. The computational architecture facilitates parallel processing via 12 threads
for handling training data, alongside a replay buffer designed to archive experience tuples
of (ot, at, rt, ot+1) at each timestep. Episodes are set to a duration of 100 steps, with the
environment undergoing a reset after each episode, which includes random repositioning
of victims and robots. Within these episodes, subsequent to the completion of a rescue
operation, only the task parameters are reset, specifically the locations of the victims.
Following the conclusion of each episode, both the policy network and the attention critic
network undergo quadruple updates. This process involves the selection of 1024 tuples
from the replay buffer, followed by the refinement of the Q-function parameters and the
policy objectives via policy gradients. The Adam optimization algorithm is utilized for this
purpose, with an initial learning rate established at 0.001 and a discount factor γ set to 0.99.
For encoding embedded information, a hidden dimension of 128 is selected, and the inner
attention mechanism is equipped with four attention heads, optimizing the system’s focus
and response within the training environment.

4. Results and Discussion

Performance was assessed by the total number of rescued victims and the total length
of trajectory per episode. As shown in Figure 4, the methods with innerATT are competitive
when compared to the methods without attention model, which means the methods with
innerATT take fewer steps when rescuing the same number of victims compared with the
baseline method.

Figure 4. The efficiency comparison of innerATT and the baseline method when rescuing the
same number of victims. (a) Training rewards of TD-based methods. (b) Training rewards of
PPO-based methods.

In the following subsections, innerATT is mainly analyzed in two directions with
different task complexities: In Section 4.1, the ability to adapt to task varieties is discussed.
The relationship between robot behavior and their inner attention weights is also analyzed
to prove that the inner attention mechanism is beneficial to robots’ flexible teaming to
different tasks. In Section 4.2, the robustness of HMRS is presented, especially when there
are malfunctioning robots in the team. innerATT’s efficiency in resource consumption
(moving steps needed) to rescue one victim was also analyzed. In the real-world HMRS
application, it is important to pay attention not only to the cooperation strategy that can
accomplish complex tasks efficiently, but also to other real-world factors such as resource
consumption, distance cost, etc. Since robots usually carry limited energy, if the energy
resources of some robots are consumed too fast, there will not be enough energy left for
future tasks.

4.1. Adapting to Task Varieties

To analyze innerATT’s ability to adapt to task varieties, the simulated environment
“task variety” includes two different kinds of tasks: in Task 1, victims are heavily injured
and need medical treatments, while in Task 2 the victims who are in good health need
useful information guiding them to a safer place. This means food delivery robots should
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learn to dynamically cooperate with proper robots and participate in different tasks based
on dynamically changing situations. For example, to rescue victims who are heavily injured,
the robot providing medical treatment should cooperate with the closest and available food
delivery robot rather than the food delivery robot far away from it or occupied by other
rescuing tasks.

To quantitatively measure robots’ flexibility, the cooperation rate between food deliv-
ery robots and other rescuing robots in a period of time (80 episodes) is calculated using
the following formulation:

rateij =
Numij

∑N
k=1 Numik

(15)

where ∑N
k=1 Numik is the total number of victims rescued by robot i and Numij is the total

number of victims rescued by the cooperation of robot i and robot j. The results are shown in
Table 2, in the three situations. The average cooperation rates of food delivery robots trained
by TD-innerATT and PPO-innerATTare 0.47/0.53 and 0.48/0.52, respectively, in Task 1,
which is similar to uniform distribution with 95% confidence. The cooperation rates of food
delivery robots trained by TD and PPO methods are 0.82/0.18 and 0.32/0.68, respectively,
which is not enough evidence to prove that it is similar to the uniform distribution. Similar
results were shown for Task 2: the robots trained by TD-innerATT or PPO-innerATT are
more flexible than those trained by the methods without the attention model. As suspected,
the baseline model’s critics use all information non-selectively, while innerATT can learn
which robots to pay more attention to through the inner attention mechanism. Thus,
the method with innerATT is more flexible and sensitive to dynamically changing tasks.

Table 2. UAV participate rate comparison. Numbers in column “Food delivery 1” and “Food delivery
2” are the corresponding cooperation rates.

Food Food χ2
1

Delivery 1 Delivery 2 (a = 0.05)

Task 1
TD-innerATT 0.47 0.53 0.36 < 3.84

TD 0.82 0.18 81.9 > 3.84

Task 2
TD-innerATT 0.56 0.44 1.44 < 3.84

TD 0.18 0.82 81.9 > 3.84

Task 1
PPO-innerATT 0.48 0.52 0.16 < 3.84

PPO 0.32 0.68 25.9 > 3.84

Task 2
PPO-innerATT 0.45 0.55 1.00 < 3.84

PPO 0.73 0.27 42.3 > 3.84

To further prove that the inner attention-supported multi-robot teaming method
is beneficial to the robot’s flexible adaptation to different tasks, Figure 5 demonstrates
the effect of the attention head on the robot during the training process by showing the
entropy of the attention weights for each robot. A decrease in entropy to approximately
1.02 indicates that the innerATT mechanism effectively trains robots to focus selectively
on certain team members. This decrease signifies not just a concentration of attention
but an evolved capability of the robots to prioritize task-relevant interactions, enhancing
their collaborative efficiency in dynamic environments. Importantly, the reduction in
entropy reflects an improvement in selective attention among robots, crucial for dynamic
adaptation to task requirements and robot availability. The metric of entropy is used as a
relative measure of the system’s ability to filter and focus on relevant information, crucial
for effective teamwork. As such, a ‘’good” level of entropy is contextually defined by
the system’s improved task performance and adaptability, validating the inner attention
mechanism’s role in fostering efficient and focused collaborative behavior.
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Figure 5. The attention entropy for each attention head throughout the training period within
the context of multi-robot cooperation is analyzed. A diminished entropy value signifies that
the robots have progressively honed their ability to selectively concentrate their attention on a
particular teammate.

Besides that, the relationship between robot behavior and inner attention weights
of the robots was analyzed to illustrate attention support in adjusting robot behaviors
for flexible teaming. Figure 6A is an illustration of a specific scenario occurring during
the experiment. In the pre-stage, Food delivery 1 robot first cooperates with the medical
assistance robot to rescue the heavily injured victim (Task 1). At this moment, Food delivery
1 robot needs to pay more attention to the medical assistance robot. After finishing Task 1,
in the middle stage and the post-stage, it changes to cooperate with a safety guidance robot
to rescue the trapped victim in good health (Task 2). At this time, Food delivery 1 robot
needs to pay more attention to the safety guidance robot. Figure 6B shows the curves of
Food delivery 1 robot’s total attention weights over the other three robots. In the pre-stage,
the curve of total attention weights paid to the medical assistance robot has the highest
values, which supports Food delivery 1 robot to selectively cooperate with the medical
assistance robot. In the middle stage and in the post-stage, the curves of total attention
weights paid to the medical assistance robot and safety guidance robot are decreasing and
increasing separately, which supports Food delivery 1 robot to transfer its attention from
the medical assistance robot to the safety guidance robot. Therefore, the innerATT can
support robot flexible teaming behaviors to different tasks. Figure 6C shows the curves
of Food delivery 1 robot’s attention weights, generated by each attention head, over other
rescuing robots.

Furthermore, to evaluate whether or not the robot cooperation is reasonable, “awk-
ward cooperation” and “expected adaptive cooperation” were introduced based on the
above-mentioned cooperation rules. In Figure 7, these typical cases are common in all
situations. The typical cases were divided into three categories according to the distances
between robots and task: both food delivery robots are closer to the victim that is close to
the cooperating robot, both food delivery robots are closer to the victim that is far away
from cooperating robot, and one of food delivery robot is closer to one victim, the other
one is closer to another victim. For all the cases, the awkward cooperation (victims are not
rescued by the closest food delivery robot) is illustrated by orange arrow lines, while the
expected adaptive cooperation (victims are rescued by the closest food delivery robot) is
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presented by green arrow lines. In awkward cooperation cases, longer time is required
for the robots to rescue victims, which is unacceptable, especially in disaster search and
rescue. Therefore, even though awkward cooperation can rescue victims, it has a lower
cooperation quality than expected adaptive cooperation.

Figure 6. Relationships between Food delivery 1 robot’s conduct and its internal attention weights
within adaptive collaboration settings in a multi-robot cooperation context under scenario two (S2)

are explored. (A) delineates three phases of Food delivery 1 robot’s dynamic teaming approach.
Initially, in the pre-stage (i), collaboration is established between Food delivery 1 robot and the
medical assistance robot. During the intermediate stage (ii), Food delivery 1 robot modifies its
behavior by leveraging an intrinsic attention mechanism. In the concluding post-stage (iii), Food
delivery 1 robot engages in cooperation with the safety guidance robot. (B) encapsulates the aggregate
attention weight that Food delivery 1 robot allocates to its robotic peers. (C) details the individual
attention weights generated by each attention head within Food delivery 1 robot.

To quantitatively measure robot cooperation quality, the rates of awkward cooperation
and expected adaptive cooperation were calculated. As shown in Table 3, for the method
TD-innerATT and PPO-innerATT, after 20 episodes, the average rates of Food delivery 1
robot’s awkward cooperation in Task 1 and Task 2 are 0.17, 0.22 and 0.26, 0.30, respectively.
Food delivery 2 robot’s average awkward cooperation rates in Task 1 and Task 2 are 0.17,
0.16, and 0.30, 0.18, respectively. As for the results for methods TD and PPO, the average
rates of Food delivery 1 robot’s awkward cooperation in Task 1 and Task 2 are 0.43, 0.45,
and 0.44, 0.47. Food delivery 2 robot’s average awkward cooperation rates in Task 1 and
Task 2 are 0.40, 0.49, and 0.46, 0.44, respectively. The results show that methods with
innerATT have fewer awkward cooperative actions in different tasks than the baseline
method because the robots with inner attention mechanism can flexibly cooperate with
different robots based on the current situations instead of always cooperating with the same
robot. Therefore, methods with innerATT can have more meaningful cooperative actions
based on the dynamically changing environments compared with the baseline method.
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Figure 7. Typical awkward (orange color) and adaptive cooperation (green color) in the three task
situations “S1 Single Task, S2 Double Tasks, s3 Mixed Tasks”.

Table 3. Average awkward cooperation rate.

Food Delivery 1 Food Delivery 2

Task 1
TD-innerATT 0.17 0.17

TD 0.43 0.40

Task 2
TD-innerATT 0.22 0.16

TD 0.45 0.49

Task 1
PPO-innerATT 0.26 0.30

PPO 0.44 0.46

Task 2
PPO-innerATT 0.30 0.18

PPO 0.47 0.44

To quantitatively prove that innerATT is much more efficient in energy consumption
than the baseline method, the average trajectory distance needed to rescue one victim was
calculated by the following formulation:

DistanceT =
DistanceT

Total
VictimsT

Total
(16)

where DistanceT is the average distance cost to rescue one victim during time T, DistanceT
Total

is the total distance calculated by summing all robots trajectory length in a period of time
T, and VictimsT

Total is the total number of rescued victims during time T. As Figure 8
shows, after 10,000 training episodes, the average trajectory distance cost of the model
trained by TD-innerATT is 0.14 greater than that of the model trained by the baseline
method. The model trained by TD is more efficient because the inner attention mecha-
nism increases the complexity of the Deep Neural Network framework. So, the baseline
method can learn faster than the method with innerATT and can rescue more victims at the
beginning of the training phase. After 25,000 episodes of training, when innerATT is suffi-
ciently trained, the average trajectory distance cost of the model trained by TD-innerATT
is 0.10 less than that of the model trained by the baseline method. Similar results were
also obtained from the experiment in which the models were trained based on the PPO
method. After 25,000 episodes of training, the average trajectory distance cost of the model
trained by PPO-innerATT was 0.19 lesser than that of the model trained by the baseline
method.Therefore, the robots trained by the methods with innerATT are more efficient than
the robots trained by the baseline method.
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Figure 8. Average trajectory length for rescuing one victim in (S2).

4.2. Adapting to Robot Availability

In addition to robot flexible teaming, robustness to real-world disturbances is impor-
tant in HMRS. If the robots cannot flexibly adapt to real-world disturbances, for example, if
some robots are broken in the robot team or if the faults are caused by sensor failures, then
there may be undesirable and uncontrollable effects on other teammates. What is more,
broken robots may share incorrect information with other members of the team, leading to
incorrect cooperation behaviors.

With the innerATT, the HMRS team is more robust to sensor failure or broken units,
which has been theoretically proved in the Methods section. To practically measure the
robustness of HMRS, the typical robot failure issue “motor broke” is simulated. Then,
the food delivery robots’ cooperation rates are calculated to estimate their robustness to the
“motor broken” disturbance. In the ideal cases, if the food delivery robots are robust enough,
they have an equal chance to participate in reusing tasks. That means food delivery robots
are not influenced by faulty robots. As Table 4 shows, considering Task 1 when the safety
guidance robot is broken, the average cooperation rates of food delivery robots trained
by TD-innerATT and PPO-innerATT are 0.51/0.49 and 0.51/0.49, respectively, which is
similar to uniform distribution with 95% confidence; the cooperation rates of food delivery
robots trained by TD and PPO methods are 0.82/0.18 and 0.34/0.66, which means the
food delivery robots are significantly influenced by the broken robot. As for Task 2 when
the medical assistance robot is broken, similar results are observed. Therefore, the robots
trained by the methods with innerATT are more robust to robot failure than those trained
by the baseline method.

To further prove that the innerATT is beneficial to robot robustness to real-world
factors, the relationship between robot behavior and their inner attention weights was
analyzed to illustrate attention supports in adjusting robot behaviors for increasing robot
resilience. Figure 9A is an illustration of a specific scenario occurring during experiments.
In the pre-stage, Food delivery 1 robot is initially cooperating with the medical assistance
robot to rescue the heavily injured victim (Task 1). At this moment, the medical assistance
robot needs to pay more attention to Food delivery 1 robot. After finishing Task 1, in the
middle-stage and the post-stage, DFod delivery 2 robot cooperates with the medical as-
sistance robot to rescue another heavily injured victim (Task 1). At this time, the medical
assistance robot needs to pay more attention to Food delivery 2 robot. Figure 9B shows the
curves of the medical assistance robot’s total attention weights over the other three robots.
In the pre-stage, the curve of total attention weights paid to Food delivery 1 robot has the
highest values, which supports the medical assistance robot to selectively cooperate with
Food delivery 1 robot. In the middle stage and in the post-stage, the curves of total attention
weights paid to Food delivery 1 robot and Food delivery 2 robot are decreasing and increas-
ing separately, which supports the medical assistance robot to transfer its attention from
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Food delivery 1 robot to Food delivery 2 robot. Therefore, the inner attention mechanism
can increase robot robustness to real-world robot failures by adjusting robot behaviors for
increasing robot resilience. Figure 9C shows the curves of the medical assistance robot’s
attention weights, generated by each attention head, over other rescuing robots.

Table 4. UAV participate rate when one robot is broken. Numbers in column “Food delivery 1” and
“Food delivery 2” are the corresponding cooperation rates.

Food Food χ2
1

Delivery 1 Delivery 2 (a = 0.05)

Task 1
TD-innerATT 0.51 0.49 0.04 < 3.84

TD 0.82 0.18 81.9 > 3.84

Task 2
TD-innerATT 0.57 0.43 0.36 < 3.84

TD 0.17 0.83 87.1 > 3.84

Task 1
PPO-innerATT 0.51 0.49 0.04 < 3.84

PPO 0.34 0.66 20.4 > 3.84

Task 2
PPO-innerATT 0.47 0.53 0.36 < 3.84

PPO 0.72 0.28 38.7 > 3.84

Figure 9. Relationships between medical assistance robot’s behavior and its inner attention weights
in adaptive teaming in the multi-robot cooperation environment with situation two (S2). (A) Three
stages of medical assistance robot’s flexible teaming. In the pre-stage (i), the medical assistance robot
cooperates with Food delivery 1 robot. In the middle stage (ii), the medical assistance robots change
their behavior based on the inner attention mechanisms. In the post-stage (iii), the medical assistance
robot cooperates with Food delivery 2 robot. (B) Medical assistance robot’s total attention weight
paid to other robots. (C) The medical assistance robot’s attention weights are obtained from each
attention head.

5. Conclusions

• Summary. This study introduces a novel inner attention mechanism, innerATT,
designed to facilitate adaptive cooperation among multi-heterogeneous robots in
response to varying task requirements. Through the deployment of scenarios with
diverse task configurations, such as a single task, a double task, and dynamically
mixed tasks, the efficacy of the innerATT model in promoting flexible team formation
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is empirically confirmed. The model adeptly navigates the challenge of distributing
limited robot resources across fluctuating task demands.

• Potential Application. Additionally, the theoretical framework of this model offers po-
tential for broad application, including the coordination of ground and aerial vehicles,
as well as integration between vehicular units and human operatives. Consequently,
the attention-driven flexible teaming model unveiled in this research holds substantial
promise for practical implementation across a spectrum of multi-robot applications,
ranging from disaster response to wildlife conservation and the management of airport
traffic flows.

• Novelty. While building upon foundational research in multi-agent reinforcement
learning [52,53], our work introduces a distinctive approach by focusing on the strate-
gic formation and adaptability of robot teams to task demands and environmental
changes, utilizing innerATT for adaptive cooperation. This unique contribution ad-
dresses unexplored challenges in the field, extending beyond the scope of prior stud-
ies, and highlights the innovative potential of attention mechanisms in enhancing
HMRS operations.

• Practical Challenges. The primary goal of this research is to assess the feasibility of
using attention mechanisms to flexibly assemble heterogeneous robot teams. Given
the differences between simulated environments and their real-world counterparts,
the model developed in this study might not perform identically in practical settings.
Nonetheless, the model acts as an essential initial step for further development and
adjustment to actual conditions. It is vital to acknowledge the difficulties in applying
simulation-based methods in real environments. The unpredictability and sensor
inaccuracies inherent in real-world scenarios necessitate thorough validation and
improvement of any theoretical model. Consequently, our future endeavors aim
to narrow the gap between simulation outcomes and real-world implementation.
This will include a comprehensive analysis and the integration of specific sensors
(e.g., LIDARs, cameras, GPS) for various applications, alongside the examination
of robust communication protocols to facilitate efficient team coordination amidst
the challenges of bandwidth and latency in operational environments. Additionally,
future research will explore robot behavior analysis and the creation of models to
measure and improve human trust in heterogeneous multi-robot systems with the
goal of enhancing their real-world efficacy.
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Abbreviations
The following abbreviations are used in this manuscript:

HMRS Heterogeneous Multi-Robot System
inner-ATT Inner Attention
MAAC Multi-Agent Actor–Critic
UAV Unmanned Aerial Vehicle
TD Temporal Difference
PPO Proximal Policy Optimization
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