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Abstract: Accurately forecasting power consumption is crucial important for efficient energy man-
agement. Machine learning (ML) models are often employed for this purpose. However, tuning their
hyperparameters is a complex and time-consuming task. The article presents a novel multi-objective
(MO) hybrid evolutionary-based approach, GA-SHADE-MO, for tuning ML models aimed at solving
the complex problem of forecasting power consumption. The proposed algorithm simultaneously
optimizes both hyperparameters and feature sets across six different ML models, ensuring enhanced
accuracy and efficiency. The study focuses on predicting household power consumption at hourly
and daily levels. The hybrid MO evolutionary algorithm integrates elements of genetic algorithms
and self-adapted differential evolution. By incorporating MO optimization, GA-SHADE-MO balances
the trade-offs between model complexity (the number of used features) and prediction accuracy,
ensuring robust performance across various forecasting scenarios. Experimental numerical results
show the superiority of the proposed method compared to traditional tuning techniques, and random
search, showcasing significant improvements in predictive accuracy and computational efficiency.
The findings suggest that the proposed GA-SHADE-MO approach offers a powerful tool for opti-
mizing ML models in the context of energy consumption forecasting, with potential applications in
other domains requiring precise predictive modeling. The study contributes to the advancement of
ML optimization techniques, providing a framework that can be adapted and extended for various
predictive analytics tasks.

Keywords: forecasting; power consumption; hybrid evolutionary algorithm; multi-objective
evolutionary algorithm

1. Introduction

Forecasting power consumption is a challenging task with a significant impact on
energy management, efficiency, and sustainability [1]. Accurate predictions enable better
resource allocation, cost reduction, and enhanced grid stability, which are essential for
both residential and industrial sectors [2]. Recent advances in machine learning (ML)
have significantly impacted the field of renewable energy, especially in optimizing and
forecasting wind power generation.

In the study [3], researchers developed a cyber-physical system using deep learning
to support renewable energy communities. The system focuses on improving energy
distribution and management for sustainable energy sources. By using artificial intelligence
(AI), the system can monitor and adjust energy flow to ensure stability and efficiency.
The research highlights how this AI-based approach can enhance the resilience of energy
networks. This system offers the potential for more reliable energy solutions in communities
relying on renewable sources. Another modern study [4] examines methods for predicting
wind power using ML models. The study aims to improve the accuracy of wind energy
forecasts, which are important for efficient energy management. By comparing different ML
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models, the researcher identified the most effective techniques for forecasting wind power.
The results suggest that advanced algorithms can enhance prediction precision, helping in
the integration of wind energy into power grids. This research highlights the potential of ML
to support renewable energy systems and make them more reliable. Together, these studies
illustrate the transformative role of ML in addressing the challenges of renewable energy,
driving the development of intelligent, adaptive systems for sustainable energy solutions.

Given the complexity and variability of energy consumption patterns, developing
robust predictive models is challenging, particularly when it involves selecting optimal
features and tuning hyperparameters to achieve high accuracy. Numerous methods have
been developed to forecast power consumption, ranging from simple statistical models to
complex ML algorithms [5]. Despite the advancements, the process of tuning these models
and selecting the most relevant features remains a significant challenge. Effective tuning
of hyperparameters and feature selection are crucial as they directly impact any model’s
performance, influencing both its accuracy and computational efficiency [6].

In this context, the article introduces a novel multi-objective (MO) hybrid evolutionary-
based approach, GA-SHADE-MO, designed to enhance the tuning process of ML models
specifically for forecasting power consumption. In previously published research [7], we
have already proposed a GA-SHADE algorithm. GA-SHADE is a single-objective algorithm
for simultaneously tuning the set of features and hyperparameters of ML algorithms. In
the case of using GA-SHADE, it is necessary to set the preferable number of used features
in a model. To find a good solution, it is necessary to run the algorithm multiple times. The
proposed GA-SHADE-MO is a logical extension of the previously proposed GA-SHADE
algorithm. In this study, we applied GA-SHADE-MO separately to six distinct ML models
to demonstrate its flexibility and effectiveness across different models. For each selected
model, GA-SHADE-MO generates a set of tuned versions of that same model, each with
different hyperparameters and selected features. These versions are ranked according to the
Pareto front, providing options with varying numbers of feature inclusion and prediction
errors on the validation data.

By employing MO optimization, GA-SHADE-MO addresses the trade-offs involved in
ML model development. This method ensures that the models are not only accurate but
also efficient, reducing unnecessary complexity by using an optimal number of features.
The study focuses on predicting household power use at both hourly and daily levels,
which shows the practical importance and usefulness of the proposed algorithm. Results
from experiments in the article show that GA-SHADE-MO performs better than traditional
tuning methods like random search, achieving higher accuracy and improved computa-
tional efficiency. This advantage makes it a valuable tool for optimizing ML models in the
energy sector.

Beyond this specific application, the GA-SHADE-MO approach provides a flexible
framework that can be used in different predictive tasks, not only in energy forecasting.
This study thus contributes to the progress of ML optimization techniques, offering valuable
insights and a reliable method for improving predictive analytics.

In summary, the major contributions of this study are as follows: (1) using the proposed
GA-SHADE-MO allows obtaining different ML models with varying numbers of features
and performance; (2) the proposed GA-SHADE-MO algorithm self-adapts its parameters
during the optimization process. No pre-setting of parameters is required for the GA-
SHADE-MO algorithm; (3) GA-SHADE-MO is not sensitive to the number of features and
hyperparameters of optimized ML due to its evolution nature; (4) the results obtained
in this study provide practical valuable information about the features that significantly
affect the predictive ability of energy consumption prediction ML models; (5) the proposed
approach can be modified and extended for solving different forecasting problems using
ML models or other regression models; (6) the proposed algorithm is flexible and not
limited to the algorithms currently used, such as GA and SHADE; incorporating more
effective algorithms for binary and real-valued optimization would further enhance the
overall efficiency of the approach; (7) existing approaches to MO optimization operate with
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homogeneous data, where all variables in the solution vector must be of the same type. The
proposed GA-SHADE-MO approach implements MO optimization for solution vectors
with mixed data types (binary, integer, and real-valued).

The rest of the paper is organized as follows. In Section 2, related work and liter-
ature review are presented. Section 3 describes in detail the proposed GA-SHADE-MO
algorithm. Section 4 describes the used dataset, the set of used ML algorithms and their
hyperparameters to be tuned, the settings of numerical experiments, the description of a
computation cluster, and the results of the numerical experiments. In Section 5, the results
of the numerical experiments are discussed. Section 6 summarizes the entire research work
and proposes a direction for further studies in this field.

2. Related Work and Literature Review

Forecasting power consumption properly is a critical task in the energy sector. It
helps utility companies plan for future energy demands, manage resources efficiently, and
ensure a stable power supply. To achieve accurate forecasts, various regression models
are employed. However, the accuracy of these models significantly depends on how well
they are tuned. In recent years, the advancement of ML and statistical methods has intro-
duced numerous approaches to improve the performance of regression models. Despite
their simplicity, traditional methods, such as linear regression, demonstrate satisfactory
performance [8]. More complex models, including decision trees [9], support vector regres-
sion [10], and artificial neural networks [11], have also been applied to these problems with
notable success.

Hyperparameter tuning is one of the fundamental techniques used to optimize re-
gression models. It involves adjusting model parameters that control the learning process.
Methods such as grid search [12], random search [13], and more complex approaches like
Bayesian optimization [14] are commonly used for this purpose. Grid search, although
computationally expensive, explores a predefined set of hyperparameters to identify the
best combination. Random search, on the other hand, samples a larger hyperparameter
space more efficiently but with a probabilistic approach. Bayesian optimization leverages
past evaluation results to model the performance landscape and make informed decisions
regarding which hyperparameters to explore next.

Feature selection and extraction are also vital in optimizing regression models. Tech-
niques such as principal component analysis (PCA) [15] and regularization methods like
Lasso and Ridge [16] assist in identifying the features that most significantly influence
power consumption predictions. These methods reduce the dimensionality of the data,
thereby improving model performance and interpretability.

Ensemble methods, which combine multiple models to improve prediction accuracy,
have gained considerable popularity in recent years. Techniques like bagging [17], boost-
ing [18], and stacking [19] utilize the strengths of different models, leading to more robust
and accurate forecasts. In summary, the field of power consumption forecasting has ex-
perienced significant advancements through the application of various regression model
tuning techniques.

Table 1 shows an observation in the field of power consumption prediction. The
first column shows the names of the models used. The second column shows a short
description of where the data were sourced. The third column lists the authors’ names and
references. The second-to-last and the last columns show the types of feature selection and
hyperparameter methods used. In cases of ‘fixed parameters’, the authors simply noted the
values without providing additional details on how they were determined.
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Table 1. Real-world applications in forecasting power consumption.

Model Data Source Authors Feature
Selection Hyperparameters

Wavelet transform and
multi-layer LSTM

The electricity consumption from U.S.
Electric Power Company D. Chi [20] None Fixed

hyperparameters

K-means and FCM–BP The load data of 200 users from an area
of Nanjing H. Bian, et al. [21] None Fixed

hyperparameters

MRA-ANN The multi-energy district boiler, La
Rochelle, west coast of France J. Eynard, et al. [22] None Grid search

The hybrid of RobustSTL
and TCN Hourly Power Consumption of Turkey C. H. Lin, et al. [23] None Fixed

hyperparameters

ConvLSTM and LSTM

NASA Battery Dataset, Individual
Household Electric Power Consumption
Dataset, Domestic Energy Management

System Dataset

N. Khan, et al. [24] None Fixed
hyperparameters

DB-Net IHEPC dataset from the UCI ML
repository; the Korean AICT dataset N. Khan, et al. [25] None Grid search

A multiple regression
model, a multiple

econometric
regression model and a LR
model of double logarithm

The six socio-economic
strata in Bogotá City

C. Peña-Guzmán,
et al. [26] None None

DNN, RNN, CNN, LSTM Companies B and T located in Naju,
Jeollanam-do N. Son [27] Correlation

analysis
Fixed

hyperparameters

EPC-PM The UMass Smart dataset J. Kumar, et al. [28] None Fixed
hyperparameters

DNN hybrid Five real-world household power
consumption datasets K. Yan, et al. [29] None Fixed

hyperparameters

SVR, ANN Four building clusters in a university J. Moon. et al. [30] PCA and FA Grid search

The learning ensemble of
ARIMA, GARCH and PSF

The Spanish Control Centre for the
Electric Vehicle

C. Gomez-Quiles,
et al. [31] None Fixed

hyperparameters

DF-CNNLSTM PJM Hourly Energy Consumption Data X. Shao, et al. [32] None Fixed
hyperparameters

TL-MCLSTM Two subsets from Pennsylvania-New
Jersey Maryland X. Shao, et. al. [33] None Grid search

Most models listed in Table 1 utilize fixed hyperparameters. For instance, advanced
models such as the wavelet transform and multi-layer LSTM, ConvLSTM and LSTM, and
the DNN hybrid model all rely on fixed hyperparameters. This approach potentially
overlooks the benefits of more dynamic and adaptive tuning methods. Where parameter
tuning is performed, it is predominantly achieved through straightforward techniques
such as grid search, as demonstrated in the MRA-ANN and TL-MCLSTM models. Grid
search, while systematic, is relatively simple and may not fully exploit the potential of more
sophisticated hyperparameter optimization methods such as random search, Bayesian
optimization, or evolutionary algorithms. Feature selection receives similarly insufficient
emphasis. It is fair to state that in solving forecasting power consumption problems, in
most real-world cases, the available set of features is limited. Practically, in most cases, only
power lag and time features are available. The majority of models do not incorporate any
feature selection methods, indicating a reliance on raw input data in its original form. The
few exceptions include the use of Principal Component Analysis (PCA) and Factor Analysis
(FA) in the SVR and ANN models, as well as correlation analysis in the study involving
DNN, RNN, CNN, and LSTM. While useful, these techniques are relatively basic compared
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to more advanced feature selection methods that can capture non-linear relationships and
interactions between features.

Overall, the table highlights a significant gap in the thorough tuning of model parame-
ters and selection of features in power consumption prediction studies. The predominant
use of fixed hyperparameters and basic feature selection techniques highlights a need for
more rigorous and advanced approaches to potentially enhance model performance and
robustness. The GA-SHADE-MO approach we propose aims to bridge the gap and address
the shortcomings encountered during the modeling of power consumption forecasting
models. GA-SHADE-MO allows the obtaining of a set of well-tuned models in terms of
their complexity. By model complexity, we refer to the number of features used.

3. The Proposed GA-SHADE-MO Algorithm

Before providing a detailed description of our proposed approach, we will first give a
general overview of the multi-objective optimization problem and how it is typically solved
using evolutionary algorithms. This foundational understanding will help contextualize
our method and demonstrate how evolutionary-based techniques are applied to find
optimal solutions in complex problem spaces.

3.1. Multi-Objective Optimization
3.1.1. Problem Statement

Multi-criteria optimization, also known as multi-objective or multi-goal optimization,
involves optimizing MO functions simultaneously. The formal problem statement for
multi-criteria optimization can be formulated as follows in Equation (1).

min
x∈X

( f1(x), f2(x), . . . , fk(x)) (1)

The integer k ≥ 2 defines the number of objective functions. X represents the set of
feasible solutions, and x ∈ Rn, where n is the search space dimension. The solution x must
satisfy the set of constraints defined in Equations (2) and (3).

gj(x) ≤ 0, j = 1, 2, . . . , m, (2)

hl(x) = 0, l = 1, 2, . . . , p, (3)

where m is the number of inequality constraints and p is the number of equality constraints.
The feasible solution set is defined in Equation (4).

X =
{

x ∈ Rn ∣∣ gj(x) ≤ 0, j = 1, 2, . . . , m; hl(x) = 0, l = 1, 2, . . . , p
}

. (4)

Formally, we aim to find x∗ ∈ X such that f (x∗) is a non-dominated solution. We say
that a vector-solution x1 dominates a vector solution x2 (x1 ⪯ x2) if and only if:

∀ i ∈ {1, 2, . . . , k}, fi(x1) ≤ fi(x2), and (5)

∃ i ∈ {1, 2, . . . , k}, fi(x1) < fi(x2). (6)

We say a vector-solution x∗ ∈ X is called Pareto-optimal if there does not exist another
vector-solution x ∈ X that dominates x∗. Thus, the multi-criteria optimization problem
involves finding the set of Pareto-optimal solutions, which cannot be improved in any
objective function without degrading at least one of the others. In this study, we rely on
two criteria for tuning ML models. The first criterion is a regression model error, the second
criterion is the number of features used in a regression model. Both criteria are subject
to minimization.
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3.1.2. State-of-the-Art Approaches for Multi-Objective Optimization

MO optimization has evolved significantly over the decades. In the 1950s and 1960s,
the foundation was laid with the concept of Pareto optimality, introduced by Vilfredo
Pareto [34], which defines a state where no objective can be improved without worsening
another objective. Early methods such as the weighted sum method [35] emerged during
this period, simplifying multi-objective problems by combining multiple objectives into
a single one. In the 1970s, linear programming techniques [36] were adapted to handle
multiple objectives, often utilizing the weighted sum method. Goal programming [37] was
also introduced to address the limitations of the weighted sum method, setting specific
targets for each objective and minimizing the deviation from these targets. The 1980s saw
the advent of evolutionary algorithms, with John Holland’s work on genetic algorithms
(GAs) introducing a novel approach by simulating natural evolution processes [38]. Schaf-
fer’s Vector Evaluated Genetic Algorithm (VEGA) [39] was one of the first attempts to
extend GAs for multi-objective optimization, by dividing the population based on different
objectives. During the 1990s, advanced evolutionary techniques were further developed.
Multi-Objective Genetic Algorithms (MOGAs) emerged [40], incorporating Pareto ranking
to better handle multiple objectives. The Niched Pareto Genetic Algorithm (NPGA) [41]
introduced niching methods to maintain diversity in the population, ensuring a better
spread of Pareto optimal solutions. Srinivas and Deb’s Non-dominated Sorting Genetic
Algorithm (NSGA) [42] improved the selection process using non-dominated sorting and
sharing functions. The 2000s marked further refinements and the introduction of hybrid
methods. NSGA-II, a major refinement of NSGA developed by Deb et al. [43], addressed
computational complexity, elitism, and diversity maintenance, becoming widely adopted.
Particle Swarm Optimization (PSO) was adapted for multi-objective optimization [44],
utilizing a population of solutions influenced by their own and their neighbors’ best po-
sitions. Hybrid methods, combining evolutionary algorithms with other optimization
techniques like local search and mathematical programming, enhanced performance and
robustness [45]. From the 2010s to the present, advances and applications in multi-objective
optimization have continued to expand. The Multi-Objective Evolutionary Algorithm
based on Decomposition (MOEA/D), introduced by Zhang and Li [46], decomposes a
MO problem into single-objective subproblems. Indicator-based methods, such as the
Indicator-Based Evolutionary Algorithm (IBEA), use performance indicators to guide the
search process [47]. Recent approaches have also integrated ML techniques to enhance the
efficiency and effectiveness of multi-objective optimization. Throughout its history, the
field has evolved from simple linear methods to sophisticated evolutionary algorithms,
continuously improving solution quality, computational efficiency, and application breadth.

In recent years, many approaches have been proposed for solving MO problems [48].
However, most real-world applications are viewed as black-box optimization problems [49].
It means that only the quality of the solution can be evaluated. There is no additional
information regarding the connection between variables. Sometimes, based on system anal-
ysis, a problem can be viewed as a gray-box optimization problem, but it does not provide
enough information for solving. Evolutionary algorithms have achieved significant success
in solving MO optimization problems. One of the state-of-the-art evolutionary approaches
for solving MO optimization problems, as previously mentioned, is MOEA/D [46]. The
underlying principle of this approach is as follows: MOEA/D decomposes the MO problem
into a set of single-objective problems. These decomposed problems must be optimized
simultaneously within the same population. The number of single-objective problems
is defined as the population size (the number of individuals). The pseudo-code of the
MOEA/D algorithm, including its main steps, is presented below:

Step 1. Initialize population P and W weights for each individual.
Step 2. Evaluate the population P.
Step 3. Generate a set of neighbors T for each weight vector.
Step 4. While the termination condition is not met do Step 5, otherwise go to Step 9.
Step 5. Generate mutant vectors for each individual using a mutation strategy.
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Step 6. Perform crossover operator using mutant and parent vectors to create a
trial vector.

Step 7. Evaluate trial vectors and update a solution if a new scalar objective value
is better.

Step 8. If the termination criterion is not met, go to Step 4, otherwise go to Step 9.
Step 9. Return the non-dominated solutions of P.
In Step 1, based on the principles of evolutionary-based optimization algorithms,

it is necessary to randomly generate a population P consisting of N vectors (possible
solutions) xi, i = 1, 2, . . . , N. Every solution should be generated within the feasible
decision space. In other words, every solution should be feasible. The set of weights vectors,

W =
(

w1, w2, . . . , wk
)

, is generated based on the following rules,
k
∑

i=1
wi = 1, and ∀ i, wi ≥ 0.

These vector weights are used for decomposing the MO problem. The set of weights can be
generated uniformly or designed to cover a specific area of the searching space. In Step 2, it
is needed to perform scalarization. Here, scalarization is a method used to transform each
subproblem into a one-dimensional (scalar) problem that can be more easily optimized.
For example, using weighted sums, Chebyshev’s method, or other scalarization methods,
each of the subproblems becomes a function whose optimization leads to finding solutions
to the original multicriterial problem. This approach allows optimizing multiple goals
simultaneously by decomposing them into problems that are easier to solve. Thus, in terms
of MOEA/D, decomposition refers to the partitioning of the problem, while scalarization is
the method of transforming each resulting subproblem into a form suitable for optimization.
In Steps 5 to 7, the population is evolved. If the algorithm finds a better solution than
the trial vector, then it should be replaced, and the optimization process continues until a
termination criterion is met. There are two commonly used termination criteria in EA-based
heuristics. The first is based on a fitness budget: if the EA has exhausted the predefined
number of fitness evaluations, the optimization process should be terminated. The second
criterion is based on the evaluation of changes within the population. For example, a
predefined number of generations may be established without any changes to the global
optimum or the average fitness value across the population. Once this number is reached,
the search process is terminated. In this study, we used the first approach, which involves a
predefined maximum number of fitness evaluations.

Because we use MOEA/D principles, we have to decompose a MO problem into many
single-objective problems. Several common methods exist for performing scalarization:
weighted sum, normalized weighted sum, minimax method, and linear interpolation
method. Each of these will be examined in detail.

The weighted sum method, one of the simplest and most widely used scalarization
methods, consists of summing all the objective functions according to their weight coeffi-
cients, as shown in Equation (7).

g(x, w) = ∑k
j=1 wj· f j(x), (7)

where wj is the weight coefficient for j-th objective problem, f j(x) is a value of j-th objective
problem.

In the case of normalized weighted sum, the objective problem should be normalized
according to Equation (8).

g(x, w) = ∑k
j=1 wj

f j(x)− z∗j
rj

, (8)

where z∗j is the current ideal point (the best-found value for j-th objective problem), and rj
is the difference between the highest and lowest values found for the objective.
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The minimax method focuses on minimizing the maximum deviation from the ideal
point and is defined by Equation (9),

g(x) = max
1≤j≤k

(
f j(x)− z∗j

rj

)
, (9)

where z∗j and rj are the same as in the normalized weighted sum method.
One of the most commonly used methods when two criteria exist is the linear interpo-

lation method. It is defined as Equation (10),

g(x, w) = w1 f1(x) + (1 − w1) f2(x). (10)

Although this method works well for two objectives, it can be extended by techniques
such as uniform coverage of the search space. However, it is important to consider the
‘curse of dimensionality’, as increasing the number of criteria can make this approach
computationally expensive.

3.2. GA-SHADE-MO

We propose a hybrid population-based multi-objective GA-SHADE-MO algorithm
for simultaneous hyperparameter optimization and feature selection. In our study, the
Genetic Algorithm (GA) [50] is used for optimizing the feature set, as it performs well in
optimization problems where solutions are represented as binary vectors (0 s and 1 s). In
this representation, features that are used are marked as 1, and those that are not used
are marked as 0. The SHADE (success-history-based parameter adaptation for differential
evolution) [51] algorithm is utilized for hyperparameter optimization of ML models.

An example of a solution’s representation can be seen in Figure 1. The first part of
the decision vector is a set of hyperparameters θlϵRn of an ML model, the second part
represents the used feature, φkϵ[0; 1] by the ML model. If φk = 0, it means that the k-th
feature is not used. And if φk = 1, it means that the k-th feature is used. Every solution
should be feasible, and φ ̸= ∅. At least one feature from the set of features must be equal
to 1.
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Because our goal is to simplify the model, we will employ two criteria. Every individ-
ual in a population is represented as an individual which decomposes the MO problem
into single-objective problems. When a multi-objective optimization problem with two
criteria is decomposed into a single-objective problem, as in MOEA/D, the mathematical
formulation can be expressed as follows. Let f1(x) and f2(x) be the two objective functions
to be minimized. In our specific context, f1(x) represents the mean absolute error (MAE) on
the validation dataset, and f2(x) represents the number of features used in the ML model.
Since these two criteria are different in terms of scale, we modified the fitness function
calculation, transitioning from Equations (10) to (11).

f itness = w1
f1(x)− f1(x)min

f1(x)max − f1(x)min
+ (1 − w1)

f2(x)− f2(x)min
f2(x)max − f2(x)min

, (11)

where f1(x)max and f1(x)min are maximum and minimum possible values that the criterion
can take. The same is for the f2(x) criterion. These values must be predefined. Defining



AI 2024, 5 2469

minimum values is straightforward. In our case, f1(x) relates to the MAE on the validation
set; thus, the minimum possible value is 0.0. The second criterion is related to the number
of features, making the minimum possible value for f2(x) is 1. To determine the f1(x)max
value after randomly generating the population, we evaluate all solutions. We then find
the maximum value among them and set f1(x)max to this value. f2(x)max is defined as the
total number of features in the used dataset.

As discussed in the previous section, the simultaneous tuning of parameters and
feature selection presents challenges due to the unique characteristics of these approaches.
The common characteristic of these methods is the need to adjust the model hyperparame-
ters and select specific features for prediction. The proposed GA-SHADE-MO algorithm
effectively tunes an ML model over an adequate number of experiments. In practice, the
SHADE algorithm has proven its effectiveness in parameter optimization of black-box
problems. Additionally, hyperparameters of SHADE, such as the scale factor F and the
crossover rate CR, self-adapt during the optimization process. For feature optimization, we
employ a crossover operator from the GA to generate new solution candidates. Originally,
SHADE used the current-to-pbest/1 strategy, as shown in Equation (12), to perform the
mutation operator and create a trial solution. This strategy uses the pbest index. pbest
defines a randomly selected individual from the top p% of individuals in the population.
However, when solving MO problems, it is not possible to define a single best solution in
the population, because the solution to a MO problem consists of a set of non-dominated
solutions. Because of this, we replaced the current-to-pbest/1 strategy with current-to-
rand/1, Equation (13). This eliminates the need to define the best or a set of best solutions
in the population during the optimization process.

vi,j = xi,j + F·
(

xpbest,j − xi,j

)
+ F·

(
xr1,j − xr2,j

)
, (12)

vi,j = xi,j + F·
(
xr3,j − xi,j

)
+ F·

(
xr1,j − xr2,j

)
, (13)

where xi is the i-th individual from the current population; xpbest is a randomly chosen
individual from the top p% of the best individuals in the population. r1, r2, r3 are randomly
generated indices from the population, r1 ̸= r2 ̸= r3. Additionally, GA-SHADE-MO does
not use an external archive. In the original SHADE, the external archive is used to store
replaced individuals, which are later used with low probability to maintain population
diversity. However, when solving multi-objective (MO) problems with MOEA/D, the
algorithm allows the creation of new individuals based on those with the closest distances
according to the weight vectors. Since maintaining diversity by storing replaced individuals
in an external archive is challenging and not the main goal of our study, we excluded the
external archive from GA-SHADE-MO. To conserve space in the paper, we do not provide
detailed descriptions of GA and SHADE, as these were addressed in a previous study
(see [7]).

One of the primary aims of the study is to simplify ML models. By simplification, we
refer to achieving a balance between the number of used features and predictive accuracy.
Obviously, increasing the number of dependent features with high impact in an ML model
typically increases accuracy. Figure 2 shows an example of existing ML models. The X-axis
denotes the number of used features, y-axis denotes a model error. The example of a Pareto
front in a multi-objective optimization problem consists of a series of feasible and infeasible
points representing the majority of solutions. The Pareto front is composed of a set of
equally optimal solutions, where no single solution is superior to another when considering
all objectives simultaneously.



AI 2024, 5 2470
AI 2024, 5, FOR PEER REVIEW 10 
 

 
Figure 2. Example of solutions of MO problem in the context of building ML models. 

A complete pseudo-code of the proposed GA-SHADE-MO algorithm is presented 
below. To execute the GA-SHADE-MO algorithm, it is necessary to define an ML model, 
the search range for the model’s hyperparameters (lower and upper bounds), and the set 
of features from a dataset. The main steps of the GA-SHADE-MO algorithm, without loss 
of generality, can be described as follows. 

Requirements: an ML model, the set of hyperparameters Θ and their searching 
ranges, the set of features Φ, the population size, and the maximum number of fitness 
evaluations must be defined. 

Step 1. Initialize population P and W weights for each individual, set the initial values 
for the historical memory of 𝐹 and 𝐶𝑅 to 0.5, define the closest set of individuals from the 
population based on weights, and set the closest set 𝑇 of individuals for each one. 

Step 2. Evaluate the population P based on a decomposition method. 
Step 3. While the termination condition is not met, proceed to Step 4; otherwise, go 

to Step 8. 
Step 4. Generate mutant vectors for each individual using a mutation strategy. 
Step 5. Perform crossover operator using mutant and parent vectors to create a trial 

vector. 
Step 6. Evaluate trial vectors and update the solution if the new scalar objective value 

is better. 
Step 7. Update the historical memory H. 
Step 8. If the termination criterion is not met, go to Step 3, otherwise go to Step 9. 
Step 9. Return non-dominated solutions of P. 
In Step 2 and Step 6, it is needed to train the selected model and evaluate its perfor-

mance on the validation set. Since any population-based optimization algorithm uses the 
calculation of the fitness function to evolve the population. Here, the modified error on 
the validation dataset acts as the fitness function (Equation (11)). As previously stated, this 
iteration of the algorithm optimizes a single model while identifying distinct model vari-
ants characterized by differing feature sets and validation error metrics. 

The algorithm includes population initialization, solution evaluation using a decom-
position method, mutation and crossover operations, memory updating, and returning 
non-dominated solutions. This process aims to find an optimal balance between model 
accuracy and the number of features used. 

  

Figure 2. Example of solutions of MO problem in the context of building ML models.

A complete pseudo-code of the proposed GA-SHADE-MO algorithm is presented
below. To execute the GA-SHADE-MO algorithm, it is necessary to define an ML model,
the search range for the model’s hyperparameters (lower and upper bounds), and the set of
features from a dataset. The main steps of the GA-SHADE-MO algorithm, without loss of
generality, can be described as follows.

Requirements: an ML model, the set of hyperparameters Θ and their searching ranges,
the set of features Φ, the population size, and the maximum number of fitness evaluations
must be defined.

Step 1. Initialize population P and W weights for each individual, set the initial values
for the historical memory of F and CR to 0.5, define the closest set of individuals from the
population based on weights, and set the closest set T of individuals for each one.

Step 2. Evaluate the population P based on a decomposition method.
Step 3. While the termination condition is not met, proceed to Step 4; otherwise, go to

Step 8.
Step 4. Generate mutant vectors for each individual using a mutation strategy.
Step 5. Perform crossover operator using mutant and parent vectors to create a

trial vector.
Step 6. Evaluate trial vectors and update the solution if the new scalar objective value

is better.
Step 7. Update the historical memory H.
Step 8. If the termination criterion is not met, go to Step 3, otherwise go to Step 9.
Step 9. Return non-dominated solutions of P.
In Step 2 and Step 6, it is needed to train the selected model and evaluate its perfor-

mance on the validation set. Since any population-based optimization algorithm uses the
calculation of the fitness function to evolve the population. Here, the modified error on
the validation dataset acts as the fitness function (Equation (11)). As previously stated,
this iteration of the algorithm optimizes a single model while identifying distinct model
variants characterized by differing feature sets and validation error metrics.

The algorithm includes population initialization, solution evaluation using a decom-
position method, mutation and crossover operations, memory updating, and returning
non-dominated solutions. This process aims to find an optimal balance between model
accuracy and the number of features used.
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4. The Experimental Setup and Results
4.1. Power Consumption Forecasting Problem

The forecasting problem we are addressing focuses on predicting next-day power
consumption in a single household with a primary emphasis on optimizing energy use.
Optimizing energy use in residential settings is crucial not only for reducing costs but also
for improving energy efficiency and sustainability, which both are increasingly important
in the context of global energy challenges. This type of energy demand forecasting is
typically performed on daily, hourly, or even 15-min intervals to ensure precise control
over energy consumption and enable proactive decision-making. The higher the resolution,
the more accurately energy management systems can react to fluctuations in demand,
enhancing energy optimization for individual households. Predicting demand at such
granular levels allows the implementation of dynamic pricing, load shifting, and demand
response strategies, all of which are vital for both the grid’s stability and the home’s energy
efficiency [52].

Traditional statistical models for power consumption prediction, however, are often
based on data from groups of similar buildings or aggregated demand profiles. These group-
based models, while useful for understanding general consumption patterns, fail to account
for the distinct characteristics and behaviors of individual homes. Averaged models derived
from groups of buildings miss critical local variables such as weather conditions, which
can vary even within short distances, affecting heating and cooling demands in homes
with electric HVAC (Heating, Ventilation, and Air Conditioning) systems. The physical
attributes of the building itself—such as insulation, construction materials, and window
placement—further influence energy consumption in ways that generic models cannot
capture. Studies have shown that group-based forecasting approaches tend to generalize
behaviors, leading to reduced accuracy when applied to specific buildings, especially those
that deviate from the norm in terms of construction or occupant behavior [53].

Moreover, these generalized models often omit the specific behavioral patterns of the
occupants when using domestic appliances, which can significantly impact daily energy
demand. For example, one household may operate washing machines and dishwashers
during the day, while another may prefer night-time usage, which would lead to vastly
different consumption profiles. Family-specific habits, such as the use of electric vehicles,
home offices, or smart appliances, are typically overlooked in averaged models. Without
tuning these models to a specific building or household, it is challenging to implement
demand-side management effectively. Personalized energy forecasting models that inte-
grate local environmental data, building-specific parameters, and occupant behavior are
therefore necessary for accurate demand prediction and energy optimization. This ap-
proach aligns with recent research advocating for more granular, context-sensitive models
in the smart grid domain, enabling a more efficient and personalized approach to managing
energy consumption at the household level [54].

4.2. Measurement Data

In this paper, the data were collected from a private family house in Kuopio, a city
in Eastern Finland. The power consumption data were collected from 2015 to 2018. The
values were recorded every minute. In some intervals, the data contain missing values.
The pre-processed dataset is shown in Figure 3 below. The x-axis presents the time. The
y-axis denotes the power in kWh.

In this study, ML models forecast power consumption based on weather data. Weather
data were obtained from the Savilahti observation station. The location of the observation
station is shown in Figure 4. The map view was made using the OpenStreetMap® service.
OpenStreetMap® is open data, licensed under the Open Data Commons Open Database
License (ODbL) by the OpenStreetMap Foundation (OSMF), https://www.openstreetmap.
org/copyright/en, accessed on 30 September 2024. For privacy reasons, the exact location
of the private house cannot be disclosed. However, it is confirmed that the house is located
within a 10 km radius of the weather station. The approximate location of the house is

https://www.openstreetmap.org/copyright/en
https://www.openstreetmap.org/copyright/en
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indicated by a dotted black circle in the upper part of Figure 4. In the top-left corner, there is
a map of Finland with the area of interest marked by a red square. This map is included for
illustrative purposes and to provide additional context regarding the geographical location
where the data were collected.
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4.3. Modelling Schemes and Input Variables

Table 2 shows the description of the set of features, where the first column indicates the
feature abbreviation, and the second column contains the feature description. Since time
features are periodic, such as hourly, daily, weekly, and monthly, they have to be extracted
from the time series using sine and cosine trigonometric functions. It is important to note
that we consider two temporal levels, daily and hourly. We use two different abbreviations
for power and ambient temperature lags depending on the forecasting level. For instance,
T1lag and T24lag represent the power consumption from one day ago and 24 h ago,
corresponding to the daily and hourly levels, respectively. Our numerical experiments have
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shown that more distant lags, such as four or more days ago, do not lead to improvements
in predictive error values. We base our numerical experiments on actual weather data,
as they represent an optimistic scenario for future real-time forecasts that would rely on
predicted weather data.

Table 2. Feature variables used as the inputs of the ML models.

Abbreviation of the Feature Description of the Feature

T, Tlag1, Tlag2, Tlag3 Averaged ambient temperature at the day, one day ago, two days ago, and three days ago.
Tlag24, Tlag48, Tlag72 Averaged ambient temperature, 24 h ago, 48 h ago, and 72 h ago.

P1lag, P2lag, P3lag Power consumption one day ago, two days ago, and three days ago, respectively.
P24lag, P48lag, P72lag Power consumption 24 h ago, 48 h ago, and 72 h ago, respectively.

Pr Atmospheric pressure
Rel Relative humidity

Dew Dew point
Cl Cloud cover level

windcos Direction of the wind transformed in cos
windsin Direction of the wind transformed in sin
windsp Wind speed

hcos cos(hour·2π/24) transformation of hours
hsin sin(hour·2π/24) transformation of hours
dcos cos(day·2π/7) transformation of days
dsin sin(day·2π/7) transformation of days
wcos cos(week·2π/52) transformation of weeks
wsin sin(week·2π/52) transformation of weeks
mcos cos(month·2π/12) transformation of months
msin sin(month·2π/12) transformation of months

Figure 5 presents two correlation matrices illustrating the relationships among features
at the daily (left subplot) and hourly (right subplot) levels on the training dataset. The color
scale ranges from −1.0 (strong negative correlation) to +1.0 (strong positive correlation).
The X- and Y-axes display the set of features, showing the relationships between all features
with each other.
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To evaluate the performance of ML models tuned by GA-SHADE-MO, we used
the following scheme for splitting data, known as time series cross-validation [55,56], as
illustrated in Figure 6. The X-axis represents the time intervals. The first five rows on the
Y-axis represent the folds used to evaluate the model’s performance on validation data. At
each subsequent fold, the validation data from the previous fold is added to the training set,
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and a new time period is selected as the validation set. We modified the classic approach
of calculating validation errors by adding weights for each fold. Equation (14) shows the
calculation of the weighted MAE on the validation set. Here, n is the number of folds.

MAEweighted = ∑n
i=1 wi·MAEi, wi =

i
∑n

j=1 j
, (14)
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In this study, we use weights for metric evaluations on validation data for the fol-
lowing reasons. In time series problems, the data are time-dependent, meaning the order
of observations is important. However, more recent data often contain more relevant
information for predicting future values accurately. In this context, it is important to pay
more attention to the validation results at later time intervals than at earlier ones. Applying
weights during the validation process, where later time periods are given more weight, has
several important advantages. Data that are closer to the prediction time may better reflect
current trends and states of the system, since time series may include various seasonal
changes, trends, and other time dependencies. Applying greater weights to later folds
allows us to account for the fact that these data are more relevant to the model.

For example, if a long-term trend emerges later in the data, the model must capture
this trend for accurate future predictions. In time series forecasting problems, there may be
situations where older data are no longer relevant, and newer data carry more meaningful
information for decision-making. Weighting errors on validation data assists in guiding
the model to improve forecasts based on more recent information, ensuring that the model
generalizes better to future data. If the time series exhibits a changing trend, a model
trained on uniformly weighted data may struggle to adapt. Error weighting, where later
periods are weighted more heavily as they contain more relevant information, helps the
model better adapt to trend changes because the greater importance of recent observations
is considered during the optimization of the model parameters. Errors made later in
the time series can have a significant impact on the final forecast, especially if trends or
seasonal effects are strong. By increasing the weight of recent folds, we ensure that the
model pays more attention to these periods, which can improve forecasting accuracy in
real-world scenarios.

To mitigate the effect of features with different range values on the learning process,
the values of all features should be mapped to the same scale. All features are normalized
using Z-score normalization, where new_value = (x − µ)/σ, with x as the original value,
µ as the mean value, and σ as the standard deviation of the data. Each model is tuned
using GA-SHADE-MO on validation data, after which the tuned ML model is evaluated on
holdout test data.
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We also evaluated the model’s performance based on different feature sets. We
chose three scenarios: (1) using all features, (2) excluding ambient temperature-related
features, and (3) using power consumption-related features and time features. Finally, the
performance of the ML models was evaluated at both hourly and daily levels, aiming to
forecast power consumption for the next 24 h or a day, respectively.

4.4. Model Optimization Using GA-SHADE-MO and Settings

We investigated the performance of the proposed GA-SHADE-MO algorithm for auto-
matically building various well-known ML models using a real-world dataset. Evolutionary
algorithms (EAs), including GA-SHADE, are stochastic and incorporate randomness in
their search process. Random factors such as mutation, crossover, and initial population
generation can lead to different outcomes with each run. Therefore, running the algorithm
multiple times helps evaluate its average performance. In this study, the GA-SHADE-MO
algorithm was run independently five times. After each independent run, the population
of the last generation was recorded. After five independent runs, solutions based on the
Pareto front were selected from all five populations. Each run is limited to a maximum of
5000 fitness evaluations. Based on our numerical experiments, after about 4500 evaluations,
on average, across all ML models and scenarios, GA-SHADE-MO can no longer improve
individuals and reaches a plateau. It is important to note that, the value of maximum fitness
evaluations strongly depends on the problem and used ML models. We set the population
size to 100 and the historical memory size H to 10. When identifying the nearest set T of
individuals for mutation, we selected the closest 10% of individuals based on their weights.
The distance of weights was measured by the Euclidean metric. The GA-SHADE-MO
performance was also compared with the random search approach at both daily and hourly
levels in the all-features scenario. A model was selected based on the obtained results on
the validation dataset. The random search approach also had five independent runs with
5000 fitness evaluations in each run, generating a total of 25,000 random solutions.

Evaluating the performance of the proposed GA-SHADE-MO algorithm based on a
single randomly chosen ML model is inadequate. We evaluated the performance of six
ML models that were previously used for forecasting power consumption, such as Linear
Regression (LR) [57], ElasticNetCV (ENCV) [58], Decision Tree (DT) [59], Random Forest
(RF) [60], multi-layer perceptron (MLP) [61], and XGBoost [62]. ML models vary in their
approach and applicability, which makes it important to understand their unique strengths.
LR is a linear model that predicts the target variable by fitting a linear relationship between
the input features and the target variable, making it suitable for datasets with linear
dependencies. ENCV is a regularized linear model that combines L1 (Lasso) and L2 (Ridge)
regularization with cross-validation to reduce overfitting and select important features,
making it effective for datasets with many correlated features. DT models are tree-based,
splitting data into subsets based on feature values to make predictions. They are effective
for understanding and visualizing decision processes but are prone to overfitting complex
datasets. To address this, RF models use an ensemble approach (bagging), constructing
multiple decision trees and aggregating their predictions to improve accuracy and control
overfitting. This makes RF suitable for a wide range of real-world applications and robust
for large datasets. MLP is a neural network model with multiple layers of neurons and
non-linear activation functions, allowing it to model complex relationships in data. It
is effective for both regression and classification tasks, especially when the relationship
between features and the target is highly non-linear. Finally, XGBoost is an ensemble
model that uses gradient boosting to combine the predictions of multiple weak learners,
usually decision trees, to create a strong predictive model. XGBoost is known for its
high performance and efficiency, making it popular in ML competitions and structured
data applications. Each model has unique strengths and is suited to different types of
data and problems, making it essential to choose the appropriate model based on the
specific characteristics of the dataset and the task at hand. The hyperparameter set and
corresponding search boundaries are provided in Table A1.
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The experimental analysis of GA-SHADE-MO for building ML models is computa-
tionally intensive, especially for more complex models. The method was implemented
in Python using the scikit-learn open-source ML libraries [63,64]. Our computational
cluster consisted of eight AMD Ryzen Pro 2700 CPUs, offering 128 threads for paral-
lel processing. The cluster runs on Ubuntu 22.04 LTS. We uploaded the algorithm’s
source code and the results of the numerical experiments. Further details, including
the source code of GA-SHADE-MO and experimental results, are available in the repository
https://github.com/VakhninAleksei/GA-SHADE-MO (accessed 30 September 2024).

In the DT, RF, MLP, and XGBoost models, we fixed the random state parameter to
ensure repeatability in evaluating the models’ performance. Fixing the random state ensures
the repeatability of performance evaluations, preventing fluctuations in results caused by
different initial conditions. This is critical for fair comparisons and reliable hyperparameter
selection. Assessing model stability becomes challenging, as changes in the random state
can lead to significant performance variations that may skew evaluations of the model’s
reliability. In our study, we implemented early stopping for the MLP, terminating the
training process if the model error did not decrease for five consecutive epochs.

4.5. Performance Evaluation

To evaluate forecast predictions in our study, we employed traditional and commonly
used metrics, such as mean absolute error (MAE), Equation (15); mean squared error
(MSE), Equation (16); the coefficient of determination (R2), Equation (17); and the index
of agreement (IA), Equation (18). In Equations (15)–(18), y represents the set of observed
values, ŷ represents the set of predicted values. Based on the values of the metrics, we can
evaluate and better understand how a particular model works.

MAE is a widely used metric for understanding the average difference between
observed and predicted values. It retains the same units as the original predicted value.
MSE is similar to MAE, but MSE is more sensitive to large errors, which makes it effective
in scenarios where minimizing large deviations is essential. R2 measures the proportion
of variance in the target variable that the model can explain. The values of the metric
range from 0.0 to 1.0. An R2 value close to 1 indicates that the model explains most of
the variance in the target variable, implying strong predictive performance. The index of
agreement (IA) measures the agreement between predicted and observed values. Like R2,
it ranges from 0.0 to 1.0, with 1.0 indicating the best match between model predictions and
actual observations.

To form a comprehensive evaluation of model performance, it is essential to consider
these metrics collectively rather than in isolation.

MAE =
1
n∑n

i=1|yi − ŷi|, (15)

MSE =
1
n∑n

i=1(yi − ŷi)
2, (16)

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 , (17)

IA = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(|ŷi − y|+ |yi − y|)2 . (18)

4.6. Numerical Results

In this subsection, we first present the numerical results at the daily level, followed by
the numerical results at the hourly level. Here, the best-found models refer to those with
the lowest MAE error on the validation data. Therefore, they use the maximum number of
features and have the minimum error on the validation data.

https://github.com/VakhninAleksei/GA-SHADE-MO
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4.6.1. Forecasting Daily Energy

Table 3 contains errors of the best-found tuned models by GA-SHADE-MO. It presents
values for different ML models across various experimental conditions. The table shows
validation and test errors according to the considered metrics and is divided into two
sections. Columns define different metrics, while rows list the different ML models that
were tuned. The cells contain numeric error values representing the metric error for each
model. Tables 4 and 5 have the same structure as Table 3, except that they show numerical
results in different scenarios.

Table 3. The best-found tuned models by GA-SHADE-MO, validation performance, daily level.
All-features scenario.

The Best ML Tuned Model
Validation Test

MAE MSE IA R2 MAE MSE IA R2

LR 7.144 124.351 0.934 0.983 8.122 133.879 0.957 0.989
ENCV 7.152 123.971 0.934 0.983 8.156 134.737 0.957 0.989

DT 8.796 182.728 0.907 0.976 9.556 180.824 0.942 0.985
RF 7.434 133.028 0.93 0.982 8.312 135.63 0.956 0.989

MLP 6.685 115.374 0.939 0.984 7.527 115.959 0.963 0.990
XGBoost 7.424 130.873 0.931 0.982 8.101 132.323 0.957 0.989

Table 4. The best-found tuned models by GA-SHADE-MO, validation performance, daily level.
Excluded ambient temperature scenario.

The Best ML Tuned Model
Validation Test

MAE MSE IA R2 MAE MSE IA R2

LR 7.338 126.076 0.933 0.983 8.270 137.162 0.956 0.989
ENCV 7.232 123.059 0.935 0.983 8.511 141.938 0.954 0.988

DT 9.355 187.305 0.901 0.974 10.516 209.288 0.933 0.983
RF 7.926 146.398 0.923 0.980 8.682 152.150 0.951 0.988

MLP 6.824 117.734 0.939 0.984 7.903 124.932 0.960 0.989
XGBoost 7.646 135.900 0.927 0.981 8.577 149.363 0.952 0.988

Table 5. The best-found tuned models by GA-SHADE-MO, validation performance, daily level.
Power lags and time scenario.

The Best ML Tuned Model
Validation Test

MAE MSE IA R2 MAE MSE IA R2

LR 9.541 196.054 0.899 0.973 9.984 196.182 0.937 0.983
ENCV 9.493 195.795 0.899 0.973 9.962 196.618 0.937 0.983

DT 10.274 228.431 0.879 0.967 12.647 292.150 0.906 0.973
RF 9.803 217.283 0.886 0.969 11.240 225.884 0.927 0.980

MLP 9.525 201.665 0.893 0.971 11.211 226.656 0.927 0.980
XGBoost 9.712 205.661 0.892 0.971 11.382 236.580 0.924 0.979

Figure 7 consists of two subplots, each illustrating the MAE performance of six tuned
ML models across varying numbers of features (found by GA-SHADE-MO). The left and
right subplots correspond to validation and test data, respectively. The X-axis represents
the number of features used by the tuned models, and the Y-axis displays the MAE
values. To address the overlap of dots when displaying multiple ML models, we randomly
shifted the dots near the number of used features (X-axis) to enhance the readability of the
numerical results.
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scenario.

Figure 8 is a hexagon marker plot that visualizes the relationship between different
tuned ML models and the features they utilize at the daily level. The horizontal axis shows
the names of various tuned ML models, with the number of used features indicated next
to each name in brackets. The vertical axis lists the features used by these models. Each
hexagon marker represents the use of a particular feature by a corresponding model. The
color of the hexagon corresponds to the model group, allowing for easy visual identification
of feature usage patterns across different models. The chart provides a comprehensive
overview of the features utilized by each model, with color coding and hexagon markers
facilitating quick visual comparisons.
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Figure 8. The set of used features for each tuned ML model. Daily level. All-features scenario.

Figures 9 and 10 show the found Pareto front and the corresponding feature sets for
excluded ambient temperature scenario at daily level, respectively. Figures 11 and 12 show
the found the Pareto front and the corresponding feature sets for power lags and time
scenario at daily level, respectively.
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Figure 12. The set of used features for each tuned ML model. Daily level. Power lags and time
scenario.

Figure 13 is a line plot that compares actual and predicted values over time at the daily
level of the best-found model, MLP with 4 features in a case of using all features from the
dataset. The X-axis represents the time period from January 2018 to December 2018, while
the Y-axis is the values of power consumption indicating the magnitude of the actual and
predicted data. The plot features two lines, the actual values are depicted by a solid blue
line, and the predicted values are shown by a dashed red line.
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Figure 13. Comparison graph of the performance of the tuned MLP model and the actual values.
Daily level. All-features scenario.

Figure 14 consists of three side-by-side subplots, each illustrating a different aspect
of the model’s performance. The numerical results are the same as for Figure 13, the
performance of tuned MLP with 4 features. The first subplot on the left is a scatter plot that
compares predicted values to actual values. The X-axis shows predicted values, and the
Y-axis shows actual values. A red dashed line is drawn to represent the ideal scenario where
the predicted values perfectly match the actual values. The center subplot displays a scatter
plot of the residuals, which are the differences between actual and predicted values, plotted
against the predicted values. A horizontal line at zero represents where residuals would lie
if the model predictions were perfect. The third subplot on the right shows a histogram
that represents the distribution of residuals. The histogram bars indicate how frequently
certain residual values occur, with a line overlay likely representing the density estimate
of the residuals. This combined visualization provides a comprehensive overview of the
model’s predictive accuracy, the nature of the residuals, and their distribution, offering
insights into the model’s performance.
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Figure 14. Scatter plot (left), residuals plot (center), and histogram of residuals values (right) of
tuned MLP model on a daily level. All-features scenario.

Based on the numerical results, we can see that the best performance on a daily level
with all features has been obtained on the MLP model with 4 features. We performed a
random search on this scenario. The random search had the same amount of resources
(maximum fitness evaluations) as GA-SHADE-MO. Figure 15 shows the difference in the
Pareto front using GA-SHADE-MO and Random Search. The structure of Figure 15 is the
same as Figure 7.
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Figure 15. Found Pareto fronts using the proposed GA-SHADE-MO and Random Search. Daily level.
All-features scenario.

4.6.2. Forecasting Hourly Energy

Figures 16 and 17 show the found Pareto front and the corresponding feature sets
for all features scenario at hourly level, respectively. Figures 18 and 19 show the found
Pareto front and the corresponding feature sets for excluded ambient temperature scenario
at hourly level, respectively. Figures 20 and 21 show the found Pareto front and the
corresponding feature sets for power lags and time scenario at hourly level, respectively.
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ambient temperature scenario. 

Figure 17. The set of used features for each tuned ML model. Hourly level. All-features scenario.
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Tables 6–8 have the same structure as Table 3, except that they show numerical results
in different scenarios for hourly level.

Table 6. The best-found tuned models by GA-SHADE-MO, validation performance, hourly level.
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The Best ML Tuned Model
Validation Test

MAE MSE IA R2 MAE MSE IA R2
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Table 7. The best-found tuned models by GA-SHADE-MO, validation performance, hourly level.
Excluded ambient temperature scenario.

The Best ML Tuned Model
Validation Test

MAE MSE IA R2 MAE MSE IA R2

LR 0.946 1.781 0.804 0.943 0.925 1.776 0.830 0.953
ENCV 0.946 1.780 0.804 0.943 0.924 1.775 0.830 0.953

DT 0.930 1.710 0.811 0.947 0.938 1.843 0.823 0.950
RF 0.865 1.468 0.837 0.954 0.871 1.563 0.850 0.958

MLP 0.835 1.317 0.853 0.960 0.895 1.821 0.826 0.952
XGBoost 0.847 1.365 0.848 0.958 0.874 1.606 0.846 0.958
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Table 8. The best-found tuned models by GA-SHADE-MO, validation performance, hourly level.
Power lags and time scenario.

The Best ML Tuned Model
Validation Test

MAE MSE IA R2 MAE MSE IA R2

LR 0.968 1.878 0.793 0.941 0.946 1.879 0.820 0.948
ENCV 0.967 1.876 0.794 0.941 0.946 1.881 0.820 0.948

DT 0.986 1.943 0.787 0.939 0.990 2.004 0.808 0.944
RF 0.949 1.774 0.805 0.945 0.965 1.885 0.819 0.946

MLP 0.943 1.685 0.817 0.950 0.997 2.032 0.805 0.943
XGBoost 0.932 1.693 0.815 0.948 0.953 1.862 0.822 0.947

Figure 22 is the same structure as Figure 13. Figure 22 shows a line plot that compares
actual and predicted values over time at the hourly level of the best-found model, MLP
with five features.
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Figure 23 has the same structure as Figure 14, but it shows the numerical results on an
hourly level for tuned MLP with five features.

As it was in the previous section, Section 4.6.1, we evaluated the searching perfor-
mance of random search on the MPL model and compared it with the GA-SHADE-MO
performance at the hourly level with all feature scenarios, Figure 24.
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5. Discussion

In this section, we will thoroughly examine and analyze the numerical results obtained
from our study in Section 4.6. We will discuss the significance of our findings, identify
potential limitations, and provide an interpretation of the results in terms of their practical
and theoretical implications. We will first discuss the results at the daily level and then
proceed to analyze the hourly level results.

5.1. Discussion of Daily Level of Forecasting
5.1.1. All-Features Scenario on Daily Level

On the validation dataset (Table 3), the MLP model with 4 features shows the best
MAE performance at 6.685, followed by the LR model with 7.144. XGBoost achieves the
lowest MSE of 130.873, effectively minimizing larger errors. Both MLP and XGBoost have
high IA and R2 values (0.939/0.984 for MLP and 0.931/0.982 for XGBoost), indicating a
strong correlation between predicted and actual values. On the test dataset, MLP again
performs best with an MAE of 7.527, confirming its robustness. MLP also achieves the
lowest MSE of 115.959. RF, MLP, and XGBoost models all show the highest IA and R2

values, reflecting prediction accuracy.
Figure 7 reveals that the test MAE trends are similar to the validation MAE. MLP, LR,

and ENCV maintain low MAE values as the number of features increases on validation
data. In contrast, DT consistently has higher MAE across all feature counts. LR and
ENCV perform well with 2 to 3 features but show limited improvement with more. These
observations suggest that the optimal number of features for most models is around 3 to 4,
where the MAE is minimized. Simpler models like LR and ENCV perform adequately with
fewer features, but more complex models like XGBoost and MLP benefit significantly from
additional information on test data. Overall, increasing features improves accuracy, with
XGBoost and MLP performing best with more features on test data.

Figure 8 shows the specific features used by each model. Obviously, models like
LR and ENCV rely on a greater number of features, while MLP and XGBoost achieve



AI 2024, 5 2486

good performance with fewer features, underscoring their efficiency. As we can assume,
in daily forecasting, the target variable can be described well by linear partitions (using
LR and ENCV models). Features such as “Temp”, “Plag1”, and “Plag2” are frequently
selected simultaneously across models, highlighting their critical importance for the power
prediction task.

5.1.2. Excluded Ambient Temperature Scenario on Daily Level

Excluding ambient temperature leads to the following observations. On the validation
dataset, Table 4, the MLP model continues to excel, achieving an MAE of 6.824, slightly
better than ENCV’s 7.232. MLP also has the lowest MSE of 117.734, demonstrating its
robustness even without the significant feature of ambient temperature. MLP leads in
IA and R2 (0.939 and 0.984), consistently aligning with actual values and explaining data
variance. On the test dataset, MLP again shows superior performance with an MAE of
7.903 and the lowest MSE of 124.932, confirming its robustness across datasets. LR and
ENCV models also perform well, though MLP slightly outperforms them in IA and R2.
DT shows the highest errors, indicating its struggle when key features, such as ambient
temperature, are missing. As we can see, in general, the performance of this scenario is
worse in comparison to the scenario with all features.

The Pareto front analysis in Figure 9 shows how model accuracy (MAE) improves
with the number of features, especially from one to two and from two to three. On the test
data, all models, except DT, demonstrate notable improvements with just a few features,
highlighting their adaptability.

Figure 10 reveals that features like “Plag1”, “Dew”, and “Rel” are frequently selected
across models, emphasizing their importance in the absence of ambient temperature.
Models like LR and ENCV rely on a larger set of features to maintain accuracy, while
MLP and XGBoost perform well with fewer features, showcasing their efficiency in feature
selection. These results suggest that although ambient temperature is significant, models
can still perform well by leveraging other key features effectively.

5.1.3. Power Lag and Time Scenario on Daily Level

On the validation dataset, Table 5, the ENCV model achieves the best MAE of 9.493,
closely followed by MLP with an MAE of 9.525. ENCV also leads in MSE with a value of
195.795, demonstrating its effectiveness in reducing larger errors. The highest IA and R2

values are seen in MLP and ENCV, reflecting their strong correlation with actual values and
ability to explain data variance. On the test dataset, ENCV maintains its top performance
with an MAE of 9.962, slightly outperforming LR’s MAE of 9.984. Both models have similar
MSE values (ENCV at 196.618 and LR at 196.182). In contrast, DT performs again poorly,
with an MAE of 12.647 and an MSE of 292.150, indicating it struggles with power lags and
time features.

The Pareto front analysis in Figure 11 shows how model accuracy, measured by MAE,
improves with the number of features, especially when moving from one to two features.
However, the improvements are less significant compared to previous scenarios. LR and
ENCV show the most noticeable gains, suggesting they leverage additional features more
effectively for improved accuracy. In contrast, RF and DT exhibit smaller improvements,
indicating lower sensitivity to additional features in this scenario.

Figure 12 highlights the specific features frequently selected by models in the context
of power lags and time, such as “Plag1”, “wcos”, and “wsin”, which are critical across
multiple models. LR and ENCV continue to rely on a larger set of features, while MLP
demonstrates a good performance with fewer features on validation data, showcasing its
efficiency in feature utilization. As we can see, the scenario with power and time features is
the worst scenario in terms of prediction performance on a daily level.
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5.1.4. Detailed Analysis of the Tuned ML Model on Daily Level and All-Features Scenario

The visualizations provide valuable insights into the MLP model’s performance with
4 features in predicting power consumption for a private house. In Figure 13, a comparison
of actual and predicted values for 2018 shows that the predicted values (red dashed line)
closely follow the actual values (solid blue line), indicating the model effectively captures
overall trends and seasonal variations. The strong correlation suggests the model is well-
tuned and can generalize to unseen data. However, some deviations occur during extreme
spikes and drops in usage, pointing to areas for further refinement or the influence of
external factors not included in the model.

Figure 14 provides additional analysis with a scatter plot, residuals plot, and histogram
of residuals. The scatter plot shows predictions are closely clustered around the diagonal
line, confirming a strong correlation between predicted and actual values. Minor errors
are visible in the scatter and residual plots, where residuals are evenly distributed around
the horizontal axis, indicating no systematic bias. Most residuals are small, though a
few outliers highlight occasional inaccuracies. The histogram of residuals, with a slight
leftward shift, shows most errors are centered around zero, reinforcing the model’s accuracy
and consistency.

Overall, the model performs well in predicting household power consumption, ac-
curately capturing daily patterns. However, occasional deviations are linked to unusual
consumption behaviors, which may be influenced by unpredictable human factors such
as vacations or changes in household routines. These factors are difficult to model and
may explain discrepancies between actual and predicted values. While the model is a
powerful forecasting tool, its predictions should be considered in the context of potential
human-related variations in energy usage.

5.1.5. GA-SHADE-MO vs. Ransom Search on Daily Level and All-Features Scenario

Figure 15 provides several important insights into the performance of the GA-SHADE-
MO and Random Search algorithms in optimizing MLP models. GA-SHADE-MO achieves
lower MAE compared to Random Search. This suggests that GA-SHADE-MO is more
effective in finding optimal model configurations, particularly with fewer features. The val-
idation graph clearly shows that GA-SHADE-MO reaches lower MAE with fewer features,
demonstrating its efficiency. Furthermore, as the number of features decreases, there is a
noticeable reduction in MAE for both methods, though this effect is more pronounced with
GA-SHADE-MO. This indicates that the well-tuned models using GA-SHADE-MO do not
require a large number of features to perform well. The best performance is observed with
only three or four features. Increasing the number of features beyond this point does not
lead to significant improvement and, in some cases, even worsens the model’s performance
on test data. The similarity between the validation and test results, with only slightly higher
MAE values on the test data, suggests good generalization capabilities of the models. This
consistency between the validation and test graphs indicates that the findings are robust.
In conclusion, GA-SHADE-MO demonstrates enhanced efficiency in utilizing features to
achieve lower MAE compared to Random Search, making it a more suitable method for
tuning MLP models in this context. These insights are critical for informing the choice of
optimization method and the number of features to use in further studies.

5.2. Discussion of Hourly Level of Forecasting
5.2.1. All-Features Scenario

In the validation phase, Table 6, the MLP model performs the lowest MAE of 0.825
and MSE of 1.272, indicating its high prediction accuracy. It also achieves the highest IA
of 0.858 and R2 value of 0.961, demonstrating its superior ability to match actual data and
explain variance. XGBoost performs similarly, with an MAE of 0.839, slightly higher MSE
of 1.335, and comparable IA (0.852) and R2 (0.959) to MLP, making it a strong alternative
in terms of accuracy and reliability. On the test dataset, MLP performs well with an MAE
of 0.884. XGBoost and RF perform better than MLP on test data, with MAE of 0.875 and
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0.860, respectively. Notably, the RF model excels with the lowest test MSE of 1.533 and the
highest IA of 0.853, indicating its strength in capturing trends despite not having the lowest
MAE on validation data.

The Pareto front analysis in Figure 16 shows that as the number of features increases,
MAE decreases across all models, with MLP and XGBoost benefiting the most from 2 to
5 features, after which improvements plateau. This suggests that these models are effective
in leveraging additional features up to a point. RF and DT also improve with more features
but plateau earlier, indicating less sensitivity to additional features. As seen in daily-level
scenarios, LR and ENCV perform better with more features but underperform on the hourly
level, indicating the need for more complex, nonlinear models for hourly predictions. DT
shows quite the same performance as LR and ENCV on test data.

Figure 17 highlights commonly selected features like “Plag24”, “Plag48”, “Temp”,
and “hsin” across all models, emphasizing their importance for accurate hourly predic-
tions. MLP, XGBoost, and RF despite using fewer features, maintain high performance,
underscoring their efficiency in feature selection and utilization.

5.2.2. Excluded Ambient Temperature Scenario

This scenario provides insights into how the models adapt when a crucial feature,
ambient temperature, is removed. Based on the numerical results, in Table 7, we can see the
following. In the validation phase, the MLP model demonstrates the best performance with
an MAE of 0.835 and the lowest MSE of 1.317. The MLP model also achieves the highest
IA of 0.853 and an R2 value of 0.960, indicating its strong capability to accurately predict
and explain the variance in the data, even without the ambient temperature feature. The
XGBoost model follows closely, with an MAE of 0.847 and an MSE of 1.365, with a high IA
of 0.848 and R2 of 0.958, showcasing its robustness and reliability in the scenario without
a key feature. On the test dataset, MLP continues to perform well, achieving an MAE of
0.895. The XGBoost model again shows comparable performance with an MAE of 0.874 and
an MSE of 1.606, alongside an IA of 0.846 and an R2 of 0.958, confirming its effectiveness.
Notably, the RF model demonstrates strong performance on the test data with the lowest
MAE of 0.871 and MSE of 1.563 and the highest IA of 0.850, suggesting that it can capture
trends effectively despite the exclusion of ambient temperature. However, the DT model,
while performing well in the validation phase, better than LR and ENCV, with an MAE of
0.930, shows slightly weaker performance on the test data with an MAE of 0.938, indicating
that it is more sensitive to the absence of ambient temperature.

The Pareto front analysis in Figure 18 illustrates the relationship between the number
of features and MAE across different models when ambient temperature is excluded. For
both validation and test datasets, MLP and XGBoost demonstrate significant improvement
in MAE as the number of features increases from one to five, after which the benefits plateau.
This pattern suggests that these models are adept at compensating for the lack of ambient
temperature by effectively utilizing other features. The RF model also shows improvement,
in both phases, indicating its adaptability in this scenario. Notably, RF increases greatly its
performance from 4 to 5 features.

Figure 19 provides a detailed view of the features selected by each model. Commonly
selected features across models include “Plag24”, “Plag48”, and “Dew”, which are crucial
for maintaining accuracy in the absence of ambient temperature. MLP is able to maintain
high performance with a small number of features, underscoring its efficiency in feature
utilization. On the other hand, models like LR and ENCV require a broader set of features.
However, their performance is significantly worse in comparison with MLP.

5.2.3. Power Lag and Time Scenario

This scenario, Table 8, highlights how models perform in power prediction when
power and time features are emphasized. In the validation phase, XGBoost shows the
best performance with an MAE of 0.932 and MSE of 1.693, along with high IA (0.815)
and R2 (0.948), indicating its strong predictive capability. The MLP model closely follows,
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achieving the lowest MSE of 1.685, with the highest IA (0.817) and R2 (0.950), showing
superior accuracy in capturing data patterns. On the test dataset, LR and ENCV show the
best performance with an MAE of 0.946 for both tuned models. On the other hand, MLP
shows the worst performance using the maximum find features. Low performance on the
test dataset may be explained by the fact that the model requires additional variables to
generalize effectively. Adding even one more feature can reduce the performance of the
model on test data.

The Pareto front analysis in Figure 20 shows that RF and MLP benefit significantly
from adding features consistently, especially from one to four, after which gains plateau. In
contrast, LR, ENCV, and DT show less sensitivity to feature increases. However, in the test
phase, LR and ENCV show the best performance using five features. It can be explained
that the power lag features are linearly connected to the target feature.

Figure 21 reveals that common features like “Plag24”, “Plag48”, “Plag72”, and “hsin”
are critical for accurate power predictions. XGBoost and MLP achieve high performance
with fewer features, while LR and ENCV require more inputs for lower accuracy on
validation data. Overall, XGBoost and MLP emerge as the most effective models, while RF
also performs well in trend prediction. DT struggles, suggesting it is less suited for power
and time-based tasks. The analysis highlights the importance of selecting key features, with
most models benefiting from starting from up to three features.

5.2.4. Detailed Analysis of the Tuned ML Model on Hourly Level and All-Features Scenario

The visualizations provide a detailed analysis of the MLP model’s performance in
predicting hourly power consumption for a private house. In Figure 22, the predicted
values closely follow the actual consumption trends, capturing seasonal patterns and
fluctuations. However, there are some discrepancies, especially during winter peaks, likely
due to unaccounted factors like random family behavior.

Additional plots provide further insights, as shown in Figure 23. The scatter plot shows
a strong correlation between predicted and actual values; however, some dispersion is
observed at higher consumption levels, indicating areas of reduced accuracy. The residuals
plot displays errors that are randomly distributed around the horizontal axis, suggesting
that the model is well-calibrated and exhibits no systematic bias. However, outliers occur
during periods of higher consumption. The same situation with unsystematic outliers can
be seen at the daily level, as we described in and show in Figure 14. The histogram of
residuals, Figure 23, shows most errors are small and centered around zero, with a slight
leftward skew, confirming the model’s overall accuracy.

While the tuned model performs well in capturing power consumption trends, occa-
sional discrepancies and outliers highlight the impact of unpredictable human behavior,
such as vacations or changes in household routines. These factors are inherently difficult to
predict and should be considered when interpreting the model’s forecasts.

5.2.5. GA-SHADE-MO in Comparison with Random Search, Hourly Level

The provided Figure 24 offers valuable insights into the performance of the GA-
SHADE-MO and Random Search algorithms when tuning MLP models across varying
numbers of features. Notably, GA-SHADE-MO consistently outperforms Random Search,
as indicated by its generally lower MAE values on both the validation and test datasets
using fewer features. This advantage is especially evident in the validation data, where GA-
SHADE-MO achieves significantly lower MAE with a smaller set of features, illustrating its
efficiency in model configuration. Upon reaching eight features through Random Search,
the performance of both methods on the test data is quite similar. However, GA-SHADE-
MO finds a solution with just five features. Both methods show a pronounced reduction
in MAE as the number of features increases from one to around five, after which the
performance improvement plateaus. This trend suggests that a feature set consisting of
five features is sufficient for achieving optimal performance, highlighting the potential for
feature reduction without a loss in model efficacy. The test results reinforce the validation



AI 2024, 5 2490

outcomes, with GA-SHADE-MO maintaining lower MAE values than Random Search
across most feature counts. Moreover, the close alignment of MAE values between the
validation and test scenarios underscores the models’ robust generalization capabilities, as
both algorithms produce similar performance trends on unseen data.

Overall, the GA-SHADE-MO not only demonstrates a consistent edge over Random
Search in feature utilization but also confirms the feasibility of using fewer features to
achieve low MAE. These findings strongly support the use of GA-SHADE-MO for efficient
MLP model tuning, particularly when aiming to streamline feature sets without compro-
mising predictive accuracy. This analysis is critical for guiding future research and the
application of optimization methods in similar settings.

5.3. Discussion on the Role of Correlation in Feature Selection vs. GA-SHADE-MO

In this subsection, a comparative analysis of the results based on the correlation
matrix, Figure 5, and feature selection, Figures 8 and 17, performed using the proposed
GA-SHADE-MO algorithm for forecasting power consumption using all features from the
dataset was performed.

From the correlation matrices, Figure 5, at the daily and hourly levels, it can be seen
that features such as temperature lags and previous values of power consumption lags
show high correlations with the target variable “Power”. In addition, it is clearly visible
that some meteorological parameters, such as “Pr”, “Rel”, and “Cl”, show a low correlation
with Power. This suggests that their direct linear impact on energy consumption is minimal,
which may make these features less meaningful when using linear forecasting methods.

The optimization using GA-SHADE-MO, or other heuristic-based algorithms, does
not consider the correlations between features, but focuses solely on optimizing forecasting
accuracy and the number of features in possible solutions. As a result, the algorithm
selected feature sets that allowed each selected ML model to achieve high performance.
Based on the feature selections provided for different models, Figures 8 and 17, several of
the following key points can be noted. The key features selected simultaneously by the
proposed GA-SHADE-MO algorithm include “Temp”, “Plag1”, “Plag2” for daily level and
“Temp”, “Plag24”, “Plag48” for hourly level, comparable with the observations from the
correlation analysis. These variables were selected in almost all models, confirming their
critical importance for the “Power” forecasting task. As we can see from the study [65],
related to forecasting and analyzing the impact of lag features. Based on their numerical
results it is clearly seen that the use of feature lags significantly increases the efficiency of
ML algorithms in forecasting time series, as it allows one to capture time dependencies and
identify data patterns. Lags allow the model to consider the influence of previous states
on the current one, which improves the accuracy of predictions and allows one to solve
forecasting problems more effectively even in the presence of nonlinear dependencies.

Nonlinear features and time-harmonic components, such as “hsin”, “hcos” for the
hourly level have been also found to be useful in some models. These features, which do
not have a strong linear correlation with “Power” (Figure 5), helped improve the forecast
accuracy by highlighting the presence of nonlinear or seasonal effects that were not obvious
from the correlation matrices. Based on extensive research [66], the authors have shown
that time features are frequently used in energy consumption forecasting tasks.

Regarding selecting features based on the correlation matrix, GA-SHADE-MO demon-
strated that the found feature sets vary across models. For instance, RF and XGBoost
models often selected all available lags and time components, while Linear Regressions
(LR) had a more limited feature selection. This highlights the flexibility of the proposed
approach, which allows features to be selected based on the specific characteristics of the
selected ML model, which directly affects the error in the validation sample.

A comparison of correlation analysis and the evolutionary algorithm approach high-
lights the importance of using methods that can reveal nonlinear and hidden dependencies
between features through numerical experiments. Correlation matrices, although providing
useful information about linear relationships between features, do not capture complex
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multivariate dependencies. GA-SHADE-MO focused on improving forecasting quality is
able to identify such dependencies, providing a more accurate feature selection.

The obtained results confirm that evolutionary algorithms can significantly improve
the feature selection process for time series forecasting problems, such as forecasting power
consumption. The proposed approach not only allows identifying features with high
significance, but also adapting their set to specific models, which leads to an increase
in the overall forecast accuracy. This method is especially useful in situations where
there are nonlinear effects and seasonal patterns that are not detected using standard
correlation analysis.

6. Conclusions

In this paper, we proposed the hybrid GA-SHADE-MO evolutionary algorithm for
simultaneously tuning the set of hyperparameters and features of an ML model. The
comprehensive analysis of the ML models optimized using the proposed GA-SHADE-
MO algorithm across different scenarios—daily and hourly levels with various feature
combinations—provides significant insights into the models’ predictive capabilities and
robustness. Accurate forecasting is critical for managing energy demand, improving grid
stability, and more effectively integrating renewable energy sources. By providing a method
that enhances the accuracy of predictive models, our approach enables energy providers to
make more informed decisions regarding energy distribution and consumption. This, in
turn, supports broader goals of increasing energy efficiency, reducing costs, and promoting
sustainability within energy communities. The methodology we propose also offers a
scalable solution that can be adapted across different households, regions, and energy
systems, ensuring its relevance and utility in diverse energy markets. Based on numerical
experiments, this article provides practical insights into which variables should be used for
forecasting household energy consumption at daily and hourly intervals.

Across all scenarios, the MLP and XGBoost models consistently outperform in both
daily and hourly scenarios. Notably, the MLP model shows the lowest MAE and MSE in the
majority of scenarios, indicating its strong accuracy and reliability. For instance, in the daily
all-features scenario, MLP achieves an MAE of 6.685 on validation, which is approximately
9.95% lower than the next best model, XGBoost (with an MAE of 7.424). On the test
data, MLP’s performance remains robust, with an MAE of 7.527, about 7.09% lower than
XGBoost’s MAE of 8.101. In the hourly all-features scenario, MLP again outperforms other
models, with an MAE of 0.825 on validation, which is about 1.67% lower than XGBoost
(0.839). On the test data, the MAE for MLP increases to 0.884, but it remains competitive,
with a difference of only 1.02% compared to XGBoost (0.875).

The RF model also shows strong performance in capturing trends, as indicated by its
high IA values. However, its MAE is higher, on average, compared to MLP and XGBoost.
However, for instance, in the hourly excluded ambient temperature scenario, RF’s MSE
on the test data is 1.563, which is 2.68% lower than XGBoost’s MAE of 1.606. Decision
Tree (DT) models, while performing reasonably well in some scenarios, exhibit significant
variability in their performance, particularly in test scenarios. For example, in the power
and time hourly scenario, DT’s MAE on the test data is 2.004, about 7.63% higher than
XGBoost’s MAE of 1.862, indicating that DT models are less reliable in more complex
scenarios involving time lags and power features. Percentage differences in errors across
scenarios further highlight these trends.

These findings lead to general recommendations for model usage in daily and hourly
scenarios. MLP is generally the best model for daily-level predictions across different
feature sets, providing the lowest errors and showing robust performance across both vali-
dation and test datasets. XGBoost also performs well, particularly when fewer features are
used, making it a viable alternative, especially in scenarios where computational efficiency
is a priority. RF models can be considered for their strong trend-predicting capabilities,
though they might not match the precision of MLP and XGBoost in absolute terms. MLP
remains a strong candidate for hourly predictions, especially when maximum accuracy is
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required. RF should be considered when the model’s ability to capture trends is critical,
as it shows good generalization but may require more features to achieve comparable
accuracy to MLP and XGBoost.

The high computational complexity of the proposed GA-SHADE-MO approach is
due to the need to perform optimization in a MO context and to obtain an estimate of one
potential solution, it is necessary to calculate the effectiveness of the model on a validation
dataset. At the same time, our approach already includes several measures to reduce
computational costs. First, GA-SHADE-MO self-adapts its internal parameters during the
optimization process, eliminating the need for manual tuning, which in itself reduces the
total number of required runs and thereby optimizes resource use. Second, the algorithm
is aimed at optimizing the number of features, which also reduces the dimensionality of
datasets, which can significantly speed up training for complex models. Especially if we
consider cases where a small number of features are used.

The use of data from only one household may limit how well the findings apply to
other situations, as unique household characteristics and environmental factors might affect
the results. Collecting data from a wider range of households in different environments
could make the findings more relevant and reliable. A larger dataset, including many
households, could also help show differences in behavior and external factors, making the
study’s conclusions more broadly useful.

Interpretability and transparency of the model are important aspects, especially in
practical applications for energy management. However, interpretability depends on the
type of model. For example, linear regressions and decision trees are usually easier to
interpret, as they allow you to clearly see the influence of each parameter on the final result.
At the same time, complex models, such as deep neural networks, have high predictive
ability but may be less transparent due to their multi-layered structure and large number
of parameters. For real-world energy management problems, where it is important not
only to predict the outcome but also to explain it, it may be useful to use a combination
of models that provides a balance between accuracy and interpretability. We plan to take
these aspects into account in further studies to improve their practical applicability.

In future studies, we will extend the proposed GA-SHADE-MO approach to tune both
hyperparameters and feature sets of ensemble methods, such as Stacking and Voting, along
with their included algorithms.

Author Contributions: Conceptualization, A.V., I.R., H.N. and M.K.; methodology, A.V., I.R., H.N.
and M.K.; software, A.V.; validation, A.V., I.R., H.N. and M.K.; formal analysis, A.V., I.R., H.N.,
M.K.; investigation, A.V., I.R., H.N. and M.K.; resources, A.V., H.N. and M.K.; data curation, A.V.,
H.N. and M.K.; writing—original draft preparation, A.V.; writing—review and editing, A.V., H.N.
and M.K.; visualization, A.V.; supervision, H.N. and M.K.; project administration, H.N. and M.K.;
funding acquisition, H.N. and M.K. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the Academy of Finland within limits of [350696 The Harvest
project, 2022–2026].

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: We provide only the source code of our proposed GA-SHADE-MO algo-
rithm and the obtained results of the numerical experiments via https://github.com/VakhninAleksei/
GA-SHADE-MO (accessed 30 September 2024). We are not able to upload the original dataset because
the previous owner of the house did not give consent to the publication of the data.

Conflicts of Interest: The authors declare no conflicts of interest.

https://github.com/VakhninAleksei/GA-SHADE-MO
https://github.com/VakhninAleksei/GA-SHADE-MO


AI 2024, 5 2493

Abbreviations

AI Artificial intelligence
ANN Artificial neural network
ARIMA AutoRegressive Integrated Moving Average
CNN Convolutional Neural Network
ConvLSTM Convolutional Long Short-Term Memory
CR Crossover rate
DB-Net Hybrid network model by incorporating a dilated convolutional neural network
DE Differential Evolution

DF-CNNLSTM
Domain fusion of Convolutional Neural Networks and Long Short-Term
Memory (LSTM) networks

DNN Deep Neural Network
DT Decision Tree
EA Evolutionary Algorithm
ENCV ElasticNetCV
EPC-PM Ensemble learning based power consumption prediction model
F Scale factor
FA Factor Analysis
FCM–BP Fuzzy C-Mean clustering BP Neural Network
GA Genetic Algorithm
GARCH Generalized Autoregressive Conditional Heteroskedasticity

GA-SHADE-MO
The hybrid evolutionary-based multi-objective algorithm, combined SHADE
and GA

H Historical Memory
HVAC Heating, Ventilation, and Air Conditioning
IA Index of Agreement
IBEA The Indicator-Based Evolutionary Algorithm
LR Linear Regression
LSTM Long short-term memory
MAE Mean absolute error
ML Machine learning
MLP Multi-layer perceptron
MO Multi-objective
MOEA/D The Multi-Objective Evolutionary Algorithm based on Decomposition
MOGAs Multi-Objective Genetic Algorithms
MRA-ANN Multiple Regression Analysis-Artificial Neural Network
MSE Mean square error
NPGA The Niched Pareto Genetic Algorithm
NSGA Non-dominated Sorting Genetic Algorithm
PCA principal component analysis
PSF Pattern Sequence Forecasting
PSO Particle Swarm Optimization
R2 Coefficient of determination
RF Random Forest
RNN Recurrent Neural Network
RobustSTL A robust seasonal-trend decomposition algorithm for long time series
SHADE Success-history-based parameter adaptation for differential evolution
SVR Support vector regression
TCN Temporal convolutional network

TL-MCLSTM
Deep model named multi-channel long short-term memory with time location
genetic algorithms

VEGA Vector Evaluated Genetic Algorithm
XGBoost Extreme Gradient Boosting
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Appendix A

Table A1. Regression models and their hyperparameters to be tuned.

Regression Model Hyperparameters Value
Ranges Type

Linear Regression None None None

ElasticNetCV l1_ratio (ratio of L1 regularization, controls the balance between L1 and L2
regularization) [0.0; 1.0] Real

Decision Tree
max_depth (maximum depth of the tree)

min_samples_split (minimum number of samples required to split a node)
min_samples_leaf (minimum number of samples required in a leaf node)

[2; 20]
[2; 20]
[2; 20]

Integer
Integer
Integer

Random Forest

n_estimators (number of trees in the forest)
max_depth (maximum depth of the trees)

min_samples_split (minimum number of samples required to split a node)
min_samples_leaf (minimum number of samples required in a leaf node)

[1; 300]
[2; 20]
[2; 20]
[2; 20]

Integer
Integer
Integer
Integer

Multi-layer
perceptron

hidden_layers (number of hidden layers)
hidden_layer_sizes (size of each hidden layer)
batch_size (size of the mini-batch for training)

[1; 5]
[2; 50]

[1; 200]

Integer
Integer
Integer

XGBoost

colsample_bytree (fraction of features to be selected for each tree)
learning_rate (learning rate, controls the weight updates)

max_depth (maximum depth of the decision tree)
alpha (L1 regularization on weights)

n_estimators (number of trees in the ensemble)

[0.001; 1.0]
[0.001; 1.0]

[1; 20]
[1; 10]

[1; 300]

Real
Real

Integer
Integer
Integer
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