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Abstract: Background: Three-dimensional skeleton-based human motion prediction is an essential
and challenging task for human-machine interactions, aiming to forecast future poses given a
history of previous motions. However, existing methods often fail to effectively model dynamic
changes and optimize spatial-temporal features. Methods: In this paper, we introduce Dynamic
Differencing-based Hybrid Networks (2DHnet), which addresses these issues with two innovations:
the Dynamic Differential Dependencies Extractor (2D-DE) for capturing dynamic features like velocity
and acceleration, and the Attention-based Spatial-Temporal Dependencies Extractor (AST-DE) for
enhancing spatial-temporal correlations. The 2DHnet combines these into a dual-branch network,
offering a comprehensive motion representation. Results: Experiments on the Human3.6M and 3DPW
datasets show that 2DHnet significantly outperforms existing methods, with average improvements
of 4.7% and 26.6% in MPJPE, respectively.

Keywords: human motion prediction; dynamic difference; graph convolutional network; multi-layer
perceptron

1. Introduction

Human motion prediction is a key task in human—computer interaction and computer
vision, with vital applications in areas such as security surveillance [1], human-robot
interaction [2], and virtual gaming [3]. The aim is to predict future human poses from past
movements with accuracy. This task is challenging because of the high dimensionality,
complexity, and dynamic nature of human motion.

In the past, human motion prediction models have been built using Gaussian process
latent variable models [4] and hidden Markov models [5]. However, there has been a recent
shift towards deep learning approaches, leveraging a variety of neural networks, including
recurrent neural networks (RNNs) [6-9], graph convolutional networks (GCNs) [10-15],
Transformers [16], and multi-layer perceptrons (MLPs) [17-19].

Although promising results have been achieved in previous works, existing ap-
proaches do not efficiently address two main challenging factors. Firstly, existing methods
often struggle to effectively model rapid changes or abrupt dynamics in actions, ignoring
the effectiveness of the dynamic characteristics for motion prediction; e.g., they capture
the acceleration when jumping from a standing position or deceleration when coming to a
sudden stop. Acceleration information helps the model to understand abrupt changes or
dynamic patterns in motion. Secondly, previous methods typically focus on optimizing a
single type of feature or refining specific network architectures to enhance the extraction of
spatial or temporal features.

To address the first issue, we propose the Dynamic Differential Dependencies Extrac-
tor (2D-DE), which is inspired by the observation that differential operation can capture
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dynamic features for human motion modeling. For example, first-order temporal differenc-
ing calculates the positional changes in skeletal key points between consecutive frames,
effectively capturing the velocity of each key point. Velocity provides insights into the
speed and dynamic variations in the motion, such as the swinging speed of an arm or the
leg movement speed while walking, which is valuable for understanding and predicting
the progression of the action. Additionally, second-order temporal differencing further
computes the acceleration of skeletal key points, which reveals the acceleration or decelera-
tion patterns in the motion. For example, it captures the acceleration when jumping from a
standing position or deceleration when coming to a sudden stop. Acceleration information
helps the model to understand abrupt changes or dynamic patterns in motion.

For the second issue, we develop an Attention-based Spatial-Temporal Dependencies
Extractor (AST-DE) to capture compact and effective motion dependencies at the spatial
and temporal levels. In AST-DE, we propose Temporal-wise Attention and Spatial-wise
Feature Extractor to fully exploit the spatial-temporal kinematic correlations, respectively.

Building on these two modules, we propose Dynamic Differencing-based Hybrid
Networks (2DHnet), a novel model that uses a dual-branch network to learn motion repre-
sentations for improved prediction (see Figure 1). 2DHnet aims to combine spatiotemporal
dependency features with dynamic differential features, which provides a more holistic
representation of human motion, encompassing both static skeletal structure and dynamic
motion changes. Extensive experiments on two large-scale datasets, Human3.6M and
3DPW, demonstrate that our model outperforms most state-of-the-art methods in both
short-term and long-term predictions regarding effectiveness and efficiency. The main
contributions of this paper are as follows:
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Figure 1. Network architecture of our proposed method. The entire network structure is divided
into two components: Dependencies Extractor (AST-DE) in pink blocks and Dynamic Differential
Dependencies Extractor (2D-DE) in yellow block. Specifically, AST-DE is the main branches in-
cluding Temporal-wise Attention and Spatial-wise Feature Extractor, while 2D-DE is a differential
branch, which is used to extract differential information from sequences and merge it with features
extracted from other branches. Temporal-wise Attention extracts temporal features of the sequence,
dividing the input historical sequence into three parts. The green parentheses represent the query,
while the red and blue parentheses represent the key and value, respectively. Spatial-wise Feature
Extractor is used to extract features about the human body in spatial dimensions, mainly using
graph convolutional networks.
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e We propose Dynamic Differencing-based Hybrid Networks (2DHnet), providing a
more holistic representation of human motion, encompassing both static skeletal struc-
ture and dynamic motion changes, and enabling effective human motion prediction.

e In2DHnet, we develop the Attention-based Spatial-Temporal Dependencies Extractor
(AST-DE), which includes two main components: (1) Temporal-wise Attention, to
capture features from historical information in the time dimension; and (2) Spatial-wise
Feature Extractor, to capture spatial features between human joints.

* In 2DHnet, we develop the Dynamic Differential Dependencies Extractor (2D-DE),
which leverages multiple differential operations on 3D skeleton data to extract rich
dynamic features, enabling 2DHnet to more accurately capture dynamic information
such as velocity and acceleration, which enhances prediction accuracy.

*  We conduct experiments to quantitatively and qualitatively verify that our proposed
2DHnet consistently outperforms existing methods, by 4.7%, 26.6% of MPJPE on
average on the Human3.6M and 3DPW datasets, respectively.

The rest of this paper is organized as follows: We review the related work on 3D human
motion prediction most relevant to our approach in Section 2. Section 3 mainly introduces
the overall framework and method. Section 4 describes the details of the experimental
implementation and test results on the two datasets to demonstrate the effectiveness of our
model. Section 5 concludes the work.

2. Related Work
2.1. Three-Dimensional Skeleton-Based Human Motion Prediction

The extensive research into neural networks has catalyzed significant progress in
the domain of motion forecasting based on 3D skeletal data. Among various predictive
models, recurrent neural networks (RNNs) stand out as a prevalent choice for tackling tasks
involving the prediction of sequences, such as anticipating the trajectory of human body
movements. These networks are particularly adept at discerning patterns within temporal
data, which is crucial for accurately simulating the future positions of skeletal joints. Li
et al. [20] introduced a human motion prediction approach grounded in a convolutional
sequence-to-sequence model, leveraging RNNs to capture the temporal characteristics of
human movement sequences. Li et al. [21] proposed an independent recurrent neural net-
work architecture designed to construct longer and deeper RNN models, thereby enhancing
the performance of human motion prediction. Liu et al. [22] presented an LSTM network
based on global context awareness from skeletal data. Tang et al. [23] combined RNNs with
an attention mechanism for human pose prediction. This approach takes into account the
spatial relationships between different joints and their temporal correlations, utilizing the
query, key, and value of the attention mechanism to select the necessary information for
subsequent predictions.

RNNSs have traditionally shown their strength in predicting the temporal aspects of
motion, leveraging their ability to process sequences and recognize patterns over time. In
contrast, graph convolutional networks (GCNs) have been particularly adept at analyzing
spatial relationships within data, effectively handling the structural aspects of motion by
operating on graphs that represent the spatial configuration of entities. Zhong et al. [24] in-
troduced a spatio-temporal gated adjacency GCN, which captured complex spatio-temporal
dependencies by balancing the weighting of spatial and temporal modeling and integrating
decoupled spatio-temporal features. He et al. [25] proposed a two-stage model for human
motion prediction that builds on enhanced GCNs. This model first produces preliminary
predictions through spatial attention graph convolutional layers, then refines these predic-
tions with causal temporal graph convolutional layers to improve accuracy. Fu et al. [26]
developed a model that applies GCNs on spatiotemporal graphs to capture dynamic spa-
tiotemporal dependencies among human joints, thereby predicting motion trajectories. To
achieve a more detailed and enriched representation of joint connections, Gu et al. [14]
introduced a dual-path GCN framework that learns the GCN adjacency matrices of two
paths interactively, capturing the correlations between joint positions and velocities.
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Transform-based models like Transformers offer parallel processing and enhanced
spatio-temporal feature capture. Martinez-Gonzalez et al. [27] proposed Pose Transformer
(POTR), a non-autoregressive Transformer architecture capable of decoding elements in
the query sequence in parallel, thereby reducing computational complexity and poten-
tially preventing error propagation in long-term predictions. Mi et al. [28] presented a
Transformer network that integrates spatial and positional encoding for human motion
prediction from skeletal data. This approach enhances GCNs through the incorporation
of a deep, multilayered residual graph framework, effectively reducing over-smoothing
effects and more precisely modeling spatial relationships. Zhao et al. [29] introduced a
Bidirectional Transformer GAN (BiTGAN), utilizing bidirectional Transformer encoders
and decoders to capture historical motion information and employing Soft-DTW loss to
maintain similarity between predictions and actual motions.

2.2. MLP-Based Feature Modeling

The employment of MLP-based methods for feature extraction has demonstrated their
prowess in unearthing intricate data patterns through the intricate interplay of neurons
within their layered frameworks.

MLP has been widely applied in the field of object detection. Menese et al. [30] pro-
posed SmartSORT for real-time multi-object tracking. The method leverages the powerful
feature extraction capabilities of MLPs to achieve fast and accurate tracking of multiple tar-
gets. Cao et al. [31] employed a Query-Independent Category Supervision (QICS) method
for modeling category information and introduced a deep MLP to capture both long-range
and short-range information, which integrated a deep MLP into a detection framework
based on Transformers. Chen et al. [32] proposed CycleMLP based on MLP for dense visual
prediction tasks such as object detection, and enhanced the transmission and fusion of
features through recurrent connections, thereby improving detection performance.

MLP has also been applied to facial recognition. Boughrara et al. [33] proposed a
constructive training algorithm, which incrementally adds hidden neurons to the network
in a manner that enhances its ability to learn and generalize from facial data. Shahreza
etal. [34] aimed to address privacy protection in facial recognition and proposed MLP-Hash,
a method that transforms facial templates into irreversible and unlinkable forms by passing
them through a randomized MLP and then hashing the output. This approach ensures that
sensitive biometric data remain secure while still allowing for recognition tasks.

In addition, MLP has been proven effective in the field of 3D skeleton-based motion
analysis. Guo et al. [19] proposed a network only using MLP to extract the spatial and
temporal features, respectively, and proved that MLP can efficiently extract patterns from
human historical pose sequences, greatly reducing the complexity and parameter count
of the model. As a classic approach to feature extraction, the sustained prominence of
MLPs in the field of computer vision indicates a continuous evolution, characterized by
ongoing enhancements that tailor MLPs to meet the shifting complexities of advanced
predictive analytics. Bouazizi et al. [35] introduced Mixer, using a spatial MLP to extract
fine-grained spatial dependencies of body joints and a temporal MLP to model their
interactions over time, ultimately aggregating these spatial-temporal mixed features to
predict future human poses.

3. Method
3.1. Overall Architecture

Our task is to forecast the future sequence of human poses based on the given past
poses, using multiple frames of 3D coordinates to represent an action. Specifically, let
s; € R3*K represent the pose matrix at the t-th frame, where K denotes the number
of body joints. Sy.; = [s1,S2,...,57| denotes T consecutive frames of historical human
poses and the goal is to predict the future N frames of the actions, which are denoted as

ST+1ZT+N = [ST+1/ ST+2/ weey ST+N]
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Figure 1 indicates the whole structure of our network, which consists of two key
components: Attention-based Spatial-Temporal Dependencies Extractor (AST-DE) to cap-
ture compact and effective motion dependencies at spatial and temporal levels, and the
Dynamic Differential Dependencies Extractor (2D-DE) to capture the dynamic character-
istics of movements. In AST-DE, the model learns the temporal and spatial features of
action sequences. Inspired by Mao et al. [13], we propose Temporal-wise Attention for
comparing similarities in historical sequences and extracting temporal information. In
the Spatial-wise Feature Extractor, we use a GCN to extract the position information and
correlation degree of joint points in human motion. For 2D-DE, we devised a technique to
compute the differences within a given sequence. We prepend one frame to the beginning
of the resulting sequence to maintain consistent data dimensions. This process is repeated
P times, yielding P distinct series that capture various dynamics of human motion, such
as velocity, acceleration, and finer motion variations. Finally, we merge the information
extracted from the two branches to obtain a more complete and representative feature
representation. Throughout the process, we utilize Discrete Cosine Transform (DCT) [12]
and Inverse Discrete Cosine Transform (IDCT) transformations, transforming the input se-
quence from the time domain to the frequency domain, representing the original sequence
with DCT coefficients to improve the robustness and generalization ability of the model,
and finally using IDCT to transform the sequence back to the time domain as the output.

3.2. Attention-Based Spatial-Temporal Dependencies Extractor (AST-DE)

This section of the network separately extracts spatial and temporal features from the
sequence in Euclidean space and then fuses them. The model takes an input sequence of T
frames representing an action and outputs a predicted sequence of N frames. It comprises
two main components: (1) Temporal-wise Attention, which takes advantage of Attention
mechanism and extracts features from historical information along the time dimension;
and (2) Spatial-wise Feature Extractor, which captures positional relationships such as
connectivity and other spatial characteristics between human joints.

3.2.1. Temporal-Wise Attention

To recognize similarities and repetitions in human motion sequences, we apply a
Temporal-wise Attention. This technique determines the attention score by matching the
current frame with historical motion frames through a query and various key—value pairs,
allowing us to identify similar frames. The input historical sequence is divided into three
parts: query, key, and value. For a sequence, there is only one query, the key and value slide
on the sequence, allowing us to count the correlation for each segment. The query is the
last M frames of the input, used to calculate the similarity with the sequence before it. In
order to determine attention weights with the query, the key is also set to M consecutive
frames, and ithas T — M — N + 1 in the entire sequence. The guery and key are, respectively,
represented as St_p1+1.7 and {S;j 1 pm—1 iT:]N —MA1 mapped to the unified dimension using
their respective mapping functions Hg(-) and Hg(-), that is,

Q = Ho(St-mt11) 1)
K= HK({Si:i+M+N71}iT:_1N_M+1) (2)
The attention score between each frame of these two sequences is formulated as
Q x K;
a; = — 3
! ZiTle M+1 Q % Ki ( )

where a; denotes the attention score. We utilize sum normalization and the ReLU [36]
activation function to constrain the weight values within the range of 0 and 1.

For each key, there is a corresponding value. In this work, value contains the
key and the subsequent N frames following it, with the length of N + M, denoted as
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{Si:HMJrN,l}iT;lN*MH. The same as for the key, there is also T — M — N + 1 values in

the entire sequence. Before weighting, we first apply DCT to transform it from the time
domain to the frequency domain, and use the frequency-domain information V; to encode
the features of the sequence. Then, the model yields the sequence 5" by performing the
dot product between V; and g;, that is,

T-N-M+1
= ) a4V 4)
i-1

Stem

3.2.2. Spatial-Wise Feature Extractor

GCN demonstrates exceptional adaptability to various poses and deformations in
human motion due to its flexibility in handing graph-structured data. It effectively captures
spatial relationships and connectivity patterns between human joints, which are essential
for understanding the structure and semantics of human motion. Therefore, we utilize
stacked GCN blocks to extract features only in the spatial dimension. Before this, we pad
the query sequence St_js+1.7 with N frames of the last frame and convert it to the frequency
domain using DCT. Mathematically, AU) ¢ RKxK represents the trainable graph adjacency
matrix, where j denotes the number of the layer. At the j-th layer, the graph convolution is

GO+ = o(AD) x GO x wih) 5)

where o(-) denotes the activation function tanh(-), and WU) denotes the trainable weights
of the j-th layer, which effectively enforces limitations on feature values to maintain consis-
tent predictions.

We subsequently concatenate the outputs S and S°%*, then utilize fully connected
layers to blend the spatial and temporal features, with the goal of enhancing the represen-
tation of human joint coordinates. After IDCT, the sequence returns to the time-domain
space, and we take the last N 4+ M frames S as the output of the network.

3.3. Principle of SkDiff

Paralleling with the AST-DE method, the Dynamic Differential Dependencies Extractor
empowers the effectiveness of the prediction. As for the building method SkDiff, we take
frames with a length of T as our input. As the series is discontinuous, the N-th initial
difference block D} can simply be given by

Dy = X)r — X{r_4 (6)

However, the length of the generated series is T — 1, which does not correspond
to the required input series length of our model. Thus, we developed two methods for
difference series compensation: (a) Repeat the first frame at the beginning of the series, and
(b) repeat the last frame at the end of the series. The former method focuses on the vitality
of the recent motion, while the latter concentrates on stimulating the model capacity of
eliminating inaccurate prediction. Based on the two methods, we can refine the series for
difference feature extraction as DV:

DN — X1, X1, %2, X3, vy XT—2, XT 1] (a) )
[x1,22,x3, ..., X7—2, X7—1, XT-1] (D)

where x; represents the i-th frame in the original difference block D). Therefore, we can
ensure that the length of the input DV is T, which means our difference extractor can grasp
the feature from the difference block. Specifically, our difference extractor is named as
SkDiff Extractor, whose structure is demonstrated in Figure 2. For corresponding to the
data feature, our SkDiff Extractor can be flexibly alternated from the given models.
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Figure 2. The structure of SkDiff Extractor and Mixer in 2D-DE. SkDiff Extractors are based on multi-
layer perceptron and consist of linear layers and an activation function (ReLU). Mixer is dynamic,
corresponding to the data feature, which is chosen from concatenating the input data together before
fusing features or adding all results of SkDiff Extractors.

SkDiff can generate blocks of various difference depths, which facilitates the advantage
that it can handle a range of circumstances varying in the extent of motion change. In
Figure 1, we demonstrate that the 1-SkDiff block is generated by SkDiff performed on
the original motion series, while the 2-SkDiff block is yielded by SkDiff performed on the
1-SkDiff block. The depths of SkDiff generation can be adjusted according to the motion
characteristics in reality.

3.4. Loss

The model yields a predict sequence with a total length of M + N. For accuracy
assessment, we measure the deviation between the 3D spatial coordinates of each human
body joint as predicted by the model and the actual coordinates. To achieve this, we adopt
the mean per-joint position error (MPJPE), which was initially suggested in [12] for the
estimation of 3D joint positions. This metric quantifies the mean squared Euclidean distance
for each joint’s predicted location in comparison with the ground truth location, and is
expressed by the following equation:

RS YT AT ®)
_K k k
k=1

where J; represents the 3D coordinates of the k-th joint of the human pose, and J; denotes
the ground truth.

4. Experimental Results and Datasets
4.1. Datasets

In order to evaluate the effectiveness of the proposed 2DHnet in the human pose esti-
mation task, we utilize publicly available datasets as benchmarks, specifically Human3.6M
(H3.6M) [37] and 3D Pose in the Wild (3DPW) [38].

4.1.1. Human3.6M

Human3.6M [37] stands as a pivotal and extensively utilized resource in the field of
3D human pose estimation and human motion prediction. Encompassing over 3.6 million
images, this dataset was meticulously captured using the advanced Vicon motion capture
system. It features seven actors performing a diverse array of 15 distinct activities, ranging
from routine actions such as walking and smoking to more complex interactions like
greeting and discussing.

Each pose within the dataset is anatomically defined by 32 joints, which are meticu-
lously pre-processed into 3D coordinates. To facilitate a more consistent temporal resolution,
the sequences have been uniformly down-sampled to 25 frames per second. This down-
sampling aids in streamlining the data for computational processes while preserving the
essential dynamics of human motion.
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Following established research routines, we make use of subjects 1 (51), S6, and S7-59
for training, S11 for validation, and S5 for testing. This methodology aligns with the
conventions observed in previous studies, thereby promoting standardization in evaluation
metrics across the research community.

4.1.2. 3DPW

The 3D Pose in the Wild (3DPW) dataset [38] stands as a significant resource in the field
of 3D human pose estimation, particularly known for its comprehensive capture of natural
human movements in diverse and complex environments. It is one of the first datasets to offer
precise 3D poses in outdoor scenarios, making it an essential benchmark for evaluating models
in realistic settings. The dataset includes over 51,000 frames across 60 video sequences. Each
human pose in 3DPW is articulated through 24 to 26 joints, with variations depending on
specific evaluation protocols. The dataset has been divided into training, validation, and test
sets. The high frame rate of 60 Hz further adds to its suitability for dynamic and real-time pose
estimation tasks. Following a common practice adopted by most studies, we train our models
over 50 epochs on the training set before testing on the designated test set.

4.2. Experimental Metric

To evaluate the performance of our model, which outputs 3D positions, we adopted
the mean per-joint position error (MPJPE) metric on the 3D joints. The MPJPE is the
most widely used metric for assessing errors in 3D pose estimation, as it measures the
discrepancies in 3D coordinate space. For an integrated comparison with other methods,
we adhered to the evaluation standard outlined in [12,13,39,40], applying a sampling rate
of 25 frames per second across both datasets. The L2 distance between the predicted and
ground truth positions of each joint was calculated and then averaged to quantify the error.

4.3. Experimental Settings

In order to implement the experiment, we made a series of parameter settings to
enhance the model effectiveness. Accordingly, we performed experiments and obtained
the most effective parameter configuration for our model.

Within the processing of both datasets, the input sequence length was established at
50 frames. For the Human3.6 dataset, the output was configured to 10 frames, whereas for
the 3DPW dataset, it was set to 25 frames, for this dataset is more changeable and needs
more future ground truths to generate more transitive future predictions. Regarding the
feature representation of the human body, each joint is described by three-dimensional
coordinates, represented as C = 3 x K. Specifically, the Human3.6 dataset employs 22 joints,
resulting in a feature dimension of 66. We kept the same number of joints for 3SDPW.

As is elaborated in Section 3.1, for the 2D-DE, we built a method which can yield the
difference of the given series, while we padded one frame at the beginning of the generated
series to ensure the same data dimensions. We performed this method P times and thus
obtained P series, which in reality meant velocity, acceleration, and more slight changes of
human motion. Then, we transformed the temporary skeleton series to frequency field data
utilizing DCT. For feature extraction of each difference layer, we adopted the network of the
multi-layer perceptron (MLP) block, where the latent layer size was 128. Then, these layers
were concatenated and merged with another MLP block, where the latent layer size was
128 x P. Finally, the difference feature output was concatenated with the attention-based
feature output, mixed with a 256-latent-sized MLP block, and transformed into temporary
skeleton-based series as the ultimate prediction.

For feature extraction from each difference layer, we utilized a multi-layer perceptron
(MLP) network, where the latent layer size was set to 128. The outputs of these layers
were then concatenated and merged using another MLP block, with a latent layer size of
128 x P. The final difference features were combined with the attention-based features,
passed through an MLP block with a latent size of 256, and ultimately converted back into
a temporal skeleton-based sequence utilizing IDCT, providing the final prediction.
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According to Section 3.2, the Temporal-wise Attention learning process is integrated
with the attention mechanism-based motion feature abstracting method. Practically, the
query and key lengths were fixed at 10 frames, denoted as M = 10. The mappings H (")
and Hg(-) project Q and K; into 256 dimensions for attention weight computation. The
value length was configured to 20, meaning that the model predicted the most pertinent
20 frames based on the last 10 frames of the input sequence. During the padding phase, the
final frame of the input sequence was replicated 10 times to generate a total of 20 frames.
These frames were then concatenated with the preceding 20 frames, forming a 40-frame
input for the GCN.

In the learning phase of the Spatial-wise Feature Extractor, the dimensions of W were
established as 256 x 256, while A had dimensions of C x C. We applied 18 GCN blocks
in a stacked arrangement, connected via residual structures to improve generalization
performance and accelerate model concentration.

To train the network, the Adam optimizer was employed with a batch size of 32.
The model, comprising 15.34 million parameters, was implemented using the PyTorch
framework and trained over 50 epochs on one NVIDIA RTX 4070 GPU, with the initial
learning rate set to 0.001.

4.4. Comparison with State-of-the-Art Methods

In this section, we systematically evaluate the performance of various human pose
estimation methods, with a particular focus on comparing them to our newly proposed
model. To ensure a comprehensive analysis, we report the results of our model across both
short-term (0~500 ms) and long-term (500~1000 ms) prediction intervals, as these time
frames provide insights into the model’s performance across different temporal horizons.

For the Human3.6M dataset, our model is trained using the past 50 frames to predict
the subsequent 10 frames. Once the next 10 frames are predicted, these frames are iteratively
fed back into the model as input to generate further predictions. This recursive approach
allows for the evaluation of our model’s ability to maintain accuracy over multiple steps
of prediction. We note that the SkDiff depth represents the number of iterations of SkDiff.
Among the results of the experiments, we find that the trained model achieves the lowest
MPJPE when the SkDiff depth is 1.

On the 3DPW dataset, a similar methodology is adopted, with the model utilizing
the past 50 frames to predict the next 25 frames. This setting provides a broader time
window for prediction, enabling a more thorough examination of the model’s robustness
over longer-term forecasts.

4.4.1. Results on Human3.6M

The performance of our model on the Human3.6M dataset, as presented in Tables 1 and 2,
showecases its superiority in both short-term and long-term 3D motion prediction, measured
by mean per-joint position error (MPJPE). Our model not only competes effectively with
state-of-the-art methods like TFAN [17] and EqMotion [18] but also demonstrates distinct
advantages in capturing both immediate and sustained motion trends.

Table 1. Short-term results on the 15 actions of H3.6M dataset. The average prediction results for all
the actions are added at the end. The best results are highlighted in bold.

Motion Walking Eating Smoking Discussion
Milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400
PGBIG [40] 102 198 345 40.3 70 151 30.6 38.1 6.6 141 282 34.7 10.0 23.8 53.6 66.7
SPGSN [41] 101 194 3438 415 71 149 305 37.9 6.7 138 280 34.6 104 238 53.6 67.1
EqMotion [18] 9.2 182 342 414 6.6 142 300 37.7 62 128 267 33.6 91 220 518 65.3
SIMLPE [19] 9.9 - - 39.6 5.9 - - 36.1 6.5 - - 36.3 9.4 - - 64.3
TFAN [17] 10.0 199 365 43.1 59 136 284 35.9 6.6 143 298 36.8 91 219 50.0 63.4
April-GCN [14] 9.2 187 344 411 62 141 300 377 58 131 270 33.7 89 226 528 65.8
Ours 9.5 189  33.0 38.1 57 133 279 35.2 59 123 239 30.1 8.2 17.7 341 434




Al2024,5 2906
Table 1. Cont.
Motion Directions Greeting Phoning Posing
Milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400
PGBIG [40] 72 176 409 51.5 152 341 716 87.1 83 183 387 484 10.7 257 60.0 76.6
SPGSN [41] 74 172 398 50.3 146 326 70.6 86.4 87 183 387 48.5 10.7 253 599 76.5
EqMotion [18] 6.6 158 39.0 50.0 12.7 300 69.1 86.3 77 173 382 484 93 237 596 77.5
SIMLPE [19] 6.5 - - 55.8 12.4 - - 77.3 8.1 - - 48.6 8.8 - - 73.8
TFAN [17] 65 171 431 54.9 123 284 624 76.9 79 175 383 48.3 86 221 554 72.0
April-GCN [14] 6.2 164 40.1 50.8 13.0 320 717 87.8 74 173 380 47.8 9.0 237 595 77.0
Ours 6.6 178 436 55.5 123 292 629 77.8 78 179 384 48.2 73 169 34.7 45.5
Motion Purchases Sitting Sitting Down Taking Photo
Milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400
PGBIG [40] 125 287 60.1 733 88 192 424 53.8 139 279 574 715 84 189 420 53.3
SPGSN [41] 128 286 61.0 74.4 93 194 423 53.6 142 277 56.8 70.7 88 189 415 52.7
EqMotion [18] 11.3  26.6 59.8 74.1 83 181 411 53.0 132 263 56.0 70.4 8.1 17.8 410 52.7
SIMLPE [19] 11.7 - - 72.4 8.6 - - 55.2 13.6 - - 70.8 7.8 - - 50.8
TFAN [17] 11.7 276 59.0 73.1 87 192 4238 544 13.6 291 575 70.3 7.7 175 39.7 50.5
April-GCN [14] 110 268 59.2 73.0 80 181 417 53.3 13.0 26.7 56.5 70.8 78 18.0 415 529
Ours 121 290 615 76.1 84 190 423 53.7 140 302 593 72.2 78 179 403 51.4
Motion Waiting Walking Dog Walking Together Average
Milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400
PGBIG [40] 89 201 436 54.3 188 393 737 86.4 87 186 344 41.0 10.3 227 474 58.5
SPGSN [41] 92 198 431 54.1 - - - - 89 182 338 40.9 104 223 471 58.3
EqMotion [18] 79 179 415 53.1 16.6 359 720 85.7 81 171 324 39.2 94 209 462 57.9
SIMLPE [19] 7.8 - - 53.2 18.2 - - 83.6 8.4 - - 41.2 9.6 - - 57.3
TFAN [17] 76 17.6 40.8 51.7 180 381 710 84.0 84 180 357 43.7 95 215 46.0 57.3
April-GCN [14] 7.7 184 416 52.3 167 370 713 84.0 80 176 332 40.0 9.2 214 466 57.8
Ours 76 184 421 53.5 183 388 727 85.7 79 170 33.0 40.0 93 201 433 53.8
Table 2. Long-term prediction across 15 actions and average prediction results of the H3.6M dataset.
The best results are highlighted in bold.
Motion Walking Eating Smoking Discussion Directions Greeting Phoning Posing
Milliseconds 560 1000 560 1000 560 1000 560 1000 560 1000 560 1000 560 1000 560 1000
PGBIG [40] 48.1 564 51.1 760 465 69.5 87.1 1182 69.3 1004 110.2 143.5 65.9 102.7 106.1 164.8
SPGSN [41] 469 53.6 498 734 467 68.6 - - 70.1 1005 - - 66.7 102.5 - -
EqMotion [18] 50.7 588 50.7 762 454 673 87.1 116.8 69.8 101.2 111.6 1442 65.8 102.3 1112 169.6
SIMLPE [19] 46.8 557 49.6 745 472 69.3 85.7 116.3 73.1 106.7 99.8 137.5 66.3 103.3 103.4 168.7
TFAN [17] 53.0 644 495 767 486 724 847 116.3 724 107.2 100.9 1385 66.7 105.5 102.1 166.8
April-GCN [14] 494 548 506 746 465 68.8 88.0 117.7 703 100.0 111.0 142.6 65.5 100.3 109.7 166.4
Ours 46.8 60.7 48.8 740 423 65.5 66.6 106.2 733 1045 103.0 1409 66.1 104.5 724 137.8
Motion Purchases Sitting Sitting Down  Taking Photo Waiting Walking Dog  Walking Together Average
Milliseconds 560 1000 560 1000 560 1000 560 1000 560 1000 560 1000 560 1000 560 1000
PGBIG [40] 953 1333 744 116.1 96.7 147.8 74.3 118.6 722 103.4 104.7 139.8 51.9 64.3 76.9 1103
SPGSN [41] - - 750 1162 - - 75.6 1182 735 103.6 - - - - 774 109.6
EgqMotion [18] 974 1369 742 116.0 969 1489 77.7 1224 735 105.8 1044 142.1 50.4 62.0 77.8 1114
SIMLPE [19] 93.8 1325 754 1141 957 1424 71.0 112.8 71.6 104.6 105.6 141.2 50.8 61.5 75.7  109.4
TFAN [17] 96.1 136.1 754 114.0 95.2 141.8 71.2 1139 704 105.0 107.1 146.5 55.2 70.3 76,5 1117
April-GCN [14] 96.8 1354 754 1172 987 149.3 759 119.1 723 103.6 103.2 137.1 50.5 61.1 77.6  109.9
Ours 98.6 1369 745 1152 96.9 1433 727 1152 729 105.7 108.2 1439 51.0 65.5 72.9 108.0

Table 1 provides a comprehensive overview of the short-term prediction results across
various actions on the Human3.6M dataset. Our model achieves notable accuracy, particu-
larly excelling in the ‘posing’ and “discussion” actions. For instance, our model records the
lowest MPJPE for the “discussion’ action across all time intervals, indicating its precision in
predicting subtle and repetitive movements. Similarly, for the “posing” action, our model
surpasses all competitors at shorter intervals, reducing MPJPE by 37.3% and 36.8% on
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160 ms and 320 ms intervals, respectively, compared to TFAN [17]. This suggests that our
model effectively captures complex, nuanced changes in action dynamics over time.

In terms of long-term predictions, as shown in Table 2, our model consistently outper-
forms others, achieving the best accuracy for both 560 ms and 1000 ms averages. Notably,
when comparing the relative percentage reduction in the “posing’” action, our model reduces
MP]JPE by 29.8% compared to TFAN [17] at 560 ms. These results underscore the model’s
ability to maintain high predictive accuracy over extended periods, capturing complex
temporal dependencies that other models struggle with. Additionally, our model also
delivers competitive results in actions such as ‘eating’, ‘directions’, and ‘walking together”,
further validating its generalization capabilities across diverse motion categories.

The data from Tables 1 and 2 confirm that the prediction error of our proposed method
tends to decrease with time, which means it has the capacity to fix the generation error,
in that our model leverages SkDiff to mitigate this degradation. The 2D-DE, in particular,
excels at extracting detailed transition features from generated difference information of
the time series. Therefore, it is able to identify unreasonable predictions and reduce their
weight, resulting in more precise long-term predictions.

Furthermore, by integrating features from both the temporal and spatial dimensions,
our model is adept at finding the correlation between temporal and spatial information,
which is crucial for accurate predictions over mid-to-long-term periods (320-1000 ms).
Among the state-of-the-art models, ours consistently achieves the highest average accuracy
in these mid-to-long-term predictions, demonstrating its strong adaptability and robustness
across various temporal scales. For overall evaluation, we consider taking the average
MPJPE across all listed temporal scales, thus finding that our model’s average MPJPE is
4.7% lower than that of the second-best model April-GCN [14].

4.4.2. Results on 3DPW

Table 3 provides a comprehensive comparison of our model’s 3D spatial predictions
on the 3DPW dataset, demonstrating its superior performance over existing state-of-the-art
approaches across both short-term and long-term prediction intervals. Unlike other models,
which often face difficulties in balancing performance across different temporal horizons,
our model consistently achieves outstanding results across both short-term and long-term
predictions using a unified framework.

A closer analysis of the data presented in Table 3 further highlights the significant
advantages of our model in both short-term (200 ms) and long-term (1000 ms) predictions.
Our approach reduces the MPJPE by 10.6% at the 200 ms interval and by 31.6% at the
1000 ms interval compared to the second-best model DPnet [42]. The long-term prediction
result also proves that our model is able to decrease the generation error owing to 2D-DE.

These results underscore the effectiveness of our model in maintaining high predictive
accuracy across varying databases, demonstrating its generalization in capturing complex 3D
motion patterns in both man-made and natural scenarios. We also evaluate our model overall
with the same method as in the analysis of the performance on Human3.6M, and it turns out
that our model has an average MPJPE 26.6% lower than the second-best model DPnet [42].

Table 3. Comparison of prediction results on the 3DPW dataset. The best results are highlighted
in bold.

Milliseconds 200 400 600 800 1000
DMGNN [11] 37.3 67.8 94.5 109.7 123.6
LTD [12] 35.6 67.8 90.6 106.9 117.8
MSR [39] 37.8 71.3 93.9 110.8 121.5
PGBIG [40] 35.3 67.8 89.6 102.6 109.4
DPnet [42] 29.3 58.3 79.8 94.4 104.1
April-GCN [14] 30.4 61.8 88.0 98.2 105.4

Ours 26.2 44.7 59.5 66.9 71.2
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4.5. Visualization Analysis

To further validate our model, we selected four typical poses from the prediction
results for visualization. As illustrated in Figure 3, we compared our approach with
HisRep [13], used as a baseline. It is clear that our model demonstrates better performance
by comparing the ground truth similarity between the predictions yielded by HisRep and
our model. Our model proves effective for slight motion changes, as it captures transition
features obtained by 2D-DE. In the visualizations shown in Figure 3a,d, it is evident that
the baseline tends to generate rapid changes in predictions regardless of the history of
motion changing characteristics. In contrast, our model effectively identifies the motion
transition features and naturally generates high-quality motions aligned with them.
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Figure 3. Visualization results of 2DHnet. The visual demonstration includes four common motions:
(a) motion of “discussion’, (b) motion of ‘eating’, (c) motion of ‘waiting’, and (d) motion of ‘posing’,
all from the H3.6M dataset. The labels “GT”, “HisRep”, and “Ours” represent the ground truth,
predictions from the HisRep method, and predictions from our approach, respectively. The predicted
motion is highlighted with pink and blue, while the ground truth is colored with gray and lilac. We
mix the prediction and ground truth together for better comparison, and it is clear that our method
provides more accurate predictions, effectively capturing the nuances in human motion series.

Our method also excels in slight adjustments, as shown in Figure 3b,c. It captures
subtle movements, with the skeletons transitioning smoothly and maintaining pace with
the motion. It is shown that our model has the capability of correcting the generation error,
which could occur during upper or lower body motion prediction.

From the visualization results, it is evident that our model can distinguish between dif-
ferent motion classes, allowing for more tailored responses to historical skeletal sequences.
It is highlighted that our model is better at handling the smooth transition of motion,
avoiding large differences between reality and prediction.

4.6. Ablation Study
We conduct ablation studies to evaluate the influence of the numbers of GCLs in AST-

DE, different configurations, and the SkDiff Extractor latent feature size of our approach on
the Human3.6M dataset.
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4.6.1. Effect of the Number of GCLs in AST-DE

We separately tested the impact of GCN layers in the AST-DE on model performance
when using MLP and Add as the SkDiff Mixer (Figure 4). The data demonstrate that the
model achieves high predictive accuracy when the number of GCLs is set to 18. We believe
this is because as the number of layers in the model increases, it can extract more spatial
features of the human skeleton, which is beneficial for learning structural information.
In addition, when using Add as a fusion method, the model performs better than using
MLP. We speculate that addition increases the information content of features in the same
dimension and adds detailed information.
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Figure 4. Ablation tests on the number of GCLs in AST-DE.
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4.6.2. Effect of Different Configurations

To better understand the impact of various configurations on the model’s performance,
we conducted several experiments where we varied whether AST-DE and 2D-DE were
used, the depth of SkDiff, the padding frame used in SkDiff, and the type of Mixer used for
the 2D-DE and AST-DE. Our best results were achieved when both the AST-DE and the
2D-DE were present, the SkDiff depth was set to 1, the last frame was used for padding,
and the Mixer was Add. The ablation results in Table 4 demonstrate the impact of different
configurations on the model’s performance, and our analysis is presented below.

Effect of components: To examine the effect of the components, we first evaluated
scenarios where the model used only one of the components. Subsequently, we tested
configurations that included both components. Our findings are summarized as follows:

¢  Enabling only the AST-DE significantly improves model performance, particularly
across various time horizons. This suggests that the AST-DE effectively captures
the correlation between temporal sequence attention features and spatial graphi-
cal features.

¢ When the AST-DE is absent and the model relies solely on the 2D-DE for prediction,
the performance deteriorates markedly. This indicates that the differential informa-
tion alone causes a loss of skeletal data and fails to model complete and effective
motion semantics.

* Integrating the 2D-DE with the AST-DE enhances the model’s long-term prediction
capabilities. As noted earlier, our approach is effective in correcting long-term errors
using the 2D-DE. As shown in Table 4, the combined model outperforms the models
using a single component, reducing MPJPE by 1.4 at 1000 ms.
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Table 4. Ablation results on the existence of AST-DE or 2D-DE, SkDiff depth, the frame used in
SkDiff padding and the Mixer type of 2D-DE and AST-DE. The best results of the ablation group
are highlighted in bold. We also evaluate the effect TSAtt existence, which is demonstrated with the
symbol in the table.

TSAtt Depth Padding Mixer 80ms 160ms 320ms 400ms 560ms 1000 ms

v - - - 9.3 20.9 43.6 54.1 73.6 109.7

1 Last MLP 362.2 363.1 367.1 369.3 550.2 695.1
v 1 Last MLP 9.4 21.0 43.7 54.2 73.3 108.3
v 2 Last MLP 9.7 21.8 454 56.1 754 111.0
v 3 Last MLP 9.4 21.2 441 54.5 734 108.1
v 1 First MLP 9.7 214 442 54.7 74.1 109.5
v 2 First MLP 9.5 214 443 55.0 74.3 109.8
v 3 First MLP 9.6 214 44.7 55.4 747 109.6
v 1 Last Add 9.3 20.9 43.3 53.8 729 108.0
v 2 Last Add 9.6 21.6 448 55.3 74.3 110.5
v 3 Last Add 9.5 215 443 54.8 73.7 109.7
v 1 First Add 9.6 21.6 445 55.0 739 110.1
v 2 First Add 9.5 21.5 444 55.0 74.3 1111
v 3 First Add 9.4 21.2 43.7 53.9 72.8 107.2

Effect of SkDiff depth: As the SkDiff depth increases from 1 to 3, model performance
varies across time horizons. Generally, a depth of 1 or 3 yields better results, while a depth
of 2 slightly increases errors. This suggests that the 2-SkDiff model is more sensitive to
noise, whereas the 3-SkDiff model has a higher capacity to mitigate noise and capture more
detailed motion trends for prediction. This is supported by the experimental result where
the depth is 3, the padding is “first”, and the mix method is “Add”.

Effect of padding frame position: The choice of padding frame position (“last” vs.
“first”) also impacts model performance. As mentioned in Section 3.3, repeating the last
frame may enhance the model’s ability to eliminate inaccurate predictions, while repeating
the first frame emphasizes recent motion dynamics. The results indicate that using the
“last” frame for padding generally leads to better performance than using the “first” frame,
likely due to increased robustness against noise at the end of the SkDiff block. However,
this trend is not always consistent, as the initial weights can also affect the outcome; hence,
the “first” frame padding strategy may also yield competitive results.

Effect of SkDiff Mixer type: When comparing the use of MLP (multi-layer perceptron)
and Add as the mix method for the two components, we observe that the MLP approach
generally achieves higher MPJPE values for shorter time horizons (80 ms to 320 ms) but
lower MPJPE errors for longer time horizons (560 ms to 1000 ms). This suggests that
MLPs are more effective at learning complex nonlinear relationships but may suffer from
overfitting, leading to less accurate long-term predictions. Consequently, we replaced
the MLP with Add, which theoretically better compensates for the AST-DE, given their
linear relationship. Although the best results were obtained with the Add configuration,
we observed that the overall performance difference between the two Mixer types was
relatively small. This finding suggests that a simple Add might not be sufficient to extract
effective motion semantics.

4.6.3. Effect of the Number of MLP Channels in SKDiff Block

When we chose the Add as SkDiff Mixer to fuse features, we conducted ablation
experiments on the number of channels in the MLP (Table 5). The experimental results
show that the model’s prediction results are the most accurate when the number of channels
is 128. We speculate that as the number of channels increases, the model overly focuses on
detailed features, resulting in overfitting.
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Table 5. Ablation tests on the number of MLP channels in SkDiff block when using Add Mixer. The
best results in the ablation study group are highlighted in bold.

Number of Channels 80 ms 160 ms 320 ms 400 ms 560 ms 1000 ms
128 9.3 20.9 43.3 53.8 72.9 108.0
256 9.5 214 44.1 54.5 73.4 109.6
512 9.6 21.6 447 55.4 74.6 110.4

4.6.4. Effect of the Number of Channels in SkDiff Extractor and SkDiff Mixer

In the 2D-DE, we tested the number of channels C; for the SkDiff Extractor and SkDiff
Mixer, experimenting with C; = 128, 256, and 512. As can be seen from Figure 5, when
Cy4 = 128, the model achieves the best prediction performance across all time intervals. We
believe this could be attributed to a balance between model complexity and computational
efficiency. With too many channels, the model might become overly complex, which
could result in overfitting to the training data or increased computational cost without a
corresponding improvement in predictive accuracy.

80
9.7

1000

45

560 320
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Figure 5. Ablation tests on the number of channels in SkDiff Extractor and SkDiff Mixer.

5. Conclusions

This paper presents Dynamic Differencing-based Hybrid Networks (2DHnet) for im-
proved human motion prediction. Traditional models and recent deep learning approaches
often struggle to capture rapid changes in motion dynamics and optimize spatial-temporal
features effectively. To address these challenges, 2DHnet introduces two key modules: the
Dynamic Differential Dependencies Extractor (2D-DE), which captures dynamic features
such as velocity and acceleration; and the Attention-based Spatial-Temporal Dependencies
Extractor (AST-DE), which enhances spatial-temporal correlations. Our 2DHnet provides
a more comprehensive representation of human motion by combining these modules in
a dual-branch architecture. Experimental results on the Human3.6M and 3DPW datasets
demonstrate that 2DHnet achieves significant improvements over state-of-the-art methods,
with average MPJPE reductions of 4.7% and 26.6%, respectively. Even though this work
highlights the importance of motion dynamics learning, 2DHnet may lack transparency in
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its decision-making processes. Understanding why the model makes certain predictions
can be challenging, which may hinder its acceptance in applications requiring high levels
of interpretability. Addressing these limitations in future work could involve simplifying
the model architecture and improving data augmentation techniques.
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