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Abstract: Introduction: The Earth’s growing population is increasing resource consump-
tion, heavily pressuring agriculture, which, currently, uses 70% of the world’s freshwater
from rivers and lakes, which, themselves, comprise only 1% of the Earth’s water reserves.
Combined with climate change, the situation is alarming. These challenges drive Agri-
culture 4.0, which is focused on sustainable agricultural processes to optimise water use.
Objective: Given this context, this study proposes a model, based on Artificial Intelli-
gence (Al) techniques to predict topsoil moisture in a study area located in the south
of the Iberian Peninsula, primarily an agricultural region facing recurrent droughts and
water scarcity. Methods: To develop the model, a comparison between Artificial Neural
Networks (ANNs) and Gradient Booster Regressors (GBRs) was conducted, and topsoil
moisture data from seven probes distributed over the study area were used, in addition to
several variables (temperature, relative humidity, solar radiation, wind speed, precipitation
and evapotranspiration) from a selection of weather stations and ensemble forecasts from
meteorological models. Results: The final GBR model, with a 0.01 learning rate, 5 max
depth, and 350 estimators, predicted topsoil moisture with an average mean squared error
(MSE) of 0.027 and a maximum difference between observed and predicted data of 20.09%
in a two-year series (May 2022—June 2024).

Keywords: topsoil moisture; Artificial Neural Network; Gradient Boosting Regressor;
intelligent water management; precision agriculture; environmental monitoring; machine
learning

1. Introduction

The significant and continuous growth of the global population has led to an ever-
increasing demand for natural resources, particularly raw materials, intensifying pressure
on production systems. Furthermore, the rising need for food places substantial challenges
on ecosystems and agriculture [1,2].

Intense anthropogenic activities affect the quality of natural resources and also con-
tribute to the acceleration of climate change, favouring complex, non-linear processes that
put terrestrial ecosystems at risk of major changes in their composition and structure.

A remarkable example was observed during the COVID-19 pandemic, when the
significant reduction in anthropogenic activities on a global scale led to a notable decrease in
environmental pressure. During this period, a significant direct relationship was observed
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between the decrease in human activity and the increase in air quality, associated with a
decrease in observed concentrations of gases from the burning of fossil fuels [3] as well as
an improvement in water quality, specifically in the reduction of suspended particulate
matter observed in Vembanad, India’s largest freshwater lake [4].

Among the natural resources most impacted by anthropogenic activities and climate
change, water stands out as one of the most essential and vulnerable. Vital for life, this
resource is under increasing pressure due to intensive consumption, particularly in agricul-
ture, which accounts for approximately 70% of the planet’s available freshwater—this is
primarily drawn from rivers and lakes, which make up only 1% of the Earth’s total water
resources [5,6]. The intensification of climate change exacerbate this already precarious
situation, with extreme events such as more frequent and severe droughts posing a seri-
ous threat to water availability [7,8], underscoring the urgency of adopting sustainable
management practices.

The increasing frequency and severity of droughts further intensify the challenges
faced by agricultural producers who rely heavily on these limited resources [9,10], partic-
ularly in semi-arid regions where agricultural demands are already high [11]. One such
region is the semi-arid Mediterranean, which frequently experiences droughts that severely
impact water resources by depleting groundwater levels and reducing water stored in dams
and reservoirs [12]. These conditions compromise agricultural production and threaten the
survival of agroecosystems during dry summers [13].

Moreover, rising global temperatures are projected to further reduce water availability,
complicating the water management strategies required for sustainable agriculture [14].

A report released by the United Nations indicates that by the year 2050, global food
production must increase by 50% to meet population demands [5]. However, limited water
availability, unsustainable agricultural practices, and inefficient irrigation threaten the
ability to meet these needs, especially in already water-stressed regions such as the Middle
East [15], parts of Africa [16,17], southeastern Spain [18], and South Asia [19].

The Mediterranean stands out as one of the regions with the highest socio-economic
vulnerability to droughts, the severity of which is expected to increase due to climate
change [20]. Moreover, the uneven distribution of its water resources exacerbates this
vulnerability, leading to international and supranational conflicts, particularly in trans-
boundary basins and regions dependent on inter-basin water transfers. These conflicts
are exacerbated by recurrent droughts and changes in the provision of ecosystem ser-
vices [21,22].

In this context, understanding and managing surface soil moisture (SSM) is becoming
a critical factor in addressing agricultural water challenges. Recognised as an Essential
Climate Variable (ECV) by the European Union in 2010 [23], SSM refers to the water content
of the top layer of soil. This factor plays a key role in hydrological processes, influencing
the exchange of water and energy between the land and the atmosphere.

In addition, SSM directly affects plant growth and agricultural yields by determining
the availability of water for crops [24]. It is also a key variable in hydrological models,
influencing streamflow generation and ecosystem health [25]. Understanding and mon-
itoring SSM is therefore essential for intelligent water resource management, improving
agricultural productivity and formulating climate adaptation strategies.

To address these challenges, advanced tools such as machine learning algorithms,
including Artificial Neural Networks (ANNs) and Gradient Boosting Regressors (GBRs)
have proven effective in analysing moisture data and improving predictive accuracy for
resource management.



Al 2025, 6,41

3 0f27

Due to these growing issues, effective agricultural water management practices—such
as improving irrigation efficiency and enhancing drought preparedness—are essential to
mitigating the impacts of climate change and ensuring global food security [14,26].

This study focuses on comparing GBR and ANN methodologies for predicting surface
soil moisture using weather station data and meteorological forecasts, providing a robust
approach to support smarter water resource management and foster more sustainable
agricultural practices.

2. Related Works

A recent investigation in the prediction of SSM utilised sophisticated methodologies,
including machine learning, which effectively capture spatial and temporal patterns in soil
moisture data, achieving high predictive accuracy [27]. Furthermore, other studies have
also highlighted the importance of certain machine learning techniques for soil moisture
prediction. For example, recent studies [28,29] have experimented with Random Forest in
conjunction with data from the Global Navigation Satellite System (GNSS) to enhance soil
moisture retrieval accuracy. Its effectiveness has also been tested in sensitive ecosystems
such as peatlands [30], and, in general, in estimating vertical soil moisture profiles [31].
Other studied techniques include Long Short-Term Memory (LSTM) networks, which have
been combined with the attention mechanism for predicting soil moisture and tempera-
ture [32], and with residual learning [33]; these networks have also been used in hybrid
models with wavelet decomposition or particle swarm optimisation [34] and Convolutional
Neural Networks (CNN) [35]. In this section, we present a literature review of various stud-
ies that have explored soil moisture estimation using neural networks, especially ANNs and
GBRs, highlighting their methodologies, advantages, and limitations, as these models have
proved to be effective in this field of study, as detailed in the following two subsections.
Moreover, these models do not consume an excessive amount of computational resources,
unlike more complex models such as LSTMs. Additionally, focusing on these two specific
techniques allowed for a more in-depth and exhaustive exploration of their capabilities.

2.1. Neural Networks

Neural networks have emerged as powerful tools for predicting topsoil moisture,
leveraging various data sources and methodologies. Recent studies highlight their effec-
tiveness in integrating remote sensing data and machine learning techniques to enhance
prediction accuracy, as demonstrated in [36,37]. Other approaches combined ANNs with
physical models and equations, such as Richards” equation, demonstrating the potential of
integrating physical principles with machine learning [38,39]. Moreover, a fully connected
feed-forward ANN model was developed in [40], which outperformed ten other machine
learning algorithms.

In addition to these advancements, high-resolution aerial imagery has been explored
as a valuable input for soil moisture estimation. For instance, a study in [41] developed an
ANN model that leverages spectral images from the AggieAir™ UAV platform to estimate
surface soil moisture.

Therefore, as highlighted by the provided studies, ANNs exhibits several strengths
in predicting soil moisture, with one of these primary strengths being their ability to
handle complex, multi-scale data inputs, such as satellite and in situ data, which allows for
high-resolution soil moisture predictions. For instance, in [42] a multi-scale deep learning
model achieved a median correlation of 0.901 and a root mean square error of 0.034 m?/m?,
outperforming traditional land surface models and satellite products. Moreover, as stated
before, ANNs can integrate physics-based principles, such as the water balance principle,
to enhance prediction accuracy by capturing the underlying physical processes, while
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reducing the need for extensive datasets and training time [43]. However, ANNs also
face limitations, including challenges in processing structurally diverse characteristics and
meteorological influences, which complicate the development of optimal computational
formulas for soil moisture predictions [44].

On the other hand, and with the aim to address some of the issues of the ANNSs, such as
a lack of spatial autocorrelation and vague feature representation, which can hinder model
performance, further studies demonstrate that Long Short-Term Memory (LSTM) networks
effectively capture soil moisture dynamics across different scales, utilising extensive in
situ data to enhance predictive accuracy [45-47]. Moreover, incorporating attention in
models like CONV1D+Attention has improved the ability to handle complex time series
data, achieving significant predictive performance [48]. Lastly, optimised models, such as a
GRU recurrent neural network, have shown high accuracy in short-term predictions [49].

2.2. Gradient Boosting Models and Ensemble Techniques

Gradient boosting regressors effectively predict surface soil moisture by leveraging
atmospheric and soil factors, enhancing prediction accuracy through advanced modelling
techniques [50,51]. Particularly, Extreme Gradient Boosting (XGBoost) has been high-
lighted for its superior performance in predicting soil moisture, achieving high correlation
coefficients and low RMSE values in provincial-level studies [52,53]. In a multi-sensor
data approach, the XGBR-GA model outperformed other models like Random Forest and
Support Vector Machines, as stated in [54].

Furthermore, ensemble methods, including stacking and Boruta-GBDT, have been
shown to enhance prediction accuracy by combining multiple algorithms and integrating
various machine learning techniques, leading to improved RMSE and correlation metrics,
as well as proving effective in managing the spatial variability of soil moisture [55-57].

Similarly to ANNs, GBR models also present notable strengths and some limitations in
soil moisture prediction. One significant advantage is their high accuracy and robustness,
as demonstrated by the GBR-RF algorithm, which outperformed traditional methods with
R? values reaching 0.8838 [58]. In addition, these models effectively integrate various data
sources, such as satellite imagery, enhancing predictive capabilities through multi-band
data combinations [58]. Furthermore, its ability to handle missing data through imputation
techniques enhances overall model performance [59]. Nonetheless, regarding limitations,
they include the requirement for extensive data preprocessing and feature engineering
to ensure model reliability, as well as potential overfitting if the hyperparameters are
not optimally tuned [60,61]. Furthermore, while gradient boosting models outperform
traditional methods, they may still struggle with extreme outlier conditions or when faced
with highly variable soil types [52,61].

Therefore, and as a general conclusion of this section, it is worth mentioning that
recent advancements in soil moisture prediction have demonstrated the effectiveness of
both neural networks (NNs) and GBRs in integrating diverse data sources, such as remote
sensing, in situ measurements, and multi-scale atmospheric variables. NNs, particularly
ANNSs and LSTMs, have shown strong capabilities in handling complex, multi-temporal
inputs, achieving high predictive accuracy by incorporating physics-based principles and
deep learning architectures. Meanwhile, GBR models, including XGBoost and ensemble
techniques, have proven robust in capturing spatial variability, efficiently integrating
heterogeneous data, and delivering competitive results with minimal computational costs.

The study presented in this paper builds upon the work presented in [36], expanding
the scope and refining the prediction model for surface soil moisture, incorporating a
comparison between ANNs and GBRs. Additionally, the new model utilises a more
comprehensive dataset, spanning (daily) from May 2022 to June 2024 (unlike the previous
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study, which considered data solely from the year 2023), since it is the maximum period of
time available for the moisture data collected by the seven installed probes, and integrates
additional variables from selected weather stations and the ensemble of numerical weather
forecasting models, enhancing the robustness of the predictions.

In this section, we have reviewed recent studies utilising neural networks and gradient
boosting techniques to predict surface soil moisture, demonstrating their effectiveness in
capturing spatial and temporal patterns and improving predictive accuracy. The rest of
the paper is structured as follows: Section 3 is divided in two subsections, with Section 3.1
describing the data used, including probe measurements and meteorological variables, as
well as statistical analysis methods and model development; Section 3.2 details the study
area, dataset construction, and the development and cross-validation of neural network
and gradient boosting models. Furthermore, Section 4 presents and discusses the obtained
results, comparing model accuracy and analysing performance in different scenarios;
finally, Section 5 summarises the main findings of the study, discusses implications for
water management in agriculture, and suggests possible future research directions.

3. Materials and Methods

3.1. Background
3.1.1. Probes’ Data

Currently, the installation of probes in crop fields is becoming increasingly popular and
widely used. The reason lies in different key aspects. First of all, probes provide real-time
data on several soil variables, allowing farmers to make informed decisions immediately,
optimising the use of resources such as water and fertilisers, and therefore reducing the
costs and the environmental impact. Moreover, they can detect anomalous changes in the
soil, helping in identifying potential problems before they become severe, thereby allowing
for early intervention.

Furthermore, the data measured by probes are of paramount importance for training
Al models, as they provide large volumes of historical real, precise, and accurate data on
specific variables for specific study areas, allowing Al models to make more reliable predic-
tions, and reducing the human error that can be committed making manual measurements.
Moreover, probes can be installed in multiple locations within a field, providing a detailed
spatial coverage through a granular view of the crop or area of interest.

Seven Drill & Drop SDI-12 probes, which are Sentek Technologies products [62],
have been used for this study, the same ones employed in [36]. Although this type of
probe collects different parameters, thanks to the integration of multiple sensors, only
measurements taken for surface soil moisture have been used for this research. These
measurements have a precision of +0.03% vol and a resolution of 1:10,000, demonstrating
that the probes are capable of detecting small changes in soil moisture. The distribution
of the probes employed in the study area is shown in Figure 1, where the white rectangle
defines the ROI and each yellow pin represents a probe.

3.1.2. Weather Stations Data

Weather stations offer similar advantages to probes, but they are applied to environ-
mental variables. For this study, four meteorological stations were selected, distributed
throughout the study area and located at points closest to each of the seven probes used.
Since the defined basin of interest spans several provinces, stations from different public
and open networks were used, depending on the location of the probes. For the three
probes situated within the Region of Murcia, data were sourced from the stations of the
Agrometeorological Network of IMIDA (Murcian Institute for Agricultural and Environ-
mental Research and Development), which were accessed through the SIAM (Agricultural
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Information System of Murcia) online platform [63]. Specifically, two stations from this
network, positioned in Cieza and Cehegin, were utilised. In the case of the two probes
located in the province of Almeria, a meteorological station established in the municipality
of Chirivel, part of the METEO Network, was employed. Access to the data from this
station was facilitated by the web portal [64] of the FrostSE project, which was developed
by the Department of Geography at the University of Murcia [65]. For the probes installed
in Granada, a meteorological station situated in Puebla de Don Fadrique, designated with
the code GR02, and operated by the Andalusian Institute of Agricultural and Fisheries
Research and Training (IFAPA), was utilised. To retrieve the environmental information

documented by this station, the web portal of the Agroclimatic Information Network of
Andalusia (RIA) [66] was referenced.

Figure 1. Distribution on the study area of the seven probes employed for the research.

Figure 2 shows the distribution of the meteorological stations used, marked with red
pins, in relation to the probes in the study area.

Figure 2. Distribution of the meteorological stations used in the study area.
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Daily data on maximum, minimum, and average temperatures; maximum, minimum,
and average relative humidity; average wind speed; precipitation; and average solar
radiation were collected from the stations.

3.1.3. Meteorological Models” Forecasts

Weather forecast models allow future weather conditions to be estimated based on
initial and contour data, providing forecasts up to 15 days ahead.

Although they are not as accurate as observed data, such as that from meteorological
stations or in situ probes, which collect data in near real time, they provide one of the inputs
needed for artificial intelligence models, such as the one developed in this study, to be able
to make predictions of the variable of interest. In this research, the Visual Crossing (VC)
API [67] has been used, as it offers a free limited version from which data can be accessed.
From its API, two types of data can be retrieved:

- Historical data: these data are retrieved from multiple sources, such as weather
stations, satellites, and radars. Normally, to collect historical records from a concrete
latitude and longitude, three weather stations in a range of 50 km around the latitude
and longitude specified are used [68,69]. Due to this low spatial resolution, the data
retrieved are less accurate and reliable than those obtained from the weather stations
mentioned in Section 3.1.2.

- Weather forecast: current data are combined with mathematical and physics algo-
rithms to obtain weather forecasts using meteorological models; in this case, these are
the models of ECMWFEF (European Centre for Medium-Range Weather Forecasts), GFS
(Global Forecast System), ICON (Icosahedral Nonhydrostatic Model from the German
Meteorological Office), NAM (North American Mesoscale Model), and HRRR (High-
Resolution Rapid Refresh). The models are continuously adjusted with new data to
improve accuracy, through the calibration and validation of the generated data using
real data to ensure their precision and coincidence with the real conditions [69,70].

Daily data on maximum, minimum, and average temperatures; maximum, minimum,
and average relative humidity; average wind speed; precipitation; and average solar
radiation were collected from Visual Crossing.

3.1.4. Evapotranspiration

Evapotranspiration (ET) is the process by which water is transferred from land to
the atmosphere through evaporation and plant transpiration. The Penman—Monteith
Equation (1), which has been employed in this study, is a widely used method for calcu-
lating reference evapotranspiration (ETo), integrating several meteorological parameters
to provide accurate estimates. This equation combines energy balance and mass transfer
principles, requiring inputs such as temperature, solar radiation, humidity, and wind
speed [71]. It is particularly effective for estimating ETo under standard conditions, as
demonstrated in [72], which utilised local weather data to validate its accuracy. Moreover,
the equation accounts for stomatal conductance and the vapor pressure deficit, which are
crucial for understanding plant water use [71].

0.408A(R, — G) + y%uz((es —eq)

ETo =
© A+ 7(1+ 0.3417)

(1)

3.1.5. Artificial Neural Networks

Artificial Neural Networks (ANNs) are computational models inspired by the human
brain, designed to recognise patterns and make predictions from large datasets. These
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networks consist of layers of interconnected nodes (neurons) that process input data and
adjust their connections based on errors, thereby improving predictions over time [73].

ANN s are particularly valuable in predicting soil properties due to their ability to
handle the complex, non-linear relationships inherent in soil data. They have been ef-
fectively applied in various soil science domains, including predicting soil-water char-
acteristics, assessing soil quality, and estimating compressive strength in geotechnical
engineering [74-77]. Their capacity to learn from extensive datasets enables accurate pre-
dictions of soil characteristics such as pH, organic carbon concentration, and moisture
content, which are crucial for land use planning and sustainable agriculture [78]. Addi-
tionally, ANNs can quantify uncertainty in predictions, enhancing the reliability of soil
assessments, especially in areas with limited data [74].

3.1.6. Gradient Boosting Regressors

Gradient Boosting Regressors are a class of machine learning algorithms that build
predictive models by combining multiple weak learners, typically decision trees, in a
sequential manner [79]. The process begins with an initial model, and subsequent models
are trained to correct the errors made by the previous ones, effectively minimising a loss
function through gradient descent techniques. This approach allows for the creation of a
robust model that can handle complex data patterns and improve accuracy over time [80].
The adaptability of gradient boosting to stochastic data streams allows it to efficiently
process varying soil moisture conditions, making it suitable for real-time applications [81].

3.2. Proposed Solution

The methodology is structured into subsections that constitute the main steps taken to
obtain the solution.

3.2.1. Area of Study

The geographical area of interest for this study, depicted in Figure 1, was primarily
identified based on the spatial distribution of the seven probes available for in situ soil
moisture assessment. This area is located in the southeastern part of the Iberian Peninsula,
encompassing regions within the provinces of Murcia, Almeria, Albacete, and Granada.
The terrain covers a total area of approximately 7539 km? and is defined by two specific
vertices with the following coordinates:

- Vertex 1: Latitude: 38°19'58.65” N—Longitude: 2°26'12.26"” W;
- Vertex 2: Latitude: 37°33'52.96” N—Longitude: 1°23'4.54" W.

The study area is characterised by a semi-arid subtropical Mediterranean climate,
which features elevated summer temperatures and relatively mild winter conditions. In
terms of thermal measurements, it is noteworthy that the mean annual temperature hovers
around 19 °C, with pronounced climatic variances observed between coastal and inland
regions, where altitude significantly influences these differences, complemented by an
average annual sunshine duration that surpasses 3014.3 h [82]. Conversely, precipitation
is limited and erratic, exhibiting a propensity for torrential occurrences that can result in
flooding, predominantly during the autumn and spring seasons [83]. Furthermore, in light
of the region’s topographical characteristics, nearly 27% of the area is composed of moun-
tainous terrains, 35% consists of plains and plateaus, while the remaining 38% encompasses
intramountain depressions and valleys. The median elevation is approximately 645 m [84].
Additionally, in the province of Murcia alone, 47.44% of the total land area is allocated
for agricultural purposes [82]. Given that nearly half of the province’s area is committed
to agriculture, it is imperative to monitor soil moisture, as it represents one of the most
significant determinants of plant growth and development.
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3.2.2. Dataset Construction

Although the detailed creation of the datasets used in this study will be explained

throughout this section, a flowchart is presented first in Figure 3 to visually provide an

initial overview of the main steps followed.

oo
Daily collection of
SSM
measurements
from 7 in situ
probes for the
longest available
period (May
2022 — June

2024)

3 types of

datasets for each
probe

Dataset 1
May 2022 — June
2024

(daily)

Dataset 2
2023 + satellite
moisture
(every 12 days)

1

Only for Dataset type
2, moisture from SSM
Sentinel-1 SAR
product was collected

Dataset 3

—> 2023 —

(daily)

For each type of
dataset 2 versions
were created
depending on the
data source

. In situ
Visual
. weather
Crossing .
stations

Several
meteorological
variables were

collected from both
sources

Calculation of
reference ETo

using Penman—
Monteith

Data
Normalization
using Min—Max

[Wind speed Sglgr Maximum )
radiation temperature
Minimum Average Maximum
temperature | temperature humidity
Minimum Average Precipitation
\__humidity humidity )

Figure 3. Flowchart illustrating the main steps followed in the creation of the three datasets used in

this study. This visual representation provides an initial overview before delving into the detailed

explanations presented in this section.

First of all, the longest possible time series of SMM measurements, recorded by each

of the seven probes, was obtained, covering, daily, the period from May 2022 to June 2024.

The rest of the data were retrieved according to these time limits. After this, two types of

data were collected:

Real data from the closest weather stations to each of the probes: from each weather
station, daily data were collected for nine variables: minimum temperature, average
temperature, maximum temperature, minimum relative humidity, average relative hu-
midity, maximum relative humidity, average wind speed, accumulated precipitation,
and average solar radiation.

Historical data from Visual Crossing: using the limited free access API, daily data
from seven variables were obtained: minimum temperature, maximum tempera-
ture, minimum relative humidity, maximum relative humidity, average wind speed,
accumulated precipitation, and average solar radiation.

Both of these variables are essential for the Penman—Monteith formula, which is used

to calculate evapotranspiration. Although precipitation is not required in the Penman-—

Monteith formula, it is important to use it to better estimate the water balance, where, in a

simplified way, precipitation represents the contribution of water, some of which infiltrates

into the soil and contributes to an increase in soil surface moisture, and evapotranspira-

tion represents the loss of water to the atmosphere, where it contributes to a decrease in

soil moisture.
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Moreover, data from the SSM Sentinel-1 SAR product, derived from Sentinel-1 SAR,
were collected for the year 2023. These data have a temporal limitation, as they only fully
cover the selected study area every 12 days.

Once all the data were obtained, three datasets were created for each type of data and
probe, where the different environmental variables were the independent variables that
would be used for predicting the SSM measured by the probe (the dependent variable):

- The first dataset covers data from May 2022 to June 2024 and takes into account all
the environmental variables (minimum temperature, average temperature, maximum
temperature, minimum relative humidity, average relative humidity, maximum rel-
ative humidity, average wind speed, accumulated precipitation, and average solar
radiation), either from Visual Crossing or from weather stations.

- The second dataset covers the entire year 2023 in 12 day intervals and, in addition to
the environmental variables, also includes satellite moisture.

- The third dataset also covers the year 2023, but with records for each day of the year. In
this case, only the environmental variables are included, without the satellite moisture.
This third dataset is constructed as an intermediate degree between the previous two.

The aim of this division was twofold. On one hand, the aim was to compare the results
obtained by the different models on each of the datasets, in order to determine, especially,
the impact of satellite data on the dependent variable. The goal was to elucidate what was
better: to use a longer time series of data or to renounce having a ‘large” amount of data in
favour of having a variable that offers a broader satellite perspective on soil moisture. On
the other hand, the objective was to compare which models offer better and more accurate
results: those trained with real data measured by the weather station closest to each probe,
or those trained with the historical data from Visual Crossing, which offers measurements
with a lower spatial resolution.

Once all the datasets were constructed, the different environmental variables were
used to calculate the evapotranspiration (ETo) associated with each daily record. To carry
this out, the Penman-Monteith formula was programmed in Python (version 3.12.6, with
libraries Pandas (2.2.2) and NumPy (1.26.4)), and the calculation of this variable was
automated for each record in each dataset.

After incorporating this final variable, all datasets were normalised using Min-Max
normalisation. This method is advantageous when variables do not follow a normal
distribution (as is the case here, which will be elaborated on in the statistical analysis
section), as it preserves the original data distribution while scaling all values within a fixed
range [0, 1] [85]. Additionally, Min-Max normalisation prevents data structure distortion
that other techniques, such as Z-score normalisation, might introduce when dealing with
skewed or heavy-tailed distributions. Furthermore, it enhances feature weighting by
emphasising features with strong correlations to the target variable, thereby improving
classification performance across various machine learning classifiers [86]. It is also worth
noting that the global maximums and minimums of each variable (i.e., the maximum and
minimum values of each variable across all datasets) were used, ensuring a more robust
and general normalisation for the entire study area.

Furthermore, applying normalisation is crucial for the performance of the models (the
ANN and the GBR) that will be trained on these data. In the case of ANNs, normalisa-
tion helps to prevent issues related to different scales among input variables, improving
convergence speed and stability during training by avoiding saturation in activation func-
tions [85,87-89]. For GBR, while tree-based models are generally less sensitive to feature
scaling than gradient-based methods, normalisation can still be beneficial when dealing
with heterogeneous data distributions, ensuring a more balanced contribution of features
to the model and improving accuracy [90].
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Finally, each dataset was divided into two parts: training (constituting 80%), and the

validation (the remaining 20%) of the different models that were developed.

3.2.3. Statistical Analysis and Comparison Between Visual Crossing Data and Weather
Stations Data

With the aim of deciding which environmental variables were the most significant for

predicting topsoil moisture, a statistical analysis and comparison between Visual Crossing

and weather stations data was conducted. Several steps were followed.

First of all, an exploratory data analysis was conducted. For this, the mean, median,
standard deviation, and interquartile range of the data were calculated, and outliers
were identified using box plots. For both types of data, and generally for all probes,
the results were very similar.

Next, the distributions followed by the different variables for each probe were anal-
ysed, which again, were very similar both for all probes and between the VC data and
the station data. It is noteworthy in this case that none of the variables, in any data
or probe, followed a normal distribution, as demonstrated by the Shapiro-Wilk test.
This statistical test determines, for a small or medium number of records, as is the
case here, whether the distribution followed by a variable is normal or not, based on
whether a certain threshold (having a p-value greater than 0.05) is exceeded.

The next phase involved conducting a correlation analysis. Given that the previous
step demonstrated that the variables did not follow normal distributions, Spearman’s
correlation was employed. This method measures the statistical dependence between
the ranks of two variables and is particularly useful when the relationships between
variables are not linear but follow a monotonic trend. In most cases, a significant
correlation was observed between the different variables and the moisture recorded
by the probes, notably highlighting the inverse relationship between humidity and
either ETo or solar radiation. It is also noteworthy that precipitation data obtained
from Visual Crossing did not show a clear correlation with the dependent variable,
unlike the data recorded by most of the stations. This discrepancy is due to the low res-
olution of the VC data, which averages data from three stations within a 50-km range,
whereas the manually selected weather station is, at worst, less than 10 km away
from its respective probe. These results are partially illustrated in Figures 4 and 5.
These figures represent average correlation matrices, showing the mean of all cor-
relations between the different independent variables and the dependent variable
‘probe_moisture’. Thus, the values presented provide a general representation of each
particular correlation matrix, which may be influenced by outlier correlation values
from some of the probes.

The final phase consisted of detecting systematic errors in the data. This was carried
out in three steps. First, a bias analysis was conducted by calculating the difference
between the means of the station data and those calculated by VC. In this initial step,
it was discovered that VC tended to slightly overestimate ETo, precipitation, and
minimum temperature, and notably overestimate average wind speed and minimum
relative humidity. Conversely, it perceptibly underestimated maximum relative hu-
midity. The next step involved performing a residual analysis, which is the difference
between the VC values and the station values, where the results obtained in the pre-
vious bias analysis were reaffirmed. Finally, Bland—Altman plots were used, which
serve to visually compare two measurement techniques and to assess the agreement
between two data sets.
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Average Spearman Correlation Matrix for VC Data
from May 2022 to June 2024
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Figure 4. Spearman correlation of the different environmental variables (minimum temperature,
average temperature, maximum temperature, minimum relative humidity, average relative humidity,
maximum relative humidity, average wind speed, accumulated precipitation, and average solar
radiation) collected in each of the three datasets (dataset from May 2022 to June 2024 with daily
but without satellite soil moisture measurements, dataset from the year 2023 in 12-day intervals
with satellite soil moisture measurements, and dataset from the year 2023 with daily data and
without the satellite soil moisture measurements) for VC data, with respect to the dependent variable

probe_moisture.
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Average Spearman Correlation Matrix for Stations Data
from May 2022 to June 2024
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Figure 5. Spearman correlation of the different environmental variables collected (minimum temper-
ature, average temperature, maximum temperature, minimum relative humidity, average relative
humidity, maximum relative humidity, average wind speed, accumulated precipitation, and average
solar radiation) in each of the three datasets (dataset from May 2022 to June 2024 with daily but
without satellite soil moisture measurements, dataset from the year 2023 in 12-day intervals with
satellite soil moisture measurements, and dataset from the year 2023 with daily data and without
the satellite soil moisture measurements) for weather stations data, with respect to the dependent

variable probe_moisture.

3.2.4. Statistical Analysis of the Influence of the Satellite Moisture on the
Dependent Variable

This analysis is an extension of the previous one, although it is specifically focused on
determining the impact of satellite moisture on the moisture recorded by the probes. The
most notable phases of this analysis are presented below:
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- Firstly, a Spearman correlation test was conducted (it was previously verified that

satellite moisture also did not follow a normal distribution). Here, it was observed that
the data covering the period from 2022 to 2024 showed a slightly higher correlation
with the dependent variable than the data covering the year 2023 daily, and that the
latter had a higher correlation than the datasets covering 2023 in 12-day intervals.
Additionally, it was found that the correlation of satellite moisture with the moisture
measured by the probes was null or even significantly inverse. Nevertheless, it was
retained in the second type of dataset explained in Section 3.2.2 to ensure that models
trained using this additional variable performed worse than those using the other
two types of datasets also explained in Section 3.2.2. These results are shown in the
Figures 4 and 5.

- Next, a regression analysis was performed, as a good way to understand how the

independent variables affect the dependent variable is to fit a multiple regression
model and interpret the obtained coefficients, evaluating their statistical significance
through p-values. The most notable observations from this analysis are, firstly, that
as the time series of the data is reduced, the p-value associated with each variable
increases significantly, making them less significant in the predictions. It is noteworthy
that the average p-value associated with satellite moisture in the different regression
models trained, both for VC and station data, is above 0.3. However, as the data time
series is reduced, the R? coefficient of the models increases. This could be explained by
considering that we are using linear models to obtain an initial idea of the influences
of the independent variables on the probe moisture, when the relationships between
these variables do not have to be linear, especially as the volume of data increases, since
these models are too simple and the relationships between the variables are complex.

- Lastly, and especially since ETo was calculated from the other variables using the

Penman-Monteith formula, a collinearity analysis was conducted using the Variance
Inflation Factor (VIF), where it was observed that all datasets had variables with very
high collinearity indices. To address this, Principal Component Analysis (PCA) was
employed to extract the principal components that explained 95% of the variance
of the dependent variable. However, after applying PCA, the linear models were
repeated, resulting in a significant decrease in the R? coefficient in all linear models,
especially those trained on the 2023 dataset with satellite moisture. Therefore, all
variables (except for satellite moisture) were left in the final datasets.

More details on the following two phases are given in Section 4, where the results
are presented.

3.2.5. Development and Cross-Validation of the ANNs

The following flowchart in Figure 6 summarises the key aspects of the neural network
development and cross-validation process. Although detailed explanations are provided
throughout this section, this visual representation offers an initial overview of the main
steps involved.

The first type of model trained was the ANNSs. For each of the three datasets, within
each type of data, several ANNs were trained (i.e., with different structures, number of
layers, and neurons), using the Grid Search technique with a wide grid of hyperparameters
with 90 combinations. The hyperparameters varied primarily included the batch size,
number of epochs, and optimiser. Specifically, the batch sizes tested were 1, 4, and §; the
number of epochs tested were 50, 100, 200, 300, 400, and 500; and the optimisers tested
included Adam, Nadam, SGD, RMSprop, and AdamW. The batch size was varied to
balance between computational efficiency and model performance, the number of epochs
was adjusted to ensure sufficient training without overfitting, and different optimisers were
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tested to find the most effective one for each dataset. A fivefold cross-validation was used
to find the best combination of these hyperparameters, a method extensively recognised
and employed in the literature [91-93]. In this cross-validation, the corresponding training
data were divided into five folds, with each fold containing temporally contiguous data.
Each model was then trained five times, using four folds for training and validating on the
remaining fold each time.

Grid Search + 5-
fold Cross-
Validation to find

the best
hyperparameters
for each ANN

)

2 network
architectures were

tested for each
type of dataset

—_—

2 hidden layers of 16|

Dataset 1
May 2022 - June and 8 neurons
2024 3 hidden layers of |
(daily) 32, 16 and 8 neurons |
Dataset 2 2 hidden layers of 16
2023 + satellite and 8 neurons
moisture

2 hidden layers of 8 )

(every 12 days) and 4 neurons

2 hidden layers of 16 |

Dataset 3 and 8 neurons
2023 <
(daily) 3 hidden layers of

32,16 and 8 neurons|

—

Best ANN
(structure +
hyperparameters)
for each dataset
and probe

Cross-Validation

process (testing

each ANN on the

complete datasets
from

the other probes)

The objective was to
select the best ANN,
capable of generalizing to
any point in the study
area, in

terms of a lower MSE

Figure 6. Flowchart summarising the key aspects of the neural network development and cross-
validation process.

Moreover, for all datasets, a base structure was tested, consisting of two hidden layers,
the first with 16 neurons and the second with 8. This base structure was chosen as a
starting point due to its simplicity and effectiveness in initial tests. Additionally, for the
datasets comprising data from 2022 to 2024, and 2023 daily, a more complex neural network
structure was also tested, consisting of three hidden layers with 32, 16, and 8 neurons,
respectively. This more complex structure was expected to capture more intricate patterns
in the data. For the datasets covering only 2023 in 12-day intervals, a slightly simpler
structure was tested, consisting of two hidden layers with eight and four neurons, as the
preliminary results indicated that a simpler model was sufficient for this dataset.

Over all the trained neural networks, a cross-validation process was carried out. In
this case, cross-validation means testing each neural network on the complete datasets from
the other probes. As an example, the two neural network models created for probe 89 with
data from 2022 to 2024 were used to predict the datasets of the same type (from 2022 to
2024) from the other six probes. It is worth noting that this process was carried out only on
the neural networks trained with data extracted from weather stations since they obtained
the best results, as will be discussed in Section 4. The objective of this cross-validation is to
select the best neural network, capable of generalising to any point in the study area, in
terms of a lower MSE.

3.2.6. Development and Cross-Validation of the GBRs

Once the development, training, and validation of the neural networks were com-
pleted, GBRs were developed solely for the station’s data, as they demonstrated better
results in almost all the previous analyses and models. Similar to the ANNSs, an extensive
grid of hyperparameters was used to find the best configuration for each dataset and each
probe. In this case, the grid consisted of 420 combinations, varying primarily between
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the number of estimators, learning rate, and maximum depth. Specifically, the number
of estimators tested were 5, 10, 15, 20, 25, 50, 75, 100, 150, 200, 250, 300, 350, and 400; the
learning rates tested were 0.1, 0.01, 0.001, and 0.0001; and the maximum depths tested were
3,5,10, 20, 50, and 75. The number of estimators was varied to control the number of trees
in the ensemble, the learning rate was adjusted to balance the speed of learning and the
risk of overfitting, and the maximum depth was tested to determine the complexity of the
individual trees.

The same process of cross-validation employed to find the ANN that best generalised
for the entire study area was also applied to the GBRs.

4. Results and Discussion
4.1. Main Results from the Statistical Analysis of the Data

First, analysing the results obtained from the statistical analysis of the data, the
following key points can be highlighted:

- The data collected by the weather stations showed a higher correlation with the SSM
recorded by the probes, especially in the case of precipitation and average wind speed.
This is due to the higher spatial resolution of the data taken by the weather stations
and their closer proximity to the probes. The VC data consist of an average of the data
collected by three weather stations in an area of 50 km around the point where the
probe is located, and therefore, the data are more biased and inaccurate, as changes in
the value of the environmental variables can be lost in the averaging process; the data
collected by the manually-selected weather stations are never more than 10 kilometres
away from the point where the probe is located, enhancing the accuracy of the data.

- Regarding the influence of the satellite data on the dependent variable, it is worth
noting that it was null and even inverse in terms of correlation; this seems to be
due to the differences in depth and spatial resolution. While the satellite data cover
wide regions of a square kilometre, probe data are collected locally, which are highly
accurate but less general. Moreover, satellite data comprise the soil moisture in a
vertical column that is 5 cm deep, while probes collect the soil moisture at a concrete
point at 10 cm deep. Moreover, the temporal restrictions imposed by including this
variable in the data significantly reduce the time series, and, therefore, the models’
ability to extract a better behaviour pattern in topsoil moisture, since it requires
records every 12 days (due to spatial coverage restrictions) instead of making daily
measurements. Furthermore, it was demonstrated that the data showed a higher
correlation with the dependent variable the longer that the chosen time series was.

4.2. Model Performance Comparison

According to the results obtained in the development and cross-validation of the
ANN:gs, it is worth noting that the best neural network, in terms of the lowest MSE reached
in the cross-validation process, was the one trained with the data from the weather station
closest to probe 93 that covered the period from May 2022 to June 2024. The MSE reached
by this model in the respective cross-validation process was 0.041591 (denormalised it is
6.67%). This ANN consists of two hidden layers with 16 and 8 neurons, respectively, and
the HeNormal kernel initialiser. It was trained with a batch size of 1 and the RMSprop
optimiser, during 50 epochs.

Furthermore, regarding the results in the development and cross-validation of the
GBRs, the model trained with the same data as the best ANN once again stood out
as the best model developed with this machine learning technique. In fact, this model
outperformed the best neural network, showing an average MSE of 0.027231 (denormalised
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it is 6.05%) in the cross-validation process. This model was trained with a learning rate of
0.01, a max depth of 5, and with 350 estimators (decision trees).

The reason why GBRs outperform ANNSs in predicting surface soil moisture can be
attributed to their ability to effectively manage bias and variance through the aggregation
of multiple predictors. Moreover, as the GBR technique specifically enhances model
performance by sequentially correcting errors from previous simpler models, it allows for a
more robust prediction in complex environments like soil moisture estimation. In contrast,
ANN s can be sensitive to overfitting, especially when the training data are limited or noisy,
leading to less reliable predictions.

4.2.1. Implications of Feature Importance

Furthermore, to better understand the reasons behind the models” performance and
the variables that most influence their predictions, the feature importance graphs of the two
best models, the ANN and the GBR, are presented in Figures 7 and 8, respectively. In these
Figures, the differences in how each model calculates feature importance become evident:

- For the ANN, feature importance is derived using permutation importance, where
each feature is randomly shuffled to measure the degradation (or improvement) in
model performance. This method can result in both positive and negative importance
values. Positive values, as in evapotranspiration, minimum and maximum temper-
ature, precipitation, and maximum, minimum, and average humidity, indicate that
the features contribute positively to the model’s accuracy (i.e., by using these features,
the model performance improves), while negative values (in average temperature,
windspeed and solar radiation) suggest that permuting the feature paradoxically
improves performance. These negative values are likely because the feature is noisy or
irrelevant (especially in the case of average windspeed, as shown in Figures 4 and 5,
where the correlation of this variable with the soil moisture was null) or because the
model might be overfitting on that feature.

- In contrast, the GBR calculates feature importance based on the reduction in the
loss function achieved when a feature is used to split data in its decision trees. This
method inherently produces only positive values, as it aggregates the contributions
of features to reducing the overall error, and, therefore, it primarily reflects direct
contributions to prediction. In this case, Figure 8 shows that features in the GBR,
such as maximum temperature or average humidity that were not as relevant for the
ANN, are of great importance. This is due to the way GBR prioritises features that
create effective splits in the data, capturing linear and monotonic relationships more
effectively, being, therefore, contrary to the ANN, which is better in detecting complex,
non-linear interactions.

4.2.2. Data Source Evaluation: Weather Station Data vs. Visual Crossing Data

The two best final models were used to estimate the difference in predicting soil
surface moisture using data from weather stations and Visual Crossing. The maximum
difference obtained by the best ANN was 32.35%, while the best GBR showed a maximum
difference of 20.09% between using Visual Crossing data and weather station data.

Figure 9 presents a bar chart comparing the MSE values obtained by the two best
models (GBR and ANN), both in the Visual Crossing and in the meteorological station
datasets from May 2022 to June 2024 of each of the seven probes. It can be seen, that, in
general, the GBR obtained lower MSEs for all the probes’ data, demonstrating, once again,
to outperform the ANN.
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Feature Importance for the best ANN
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Figure 7. Feature importance of the ANN, derived using permutation importance. Positive val-
ues indicate features that improve model performance, while negative values suggest noisy or
irrelevant features.

Feature Importance for the best GBR
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Figure 8. Feature importance of the GBR, based on reduction in the loss function. Positive values
indicate features that directly contribute to prediction accuracy, with maximum temperature being
particularly important.

As demonstrated, the GBR model trained with weather station data and probe 93 data
achieves superior results, evidenced by the lowest average MSE in the cross-validation
process and the lowest maximum absolute difference in predicting surface moisture using
data from weather stations and Visual Crossing. Figure 10 illustrates the performance of
the best model for predicting topsoil moisture over a reserved test period from 23 August
2023 to 22 January 2024. The predictions are based on data from Visual Crossing and the
nearest weather station to probe 93. Additionally, the graph includes a line representing
the 10-day moving average for the actual topsoil moisture during this period. It can be
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concluded from this graph that both predictions made by the model (using Visual Crossing
weather data and the nearest weather station data) generally follow the trend of the actual
moisture. However, both predictions exhibit more fluctuations but tend to remain within a
relatively stable range, unlike the actual moisture, which shows abrupt peaks on specific
days (e.g., during a very punctual torrential rain). The predictions based on Visual Crossing
weather data tend to be higher than those based on the weather station data, although
they are very close to each other. Additionally, except for periods of abrupt peaks in actual
moisture, both types of predictions tend to slightly overestimate topsoil moisture.

Comparison of MSE between station and VC data for both the best GBR and ANN models
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Figure 9. Comparison of the mean squared error obtained between weather station and Visual

Crossing data for both the best Gradient Boosting Regressor and Artificial Neural Network models in
a cross-validation using all the probes’ data.

10-day Moving Average Comparison of Model Predictions
and Real Topsoil Moisture (from 2023-08-23 to 2024-01-22)
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Figure 10. Comparison of the 10-day moving average for model predictions and real topsoil mois-
ture from 23 August 2023 to 22 January 2024. The plot shows the 10-day moving average for the

moisture estimated by the model using station data and Visual Crossing data, along with the real
topsoil moisture.
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4.3. Surface Soil Moisture Prediction: Comparison of Forecasted and Actual Data

Furthermore, to demonstrate the model’s capability to accurately predict topsoil
moisture with a certain lead time, two maps were created. The first map, shown in
Figure 11, displays the surface soil moisture predicted by the model using forecast data
retrieved from Visual Crossing for the period from 30 November 2024 to 9 December 2024,
inclusively. Due to the limitations of the free version of the Visual Crossing API, only
10 days of weather forecast data could be collected. These data had to be gathered all at
once to avoid any alterations, resulting in a large volume of requests for all points in the
study area. Conversely, Figure 12 shows a map with the moisture predictions made by the
model using actual data collected from Visual Crossing’s historical records after the same
10-day period. Both maps represent average values, calculated by taking the daily moisture
predictions made by the model for each latitude and longitude and averaging them over
the entire period. In both maps, bluer shades correspond to areas with higher moisture,
while redder shades indicate areas with lower moisture.

Predicted topsoil moisture by the best GBR with Visual Crossing forecast weather data

from 30 November 2024 to 9 December 2024 (10 days)
v y e k2 e =

Figure 11. The map shows the surface soil moisture predicted by the best GBR using forecast data
from Visual Crossing for the period from 30 November 2024 to 9 December 2024. Bluer shades
indicate higher moisture levels, while redder shades indicate lower moisture levels.
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Predicted topsoil moisture by the best GBR with Visual Crossing real weather data from

30 November 2024 to 9 December 2024 (10 days)
& 7

Figure 12. The map displays the surface soil moisture predictions made by the best GBR using actual
data collected from Visual Crossing’s historical records for the same period from 30 November 2024
to 9 December 2024. Bluer shades represent areas with higher moisture, and redder shades represent
areas with lower moisture.

Based on the comparison of both maps, it can be observed that there is little visual
difference between the soil moisture predictions made by the model using forecast data
from Visual Crossing and the predictions made using actual data from Visual Crossing for
the same period. Specifically, it is worth noting that using forecast data, the model tends to
overestimate the soil moisture. In fact, the maximum difference between the soil moisture
map predicted by the model using forecast data and the map with moisture estimates using
actual data is 2.96%, demonstrating that the model is capable of predicting surface soil
moisture with a certain lead time. This small discrepancy highlights the model’s accuracy
and reliability in predicting soil moisture levels, even when using forecast data instead of
real-time measurements. It is also noteworthy that, given that the study area has a very
similar climate throughout and the period comprises only 10 days, the differences between
the maximum and minimum moisture estimated by the model are not very high.

4.4. Discussion

Among the studies most similar to this one, we analysed the results of [94], which
presented a multiple linear regression model with an MSE of 0.14 for soil moisture forecasts
one day ahead. In the same context, our study obtained a lower average MSE of 0.027
for the Gradient Boosting Regressor (GBR) during cross-validation, where the model
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was evaluated on complete datasets, spanning two years of data, from all probes, also
making one-day-ahead predictions. Moreover, in [95], a root mean squared error (RMSE)
of 4.6% was reported for their Random Forest model, which translates to an RMSE of
approximately 21.16%. However, the GBR model developed in this study performed with
an average RMSE of 6.05% (which is equivalent to 0.027 but denormalised) during the same
cross-validation process.

Furthermore, after an extensive literature review, no previous study was found that
specifically compared the results of soil moisture prediction using observed meteorological
data and predicted meteorological data. The difference over a 10-day period found in this
study was 2.96%, demonstrating the validity and feasibility of using a machine learning
model on forecasted meteorological data, even when trained on observed meteorological
data, and also highlighting the accuracy of meteorological predictions and their proximity
to actual values. Additionally, the study not only analysed and evaluated the impact of
using forecasted versus observed meteorological data on soil moisture predictions, but
also assessed and compared the effects of using meteorological data obtained directly from
weather stations located near the soil moisture probes versus data obtained from third-party
services such as Visual Crossing. While third-party services offer more convenient and
universal data access without requiring researchers to set up their own weather stations,
their spatial resolution is often lower, as the weather stations they rely on may not be near
the regions of interest.

Beyond these methodological contributions, the practical implications of this study
are particularly relevant for real-time irrigation management systems. The high accuracy
and low latency of the GBR model make it a strong candidate for integration into smart
agriculture platforms.

Notably, integrating GBR involves real-time data assimilation from meteorological
forecasts and soil moisture sensors, enabling dynamic irrigation recommendations tailored
to specific field conditions. This approach supports sustainable water management by
preventing over-irrigation and ensuring that crops receive the necessary moisture based on
future conditions rather than reactive responses to soil dryness.

5. Conclusions

The study concluded that data from weather stations had a higher correlation with soil
moisture measured by the probes, primarily due to their higher resolution and proximity
compared to Visual Crossing data, which averaged data from three stations located 50 km
away. In contrast, satellite data did not show a significant correlation with the dependent
variable, mainly because of differences in depth and spatial resolution, as well as temporal
constraints that limit the data series. Among the models tested, the best neural network
(ANN) was trained with data from the weather station closest to probe 93, achieving a
mean squared error (MSE) of 0.041591 in cross-validation. However, the Gradient Boosting
Regressor (GBR) model trained with the same data outperformed the ANN, with an
average MSE of 0.027231, demonstrating superior predictive capability in estimating soil
surface moisture. Additionally, the maximum absolute difference in predicting soil surface
moisture using Visual Crossing data versus weather station data was 32.35% for the best
ANN and 20.09% for the best GBR, indicating that GBR models exhibit less variation in this
aspect. This comprehensive analysis underscores the importance of selecting appropriate
data sources and models for accurate soil moisture prediction. Lastly, the comparison
between the predicted soil moisture map using forecast data and the map using actual
data showed a maximum difference of only 2.96%. This small difference demonstrates the
model’s ability to accurately predict soil moisture with a certain lead time, confirming its
reliability and effectiveness.
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These findings hold significant implications for agriculture in semi-arid regions, where
efficient water resource management is crucial for ensuring sustainable crop production.
The ability of the GBR model to provide more accurate and stable predictions of soil mois-
ture can help to optimise irrigation practices, reduce water waste, and improve crop yields.
Moreover, ongoing efforts are focused on integrating the final GBR model into a smart
agriculture platform specifically designed for the southern region of the Iberian Peninsula,
characterised by a semi-arid climate and increasing water resource stress. Therefore, our
model will help to mitigate the risks associated with drought and water scarcity by util-
ising the on-field sensor data provided by the platform, allowing farmers to monitor soil
moisture levels and receive irrigation recommendations tailored to their specific location
and crop type.

It is worth noting that this study is affected by some limitations. In particular, it
should be highlighted that the models have been trained with data recorded for the selected
basin, thus being limited to the dry climate of this southern Mediterranean region of
the Iberian Peninsula. This means that they will not perform well in areas with humid
climates, where storms are much more frequent. Although this limitation stands as the
main future direction of this research, it is worth noting that the developed model can
be recalibrated with data from different regions since the main variables related to the
processes of water accumulation and loss in the soil are included in the model. This would
allow the methodology and input variables to be correctly generalised to other climatic
regions. Nonetheless, another approach to address this limitation is to develop specific
models for several regions with different climate types, installing probes in each of these
regions to collect in situ soil moisture measurements to be used as references for training
and testing the models. Then, each specific model can be integrated into a larger model
capable of selecting the appropriate prediction based on the latitude and longitude of the
desired geographic area by the user.
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