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Abstract: In this paper, we build a numerical p-n Si/GaAs heterojunction model using quantum-
mechanical tunneling theory with various quantum tunneling interfacial materials including two-
dimensional (2D) materials such as hexagonal boron nitride (h-BN) and graphene, and ALD-enabled
oxide materials such as HfO2, Al2O3, and SiO2. Their tunneling efficiencies and tunneling currents
with different thicknesses were systematically calculated and compared. Multiphysics modeling
was used with the aforementioned tunneling interfacial materials to analyze changes in the strain
under different temperature conditions. Considering the transport properties and thermal-induced
strain analysis, Al2O3, among three oxide materials, and graphene in 2D materials are favorable
material choices that offer the highest heterojunction quality. Overall, our results offer a viable route
in guiding the selection of quantum tunneling materials for a myriad of possible combinations of
new heterostructures that can be obtained with an ultra-thin tunneling intermediate layer.

Keywords: semiconductor heterostructure; tunneling probability; quantum mechanical tunneling;
oxide; 2D material interfaces

1. Introduction

Semiconductor heterojunctions have long been considered one of the most important
building blocks of the semiconductor industry. They have led to various practical electronic
and optoelectronic applications such as lighting devices (light-emitting devices and lasers),
sensors, transistors, and photovoltaics [1–7]. All of these applications have used lattice-
matched (or slightly mismatched) semiconductor systems such as Si/SiGe, GaAs/AlGaAs,
or GaN/AlGaN [8–10]. While a tremendous amount of effort has been devoted to these
systems to create high-quality heterojunctions, these heterogeneous integrations must be
made within a very strict lattice match rule [11–15]. To overcome this limitation and re-
striction, namely to integrate dissimilar/lattice mismatched semiconductors, various novel
approaches have been proposed. In the early days, advanced wafer bonding techniques,
such as surface-activated bonding (SAB), were introduced and applied to demonstrate
various Si-to-III-V solar cells and transistors [16,17]. However, this method has several
restrictions in that the source materials must exist in the form of the wafer, and the defect
formation is due to different lattice parameters between to-be-bonded semiconductors.
Recently, another heterogeneous integration method has been reported by introducing an
ultra-thin intermediate layer between two to-be-bonded semiconductors: the Ultra-thin
Tunneling intermediate layer (UT) method, which uses a sub-nanometer thick quantum tun-
neling layer that is prepared by atomic layered deposition (ALD) [4,18,19]. The UT-based
heterogeneous integration method was developed to realize a high-quality integration
among semiconductor membranes. This integration process involves (1) the creation of
semiconductor nanomembranes; (2) the deposition (or formation) of the ultra-thin interme-
diate layer; and (3) the micro-transfer printing technique, which allows us to manipulate
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semiconductor nanomembranes. To create the heterostructure, one or more semiconductor
nanomembranes need to be transfer-printed onto another semiconductor substrate. The
core of this idea is to passivate the surface prior to bonding two semiconductors using
an ultra-thin layer to prevent its surface from growing an unwanted native oxide layer or
dangling bonds. At the same time, the thin tunneling layer facilitates the carrier transport
across the interfacial layer; thus, a high-quality heterostructure that has a substantially
lower degree of interface defect density can be achieved. In this way, a high-quality arbi-
trary heterogeneous integration between two dissimilar single-crystalline semiconductors
can be realized regardless of their crystal orientations, thermal expansion, and lattice con-
stants. To date, most experimentally demonstrated heterostructures use aluminum oxide,
and other quantum tunneling interfacial materials have not yet been explored.

In this paper, we build a numerical p-n Si/GaAs heterojunction model using quantum-
mechanical tunneling theory with various quantum tunneling interfacial materials includ-
ing two-dimensional (2D) materials such as hexagonal boron nitride (h-BN) and graphene,
and ALD-enabled oxide materials such as HfO2, Al2O3, and SiO2. Their tunneling efficien-
cies and tunneling current with different thicknesses were then systematically calculated
and compared. Finally, multiphysics modeling was performed with the aforementioned
tunneling interfacial materials to analyze the changes in strain under different temperature
conditions. Overall, our results offer a viable route in guiding the selection of quantum
tunneling materials for a myriad of possible combinations of new heterostructures that can
be obtained via the UT method.

2. Materials and Methods

Figure 1a–c shows a schematic illustration of the heterogeneous integration of two dissim-
ilar semiconductors sandwiched between ultra-thin oxide and 2D materials. Figure 1 shows
that semiconductors A and B are different lattice-mismatched materials with an ultra-thin
quantum tunneling layer. In most cases, oxides and h-BN create tunneling barriers, but the
graphene layer forms a quantum well, leading to different band offsets. In this calculation,
we employed p-type Si and n-type GaAs; each quantum tunneling layer was seen among
h-BN, graphene HfO2, Al2O3, and SiO2 with different thicknesses from 0.3 nm to 1.3 nm. It
should be noted that direct tunneling is used for carrier transport calculation in this study
because this study primarily focuses on an ultra-thin oxide and a 2D material’s interface
(<2 nm) [20,21]. A continuous wave function was employed to investigate the tunneling
probability (T) of carriers (electrons and holes) across the heterointerface. A wave function
incident at the tunneling barrier is a part of the wave transmitted through the barrier;
another part of the wave is thus reflected back. Hence, the transmitted wave is considered
a tunneling carrier. To explain this phenomenon, we considered the one-dimensional
Schrödinger wave equation, as follows. A detailed solution of Equation (1) for different
conditions such as before the tunneling barrier (incident wave) and after the tunneling
barrier (transmitted wave) was calculated.(

− }2

2m∗
∆2 + V(x)

)
Ψ(x) = EΨ(x) (1)

Considering all boundary conditions, the tunneling probability is derived as the
modulus squared of the transmitted wave ratio to the incident wave function. A detailed
derivation of Equation (1) can be found in the Supplementary Materials.

T =
4E(V0 − E)

V2
0 sinh2(k2a) + 4E(V0 − E)

(2)

where E is the potential energy of the carrier (electron or hole), V0 is the potential barrier
height (conduction or valance band offset), k2 is related to effective mass, and a is the
thickness of the tunneling layer (oxide or 2D material interface). To simplify the tunneling
probability across two different semiconductors, the semiconductor A-tunneling layer-
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semiconductor B structure (Figure 1) was divided into two sections: the semiconductor A-
to-tunneling layer and the semiconductor B-to-tunneling layer. We calculated ten separated
tunneling probability calculations because five different quantum tunneling materials
were used: the tunneling probability of electrons in the HfO2/n-GaAs, Al2O3/n-GaAs,
SiO2/n-GaAs, graphene/n-GaAs, and h-BN/n-GaAs interfaces as well as the tunneling
probability of holes in the HfO2/p-Si, Al2O3/p-Si, SiO2/p-Si graphene/p-Si, and h-BN/p-
Si interfaces. Both used Equation (2). Figure S1 in the Supplementary Materials represents
band diagrams of these structures with different oxide tunneling layers and their barrier
potential for electrons and holes.
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Figure 1. A schematic illustration of the semiconductor heterostructure formed by various ultra-thin
tunneling intermediate layers: (a) oxide materials such as Al2O3, HfO2, and SiO2; (b) 2D materials
such as h-BN and (c) graphene; and (d–f) their corresponding generic band diagrams.

3. Results
3.1. Tunneling Probability and Current Density with Ultra-Thin Oxide Intermediate Layers

Figure 2a–c shows the tunneling probability of electrons at the n-GaAs/oxide quantum
tunneling layer interface. The oxide thickness increased by 0.33 nm, 0.66 nm, 0.99 nm,
and 1.32 nm. Interestingly, the effective mass for the electron and barrier height played a
crucial role in determining the tunneling probability. HfO2 has an electron effective mass
of 0.13 m0, whereas Al2O3 and SiO2 have electron effective masses of 0.32 mo and 0.5 mo,
respectively. The barrier height (ΦB) of HfO2 (ΦB = 1.9 eV) is lower than those of Al2O3
(ΦB = 2.33 eV) and SiO2 (ΦB = 3.7 eV). Hence, a lighter electron effective mass leads to a
lower barrier height and thus a higher tunneling probability. In this particular example
(Si/GaAs p-n junction), it is clear that the HfO2 tunneling material is more efficient than
the Al2O3- and SiO2-based tunneling layer. In addition, tunneling in quantum mechanics
occurs frequently and thus leads to increased carrier transport across the heterointerface
when the potential energy (E) is smaller than the barrier height [22,23]. Figure 2 shows
that, when the thickness of the oxide quantum tunneling layer increased from 0.33 nm
to the 1.3 nm, the tunneling probability of an electron also decreased at E < V cases [24].
When the potential energy (E) was higher than the barrier height (V), the electron can roll
over the barrier and thus pass the barrier, with the classical theory dominating. However,
the energy quantization effect dominates when the oxide thickness becomes thinner from
1.3 nm to 0.33 nm; thus, there is also a probability of electron tunneling via the E > V
condition upon quantum tunneling. Quantum scattering theory describes the energy
quantization effect such as the quantum well structure [25]. Electrons can pass through
the barrier when the energy of an electron is greater than 1.9 eV (Figure 2a). As the
thickness of HfO2 becomes thicker, more discrete energy levels (resonance peak) appear
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and suddenly cause a spike in the tunneling probability close to unity. The effective mass of
the electron defines the number of resonant peaks; in other words, a higher effective mass
causes more resonant peaks to appear. For example, one resonant peak appears when the
Al2O3 thickness is 0.66 nm (Figure 2b), but two and three resonant peaks appear when the
Al2O3 thicknesses are 0.99 nm and 1.3 nm, respectively. In addition, the SiO2 case shows
stronger oscillations in resonant peaks due to a heavier electron effective mass (0.5 m0)
(Figure 2c). Interestingly, the resonant peak becomes wider when the potential energy
exceeds their corresponding barrier height (for example, >4.1 eV for SiO2 in Figure 2c).
This can be explained by both the tunneling and overflow of the barrier at the same time.
Figure 2d–f presents the tunneling probability of holes at the p-Si/oxide quantum tunneling
layer interface. A higher effective hole mass in HfO2 (0.58 m0) leads to more resonant
peaks than Al2O3- and SiO2-based structures. However, HfO2 shows a nearly 50% higher
tunneling probability than Al2O3 and SiO2 due to the lower barrier height (3.1 eV) relative
to Al2O3 and SiO2. The transport mechanism of the carriers has an exponential relationship
with the thickness of the tunneling barrier [26]. As shown in the previous section, the
tunneling probability across the barrier is reduced with increased tunneling layer thickness.
Based on these relationships, we calculated the current density across the tunneling layer
using different oxides at different thicknesses to investigate the carrier transport mechanism.
The current density was calculated from J = qnVRT(E), where “n” is the carrier density,
T(E) is the tunneling probability, and VR is the Richardson velocity for the electron and
the hole. VR was achieved from

√
kT/2πm∗, where k is the Boltzmann constant, T is room

temperature, and m∗ is the effective mass of electrons and holes. Figure 3a–c presents
the electron current density at HfO2/n-GaAs, Al2O3/n-GaAs, and SiO2/n-GaAs with
different oxide thicknesses, respectively. In general, the calculated current density increases
as the tunneling layer becomes thinner from 1.32 nm to 0.33 nm for all three oxide cases.
The calculated current density for both Si and GaAs with the HfO2 tunneling layer was
substantially higher (at least one order of magnitude higher) than the same structures
with a Al2O3 and SiO2 tunneling layer. Figure 3d–f presents the hole current density at
HfO2/p-Si, Al2O3/p-Si, and SiO2/p-Si with different oxide thicknesses, respectively, which
show the increasing trend in the hole current density as the oxide layer becomes thinner.
From this result, we conclude that the ideal oxide tunneling material should have a lower
band offset (barrier height) and lighter effective mass to both semiconductors A and B.
In addition to these parameters, several practical aspects such as thin-film coverage in
a nanoscale thickness, surface passivation capability, and controllability of native oxide
removal can also affect the tunneling probability across the interface.
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Figure 3. (a–c) Calculated current density of electrons and (d–f) holes with different oxide thicknesses
across HfO2/n-GaAs, Al2O3/n-GaAs, and SiO2/n-GaAs.

3.2. Tunneling Probability and Current Density with 2D Interface Layers

We further investigated two promising 2D material-based tunneling layers: h-BN and
graphene. These two materials have completely opposite material properties including
bandgap (0 eV for graphene vs. 5.97 eV for h-BN), effective mass (~0.01 m0 for graphene
vs. >0.2 for h-BN), and doping (highly conductive for graphene vs. semi-insulating for
h-BN) [27–29]. Therefore, a comparison of the tunneling properties and tunneling current
using these two materials offers a material selection guideline among the numerous 2D
materials. The parameters for graphene and h-BN can be found in the Supplementary
Materials (Table S1). Figure 4a,b presents the hole and electron tunneling probability of h-
BN/p-Si and h-BN/n-GaAs. The tunneling probability shows a similar trend to other oxide
tunneling materials. This might be attributed to a wide bandgap (5.97 eV) and a similar
range of barrier heights with oxides [30]. Interestingly, the tunneling structures using h-BN
show more resonant tunneling peaks than the oxide-based tunneling structures due to
its larger effective mass. Figure 4c,d shows the hole and electron tunneling probability
of graphene/p-Si and graphene/n-GaAs. Graphene has unique material properties: It is
tunable and has an energy bandgap close to zero. It has the lightest effective mass, etc.
The very conductive nature of monolayer graphene could be highly efficient for carrier
transport across the heterostructure. Although the tunneling probability is reduced with
an increased layer thickness (tri-layer), the tunneling probability remains very high due to
the negative band offsets with Si and GaAs.

The current density with the h-BN and graphene tunneling layer were also calculated
using the same method as the oxide tunneling structures. This predicts their transport
properties, as shown in Figure 5. The calculated current density decreased with increasing
graphene thickness. The reduced current density is shown in Figure 5a,b up to the five-
layered h-BN. Figure 5c,d shows the current density vs. potential energy plots with the
monolayer, bilayer, and trilayer graphene. The highest tunneling current density shown
in the graphene case might be attributed to the smallest bandgap and lightest effective
masses. However, the formation of the quantum well with the graphene case might cause
problems for specific devices based on quantum barrier/wells or carrier transport along
with heterointerfaces because the graphene layer can trap the carriers, which leads to high
interface defects.
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3.3. Simulated Strain under Temperature

Besides the transport property across the heterojunction, it is important to evaluate the
changes in the strain of the tunneling layer under different temperature conditions. Smaller
strains at the tunneling layer offer more reliable heterogeneous integration between two
dissimilar semiconductors that typically have different thermal expansion coefficients. To
investigate the evolution of the strain at the tunneling layer under different temperature
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conditions, we performed multiphysics simulations with five n-GaAs/tunneling layer/p-Si
models using h-BN, graphene, HfO2, Al2O3, and SiO2 and traced the strain of the tunneling
layer from room temperature (300 K) to 200 ◦C (473 K) using COMSOLTM. Figure 6
summarizes the strain as a function of temperature for five tunneling layers (details of
the simulation can be found in Figure S2 of the Supplementary Materials). While SiO2,
h-BN, and graphene showed almost negligible degrees of the strain changes (<0.1%), HfO2
particularly experienced nearly ten times higher strain by heating. Given that the thermal
expansion coefficient of HfO2 is much larger (6.0 µm/m-K) [31] compared with other
tunneling layer materials (0.5 µm/m-K or less) [32], it is possible to conclude that HfO2 is
not a favorable material for the tunneling layer because the HfO2 tunneling layer can cause
layer delamination during the fabrication process or device operation by heating.
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carrier transport across the Si/GaAs heterojunction as the barrier height becomes lower 
and the tunneling layer becomes thinner. This trend was observed in h-BN as its’ barrier 
height and bandgap are in a similar range. In the case of graphene, although the tunneling 
probability remains very high at graphene/Si and graphene/GaAs, the formation of the 
quantum well due to the negative band offsets with Si and GaAs might cause problems 
for specific devices because the graphene layer may lead to high interface defect density, 
which is associated with a charge trap at the interface. In addition, multiphysics modeling 
was used with the aforementioned tunneling interfacial materials to analyze changes in 
the strain under different temperature conditions. Considering the transport properties 
and thermal-induced strain analysis, Al2O3, among three oxide materials, and graphene 
in 2D materials are favorable material choices that offer the highest heterojunction quality. 
Overall, our results offer a viable route in guiding the selection of ultra-thin tunneling 
intermediate materials for a myriad of possible combinations of new heterostructures. For 
instance, one can predict the feasibility of other materials as a hetero-interfacial layer. 
MoS2, as an example, has a relatively small conduction band offset to Si and a small va-
lence band offset to GaAs. Additionally, the thermal expansion coefficient of MoS2 is much 
smaller than that of Si and GaAs. Thus, it is expected that the MoS2 UT layer works well 
with Si and GaAs with some degree of expansion force (tensile strain). Eventually, our 
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Figure 6. Simulated strain (%) as a function of temperature for five interfacial layers (HfO2, Al2O3,
SiO2, graphene, and h-BN) with different temperatures ranging from 300 K to 473 K.

In addition, the processability is another important point that governs the selection of
an effective tunneling interfacial layer. For example, SiO2 has a wider bandgap than other
oxides in this study, but it has a lower dielectric constant. HfO2 suffers from crystallization
at high temperatures due to fast diffusion of oxygen through the HfO2. This results in
uncontrolled growth of interfacial layers [33]. Therefore, considering all electrical and
mechanical characteristics of various interfacial layer materials, the ideal interfacial layer
should have a small conduction and valence band offsets, small effective mass, and small
difference in the thermal expansion coefficient to the to-be-bonded materials. Most of all,
ideal interfacial materials should be formed by ALD or should exist as a 2D format because
they require atomic scale thickness control for the perfect surface coverage.

4. Conclusions

In conclusion, we built a numerical p-n Si/GaAs heterojunction model using quantum-
mechanical tunneling theory with various quantum tunneling interfacial materials includ-
ing 2D materials such as hexagonal boron nitride (h-BN) and graphene, and ALD-enabled
oxide materials such as HfO2, Al2O3, and SiO2. Their tunneling efficiencies and tunnel-
ing current with different thicknesses were systematically calculated and compared. In
oxide tunneling materials, it is found that these oxide tunneling layers promote carrier
transport across the Si/GaAs heterojunction as the barrier height becomes lower and the
tunneling layer becomes thinner. This trend was observed in h-BN as its’ barrier height and
bandgap are in a similar range. In the case of graphene, although the tunneling probability
remains very high at graphene/Si and graphene/GaAs, the formation of the quantum
well due to the negative band offsets with Si and GaAs might cause problems for specific
devices because the graphene layer may lead to high interface defect density, which is
associated with a charge trap at the interface. In addition, multiphysics modeling was
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used with the aforementioned tunneling interfacial materials to analyze changes in the
strain under different temperature conditions. Considering the transport properties and
thermal-induced strain analysis, Al2O3, among three oxide materials, and graphene in
2D materials are favorable material choices that offer the highest heterojunction quality.
Overall, our results offer a viable route in guiding the selection of ultra-thin tunneling
intermediate materials for a myriad of possible combinations of new heterostructures. For
instance, one can predict the feasibility of other materials as a hetero-interfacial layer. MoS2,
as an example, has a relatively small conduction band offset to Si and a small valence band
offset to GaAs. Additionally, the thermal expansion coefficient of MoS2 is much smaller
than that of Si and GaAs. Thus, it is expected that the MoS2 UT layer works well with Si and
GaAs with some degree of expansion force (tensile strain). Eventually, our results provide
scientific insight in solving fundamental material challenges in the formation of various
heterostructures and, thus, helps to establish a myriad of future functional heterostructures
via a UT method.
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