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Abstract: Thin films of colloidal CZTS nanocrystals (NCs) synthesized using a “green” approach in
water with a variation of the copper-to-tin ratio are investigated by Raman scattering, mid-infrared
(molecular vibrations) and near-infrared (free carrier) absorption, X-ray photoemission spectroscopy
(XPS), electrical conductivity, and conductive atomic force microscopy (cAFM). We determined the
effect of the actual Cu content on the phonon spectra, electrical conductivity, and spectral parameters
of the plasmon band. An increase in the electrical conductivity of the NC films upon annealing at
220 ◦C is explained by three factors: formation of a CuxS nanophase at the CZTS NC surface, partial
removal of ligands, and improved structural perfection. The presence of the CuxS phase is concluded
to be the determinant factor for the CZTS NC film conductivity. CuxS can be reliably detected based
on the analysis of the modified Auger parameter of copper, derived from XPS data and corroborated
by Raman spectroscopy data. Partial removal of the ligand is concluded from the agreement of
the core-level XPS and vibrational IR spectra. The degree of lattice perfection can be conveniently
assessed from the Raman data as well. Further important information derived from a combination of
photoelectron and optical data is the work function, ionization potential, and electron affinity of the
NC films.

Keywords: kesterite; CZTS; Cu vacancy; CuxS; plasmon; non-stoichiometry; secondary phases; phonons

1. Introduction

Cu2ZnSn(S,Se)4 (CZTSSe) has emerged as a promising candidate for next-generation
photovoltaic (PV) technologies [1,2]. Unlike the present leader in the field of chalco-
genide photovoltaics, Cu(In,Ga)Se2 (CIGS), CZTSSe compounds consist of earth-abundant
elements, which can allow them to be more competitive in the market. Owing to its
direct bandgap, CZTSSe requires a hundred-times thinner absorber layer compared to
indirect-bandgap Silicon, currently prevailing in photovoltaics, thus further reducing the
manufacturing costs of perspective PV devices.

Despite the rapid initial progress in CZTSSe PV, a limit of 12–13% device efficiency
was achieved with negligible further improvement over the past decade due to remaining
structural defects and secondary phases, which could not be controlled so far [1,3,4]. The
content of copper was found to be one of the determinant factors for the electrical properties
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of CZTSSe layers [5–8]. In a single-crystal Cu2ZnSnS4 (CZTS), even tiny variations of copper
content around the stoichiometric value, from 1.8 to 2.1, result in an order-of-magnitude
change of the conductivity [9]. However, different Cu content values were reported to be
optimal for the CZTSSe absorber layer in a PV device structure, implying that a solution
could be a CZTSSe film with a Cu content varying with its thickness [5]. One of the
promising routes to obtain a thin absorber layer on a deliberate substrate can be the
synthesis of nanocrystals (NCs) of desired compositions in colloidal solutions [10,11], with
subsequent deposition of a targeted sequence of the NC layers on the substrate by printing,
spin-, or spray-coating [12].

Electrical properties of bulk single-crystal Cu2ZnSnS4 (CZTS) indicate p-type conduc-
tivity due to copper vacancies, with a specific resistivity of 16–100 Ω·cm depending on
stoichiometry [13,14]. The electrical behavior of microcrystalline CZTS thin films is different
from that of the bulk material and significantly depends on the preparation method and the
use of annealing. In general, annealing of CZTS thin films was shown to decrease resistivity,
which can be explained by an increase in crystallinity, phase changing, increasing film
homogeneity due to sintering of separate crystallites, or simultaneous appearance of these
factors. The transition temperature from ordered to disordered CZTS kesterite takes place
at T = 260 ◦C in an inert atmosphere [15]. On the other hand, the SnS phase begins to evap-
orate in a vacuum above 350 ◦C, and finally, from 550 ◦C, CZTS is not stable [16]. For CZTS
thin films prepared with different methods, such as sol-gel, spray pyrolysis, magnetron
sputtering, and “ink” solution deposition, a decrease in resistance of down to 0.2 Ω·cm is
observed when using different annealing parameters in each specific case [17–20]. Electrical
properties of CZTS films prepared with colloidal nanocrystals (NCs) of sizes as small as
several nanometers are less studied. Of particular interest is the effect of the annealing
process on the ligand (in our case, small-sized TGA molecules), which is novel and usually
not considered as a factor influencing the electrical properties of microcrystalline films. Soft
annealing of NC films at the temperature of the boiling point of the TGA ligand is likely
to (at least partially) remove the ligands and increase the integrity of the film, as well as
increase the crystallinity of the NCs without disrupting them. Investigating the latter is a
complex task, which, in particular, can be solved by vibrational Raman spectroscopy.

Raman spectroscopy is an established characterization technique for CZTSSe, CZTS,
CZTSe, and many related compounds, including colloidal NCs [4,21–29]. It can detect
secondary (impurity) phases [24,30–32] and point out defects [4,22,33], is not demanding
regarding the amount of material, requires no special sample preparation for the measure-
ment, unlike X-ray diffraction (XRD) and transmission electron microscopy (TEM), and can
probe NCs even in as-synthesized solutions. It should be noted that despite impressive
progress in comprehending the relationship between the phonon Raman spectra and the
underlying CZTSSe structure in the last decade, making this technique as indispensable
as XRD, there are still numerous puzzling observations that still need an unambiguous
explanation. In particular, this concerns the intensity ratio of the kesterite modes as a
measure of a particular defect density, as well as the quantitative relationship between non-
stoichiometry and phonon spectra. On the one hand, there is a series of reports from several
groups demonstrating a pronounced correlation between the intensity ratio of several
Raman bands and the concentration of the [VCu + ZnCu] defect clusters [4,21,33–36]. On the
other hand, in a majority of the works that studied Raman spectra as a function of CZTSSe
off-stoichiometry, no such distinct effect on the intensity ratio was observed [6,7,33].

Previously, we reported the aqueous synthesis of CZTS NCs stabilized by a small
ligand, namely thioglycolic acid (TGA) [37], optimized in terms of their colloidal stability,
size homogeneity, and degree of structural perfection concluded from XRD and Raman
spectra. Even though X-ray photoelectron spectroscopy (XPS) revealed a remarkable deficit
of Cu and Sn, XRD and Raman proved the excellent phase purity of those NCs, being as
small as 3–4 nm. They revealed characteristic features of kesterite CZTS in XRD and no
indications of secondary phases, as proved by Raman (except tiny contributions of ZnS and
ZnO observable only at resonant UV excitation [30]).
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Here, we report a study of CZTS NCs synthesized using the same mild approach
with a variation of the copper composition. The series of NC samples with different Cu-
content is characterized by Raman scattering, mid-infrared (molecular vibrations) and
near-infrared (free carrier) absorption, XPS, electrical conductivity, and conductive atomic
force microscopy (cAFM).

2. Experimental Section

CZTS colloids were produced via the reaction between sodium sulfide and a mixture
of thioglycolate complexes of copper, tin, and zinc in aqueous alkaline solutions in the
presence of ambient air at 22–24 ◦C and normal pressure. In a typical synthesis (referred
to as sample “Cu2”, corresponding to the nominally stoichiometric Cu2ZnSnS4), 0.3 mL
aqueous 1.0 M solution of Cu(NO3)2, 0.3 mL aqueous 0.5 M solution of freshly prepared
SnCl2 (containing 4.0 M NaOH), and 0.15 mL aqueous 1.0 M solution of Zn(NO3)2 were
added consecutively to 6.0 mL deionized (DI) water with intense stirring followed by
3.0 mL of aqueous 1.0 M solution of TGA and 0.1 mL aqueous 10.0 M solution of NaOH.
Finally, 0.3 mL aqueous 1.0 M solution of Na2S was added lump-wise to this mixture
with intense stirring. The final concentrations of the reactants were 0.03 M Cu(NO3)2,
0.015 M SnCl2, 0.015 M Zn(NO3)2, 0.22 M NaOH, 0.3 M TGA, and 0.03 M Na2S. In order to
increase the crystallinity of the NCs, the as-prepared colloidal solution was then placed
in a cylindrical glass vial with a diameter of 10 mm and heated in air conditions without
stirring in a boiling water bath at 96–98 ◦C for 10 min. After the heat treatment, the CZTS
colloid was subjected to purification from the residual salts by precipitation/redispersion.
For this, 1 mL of 2-propanol was added to 10 mL of the CZTS colloid, and the mixture was
subjected to centrifugation at 6000 rpm for 5 min. The wet precipitate was separated from
the supernatant and redissolved in DI water (the total volume of the redispersed solution
reached 2 mL) in an ultrasonic bath. As shown in [37], copper(II) and tin(II) change their
valent state during the formation of NCs to Cu(I) and Sn(IV), respectively.

The CuxZnSnS4 NC samples with lower (x = 0.25) and higher (x = 4) copper content
were obtained by a similar procedure with a load of 0.038 and 0.6 mL aqueous 1.0 M
solution of Cu(NO3)2, respectively. The obtained light-brown and dark-brown colloids
were subjected to purification as described above.

For the spectral Raman and mid-infrared studies, the freshly synthesized and purified
samples were drop-casted on cleaned double side polished Si(100) substrates and dried in
a desiccator under dynamic vacuum (~10 mbar). Fabrication of NC thin films for electrical
measurements was performed by spin-coating the colloidal solutions on cleaned soda-
lime 1 cm × 1 cm glass substrates. Three deposition cycles, each at 2000 rpm for 20 s,
were applied. After each cycle, the samples were dried in ambient air at (120 ± 5) ◦C for
5 min to remove the moisture. Annealed NC films were obtained from the pristine films by
annealing at (220 ± 5) ◦C for 60 min in the air if nothing else is specified. The temperature of
220 ◦C, which is the boiling point of thioglycolic acid at atmospheric pressure [38] (120 ◦C at
20 mmHg [39]) according to our initial hypothesis, should be sufficient to partially remove
the ligands without significant NCs degradation. For electrical measurements, Au contacts
were deposited using a shadow mask providing a pattern of electrodes and contact pads, as
shown in Figure S1. Conductive AFM, as well as near-infrared, visible, and photoemission
spectroscopic studies, were performed on the same samples as the electrical measurements.

Raman spectra were excited using a 514.7 nm diode-pumped solid-state (DPSS) laser
(Cobolt, HÜBNER Photonics GmbH, Kassel, Germany) or 325 nm He–Cd laser line and
registered at a spectral resolution of about 2 cm−1 for visible and 5 cm−1 for UV excitation
using a LabRam HR800 micro-Raman system equipped with a liquid nitrogen-cooled CCD
detector. The incident laser power under the microscope objective (50× for visible and 40×
for UV light) was varied in the range of 0.1–0.001 mW.

IR spectra were collected in a transmittance geometry using a vacuum VERTEX 80v
FTIR spectrometer (Bruker) equipped with an RT-DLaTGS detector and KBr beamsplitter
for the middle infrared (MIR) range (400–4000 cm−1), an InGaAs detector and a CaF2
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beamsplitter for the near-infrared (NIR) range (4000–11,000 cm−1), and a Si detector and
a CaF2 beamsplitter for a NIR-visible range (11,000–21,000 cm−1). The samples for MIR
and NIR measurements were deposited on double side polished Si substrates. NIR-vis
measurements were performed on the films deposited on glass substrates.

XPS measurements were performed with an ESCALAB 250Xi X-ray Photoelectron
Spectrometer (Thermo Scientific, Waltham, MA, USA) equipped with a monochromatic
Al Kα (hν = 1486.7 eV) X-ray source. A pass energy of 200 eV was used for survey
spectra, 40 eV for Auger spectra, and 20 eV for high-resolution core-level spectra (providing
a spectral resolution of 0.5 eV). Secondary electron cut-off (SECO) spectra were taken
under a bias of −10.0 V, then the scale was corrected by 10 eV. Spectra deconvolution and
quantification were performed using the Avantage Data System (Thermo Scientific). The
valence band spectra were processed using the UNIFITTM (2018) software. The valence
band maximum (VBM) was obtained as a convolution of a linear and a Gaussian function
with an FWHM of (0.55 ± 0.05) eV addressing the instrumental resolution. The energy scale
was calibrated with an accuracy of ±0.05 eV using the binding energies (BE) of Au4f7/2
at 83.95 eV, Ag3d5/2 at 368.20 eV, Cu2p3/2 at 932.60 eV, and the Fermi edge at 0.00 eV,
measured on in situ cleaned metal surfaces. The spectra of NC thin films with sufficient
conductivity (Cu2 and Cu4 both before and after annealing) were measured without an
additional charge compensation setup. The low conductive NC thin films (Cu0.25 before and
after annealing) were measured with a built-in charge compensation system. If necessary,
the spectra were corrected to the C1s sp3 peak at 284.8 eV as the common internal standard
for BE calibration [40].

Surface topology and local conductivity were investigated using a Ntegra AFM scan-
ning probe microscope (NT-MDT). Conductive atomic force (cAFM) measurements were
carried out using a tip coated with nitrogen-doped diamond (DCP11) under 1.5 V bias
voltage applied between the tip and the electrode on the CZTS surface.

The resistivity of the thin films at different temperatures was investigated using a
digital DLTS spectrometer FT-1030 by applying 100 mV bias voltage between two Au
electrodes evaporated thermally on the CZTS NC film surfaces. A four-point probe was
used to determine resistivity and I–V curves at room temperature. The I–V curves were
found to be linear in the range from −1 V to +1 V thus revealing Ohmic behavior.

3. Results and Discussion
3.1. X-ray Photoemission Spectroscopy

The XPS measurements of the thin films of CZTS NCs with different nominal Cu con-
tent confirm that the targeted trend in the NCs composition was achieved (Figures 1 and S2,
Table S1). It can be seen from the XPS data normalized to sulfur (Figure 1), that in the
initial NC films the amount of incorporated copper matches well with the nominal load,
especially for the stoichiometric value, xCu = (1.9 ± 0.2) for the sample Cu2. For the samples
with lower (Cu0.25) and higher (Cu4) nominal loads, the actual Cu content is higher (xCu
= 0.8 ± 0.1) and lower (xCu = 3.2 ± 0.3), respectively, than the nominal amounts. This
apparent deviation can be caused by the non-stoichiometry of the CZTS phase, well known
from numerous previous studies [3,28], and/or by inclusions of ternary and binary sec-
ondary phases. These issues are discussed in more detail in the Raman part of this work.
It should be noted that all the CZTS NC films studied here were Zn-rich and Sn-deficient
(Figure 1), including the nominally stoichiometric sample, Cu2. Annealing at 220 ◦C affects
the composition of the film surface for all samples resulting in a decrease in the Cu content
of Cu0.25, Cu2, and Cu4 to xCu = (0.4 ± 0.1), (1.2 ± 0.1), and (1.8 ± 0.2), respectively. The
Sn content increases for all samples, while the trend is not monotonic for Zn. The Zn
content decreases for the films Cu0.25 and Cu2, while for the sample Cu4, the amount of
Zn increases more than two times. Since the sampling depth for photoelectrons emitted
under Al Kα excitation is less than 10 nm [40], such behavior indicates dramatic changes in
the composition of the surface layer due to element diffusion or chemical transformation.
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Particularly, high Zn content can be due to the ZnS secondary phase, as revealed by UV
Raman spectra.

Electron. Mater. 2022, 3, FOR PEER REVIEW 5 
 

 

The Sn content increases for all samples, while the trend is not monotonic for Zn. The Zn 

content decreases for the films Cu0.25 and Cu2, while for the sample Cu4, the amount of Zn 

increases more than two times. Since the sampling depth for photoelectrons emitted under 

Al Kα excitation is less than 10 nm [40], such behavior indicates dramatic changes in the 

composition of the surface layer due to element diffusion or chemical transformation. Par-

ticularly, high Zn content can be due to the ZnS secondary phase, as revealed by UV Ra-

man spectra. 

 

Figure 1. Actual (XPS-derived) and nominal (loaded during synthesis) ratios of metallic elements 

normalized with respect to the sulfur content (S4) of the CZTS NC films with different Cu content 

for the initial (120 C) and annealed (220 C) samples: (a) Cu0.25; (b) Cu2; (c) Cu4. The compositions 

in atomic % can be found in the Supplementary Materials (Table S1).  

It was established previously that the core-level XPS spectra of Cu do not allow the 

CZTS and CuxS phases to be distinguished unambiguously [30,41]. Much more informa-

tive is the analysis of the so-called modified Auger parameter α’Cu, calculated as the sum 

of the binding energy (BE) of the Cu2p3/2 core level and the kinetic energy (KE) of the Cu 

LMM (1G4) Auger feature [30]. Since these two scales have opposite signs (BE = hν − KE, 

where hν is the energy of X-ray photons), the modified Auger parameter is independent 

of the charging effect. It can also be used as a characteristic fingerprint of a certain com-

pound, for instance, allowing to distinguish Cu2ZnSnS4 from Cu2S and CuS [42,43]. In our 

case, the initial CZTS NC films with a nominal composition of Cu0.25 show an α’Cu typical 

for CZTS NCs (Table 1), while the Cu4 film indicates the presence of Cu2S. The film Cu2 

exhibits an intermediate α’Cu value, indicating the presence of a mixture of CZTS and Cu2S 

phases. The α’Cu value obtained for Cu2, 1849.5 ± 0.2 eV, is higher than the one previously 

reported by us for similarly synthesized aqueous CZTS NCs (α’Cu = 1848.8 ± 0.2 eV) [30]. 

The reason for the shift is the Cu2S secondary phase, formed upon the heating of the film 

at 120 C, initially applied to the films in this work to remove the moisture before electrical 

characterization. Indeed, a reference CZTS NC sample without any thermal treatment 

showed the same α’Cu value as in the previous work [30]. Taking into account the surface 

sensitivity of the XPS technique and the fact that Raman spectra were taken with visible 

excitation (vis-Raman) on the same films reveal only CZTS kesterite features (discussed 

below), we can conclude that for CZTS samples with a high Cu content, even mild heat 

treatment at 120 °C partially (for Cu2) or fully (for Cu4) converts the surface layer of CZTS 

to Cu2S. At a temperature of 220 °C, the conversion rate increases. As a consequence, the 

annealed NC films Cu0.25 and Cu2 show a mixture of Cu2S and CZTS, while the sample 

Cu4 indicates the formation of a sulfur-rich phase of copper sulfide, i.e., CuS (Table 1). It 

should be observed that a comparison of the Raman and XPS data indicates that the Cu2S 

and CuS secondary phases are predominantly formed in the surface layers and not in the 

entire volumes of the films. Moreover, Raman spectroscopy is known to be sensitive to 

CuS but not to Cu2S [44,45]. 

  

Figure 1. Actual (XPS-derived) and nominal (loaded during synthesis) ratios of metallic elements
normalized with respect to the sulfur content (S4) of the CZTS NC films with different Cu content for
the initial (120 ◦C) and annealed (220 ◦C) samples: (a) Cu0.25; (b) Cu2; (c) Cu4. The compositions in
atomic % can be found in the Supplementary Materials (Table S1).

It was established previously that the core-level XPS spectra of Cu do not allow the
CZTS and CuxS phases to be distinguished unambiguously [30,41]. Much more informative
is the analysis of the so-called modified Auger parameter α’Cu, calculated as the sum of the
binding energy (BE) of the Cu2p3/2 core level and the kinetic energy (KE) of the Cu LMM
(1G4) Auger feature [30]. Since these two scales have opposite signs (BE = hν − KE, where
hν is the energy of X-ray photons), the modified Auger parameter is independent of the
charging effect. It can also be used as a characteristic fingerprint of a certain compound, for
instance, allowing to distinguish Cu2ZnSnS4 from Cu2S and CuS [42,43]. In our case, the
initial CZTS NC films with a nominal composition of Cu0.25 show an α’Cu typical for CZTS
NCs (Table 1), while the Cu4 film indicates the presence of Cu2S. The film Cu2 exhibits an
intermediate α’Cu value, indicating the presence of a mixture of CZTS and Cu2S phases.
The α’Cu value obtained for Cu2, 1849.5 ± 0.2 eV, is higher than the one previously reported
by us for similarly synthesized aqueous CZTS NCs (α’Cu = 1848.8 ± 0.2 eV) [30]. The
reason for the shift is the Cu2S secondary phase, formed upon the heating of the film at
120 ◦C, initially applied to the films in this work to remove the moisture before electrical
characterization. Indeed, a reference CZTS NC sample without any thermal treatment
showed the same α’Cu value as in the previous work [30]. Taking into account the surface
sensitivity of the XPS technique and the fact that Raman spectra were taken with visible
excitation (vis-Raman) on the same films reveal only CZTS kesterite features (discussed
below), we can conclude that for CZTS samples with a high Cu content, even mild heat
treatment at 120 ◦C partially (for Cu2) or fully (for Cu4) converts the surface layer of CZTS
to Cu2S. At a temperature of 220 ◦C, the conversion rate increases. As a consequence, the
annealed NC films Cu0.25 and Cu2 show a mixture of Cu2S and CZTS, while the sample
Cu4 indicates the formation of a sulfur-rich phase of copper sulfide, i.e., CuS (Table 1). It
should be observed that a comparison of the Raman and XPS data indicates that the Cu2S
and CuS secondary phases are predominantly formed in the surface layers and not in the
entire volumes of the films. Moreover, Raman spectroscopy is known to be sensitive to CuS
but not to Cu2S [44,45].

The sulfur chemical states are also affected by the annealing of the CZTS NC films
with different copper contents. Figure 2 shows the S2p core level spectra of the Cu4 films
before and after annealing at 220 ◦C. In the initial NC film (i.e., dried at 120 ◦C), three major
chemical components of sulfur are observed, previously assigned to the NC inorganic
sulfide in the core (S2−), boundary surface sulfur shared between inorganic sulfide and
thioglycolate ligand (S1−), and free, non-bonded to the NC surface, thiol sulfur (S0) [30,39].
A fourth, minor component with an S2p3/2/S2p1/2 doublet at 167/168 eV assigned to
sulfite (S4+) is due to partial oxidation of the NC surface or thiolate ligand. Annealing
at 220 ◦C leads to a drastic reduction of the contribution of the free-ligand doublet at
164/165 eV (S0). Moreover, the component related to ligands (chemically) bound to the NC
surface, at 165/166 eV (S1−), also drops in intensity by a factor of two. The latter results
indicate that the annealing of the films leads not only to the removal of most unbound
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ligand molecules but also to a partial loss even of ligands bound to the NC surface. Finally,
the sulfite sulfur (S4+) is further oxidized to sulfate (S6+), as can be concluded from the shift
of the fourth doublet to higher binding energies at 169/170 eV.

Table 1. Copper sulfide secondary phase identification in the initial and annealed CZTS NC films,
based on analysis of the modified Auger parameter α’Cu. The corresponding Cu2p3/2 and Cu LMM
Auger spectra can be found in the Supplementary Materials (Figure S3).

Cu2p3/2/
±0.1 eV

Cu LMM
(1G4)/±0.1 eV

α’Cu = Cu2p3/2 +
CuLMM (1G4)/±0.2 eV Assignment Literature Data,

α’Cu/eV

Cu0.25 (initial, 120 ◦C) 931.7 917.0 1848.7 CZTS 1848.6–1849.2,
CZTS [30,42]

Cu2 (initial, 120 ◦C) 932.5 917.0 1849.5 Cu2S + CZTS -

Cu4 (initial, 120 ◦C) 932.4 917.5 1849.9 Cu2S 1849.8–1849.9,
Cu2S [40,42,43]

Cu0.25 (annealed, 220 ◦C) 932.4 917.1 1849.5 Cu2S + CZTS -
Cu2 (annealed, 220 ◦C) 932.2 917.5 1849.7 Cu2S + CZTS -

Cu4 (annealed, 220 ◦C) 932.2 917.9 1850.1 CuS 1850.0–1850.4, CuS
[40,42,43]
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Figure 2. The S2p XPS spectra of CZTS NC Cu4 films in the initial state (a) and after annealing in
air (b).

Besides the chemical composition of the samples, photoelectron spectroscopy allows
several other crucial parameters to be determined. The ionization potential (IP) of CZTS
NC films, which is one of the key parameters for device applications, was determined from
the positions of the secondary electron cut-off (SECO) and the valence band maximum
(VBM) of the XPS spectra (Figure 3). The secondary electron cut-off also allows the value of
the work function (WF) of the NC film surface to be determined (Figure 3a). The SECO
spectra of Cu0.25 samples provided unreasonable values, most likely due to using a charge
compensation during the measurements, which applies a flux of electrons with low kinetic
energy compared to the energy of the secondary electrons emitted from the sample. The
observed proximity of the Fermi level to the VBM indicates that the films are p-type
semiconductors in agreement with previous results [46] and the presence of copper sulfide
on the surface, which is known to be a strong p-type semiconductor [46,47]. Because of the
opposite signs of the scales used to represent the secondary and valence photoelectrons
(Figure 3a,b), the ionization potential is independent of the charging effect, similar to a
modified Auger parameter. Finally, the electron affinities (EA) are estimated by adding
the bandgap values, determined from the optical spectra to the Ips. The resulting energy
level diagrams vs. the vacuum level are shown in Figure 3c. The obtained EA values are
relatively high, therefore the NC surface can be readily oxidized by air oxygen. In our
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study, partial sulfur oxidation at the film surfaces (S4+ and S6+ chemical states in the S2p
spectra) was detected. We assume that the oxide layer formed passivates the surface and
prevents deeper oxidation. Nevertheless, our observation of the high EA for the Cu2S/CuS
surface of CZTS NC films is not surprising because similarly high EA values for pure
copper sulfides were reported previously [42,48].
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Figure 3. The secondary electron cut-off (SECO) (a) and valence band (VB) (b) XPS spectra of the
initial and annealed CZTS NC films with the nominal contents Cu2 and Cu4. (c) Energy level
diagrams derived from the XPS and optical spectroscopy data.

3.2. Raman Spectroscopy

Previously, Raman spectroscopy was shown to be one of the most informative methods
regarding the structural and elemental composition of CZTS [21–24]. Figure 4 shows Raman
spectra of the samples at λexc = 514.7 nm, which is resonant for the excitation of the phonons
in CZTS, as well as for several secondary phases including CuS [23,24].
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Figure 4. Raman spectra (λexc = 514.7 nm, 0.15 mW) of the initial (a,c) and annealed (b,d) CZTS
NC films with different nominal Cu content. The spectra in a broad spectral range are shown in
(a,b), while (c,d) shows in more detail the range of the first-order CZTS phonons. The sharp peak at
1100 cm−1 is an artifact (a room light). In (b), the background, increasing toward larger wavenumbers,
is due to PL of the carbonized ligand.
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All peaks in the spectra in Figure 4a can be assigned to kesterite CZTS. In particular,
the characteristic first-order peak around 330 cm−1 of A1 symmetry (corresponding to S-S
vibration with the cations at rest) and the higher-order phonon scattering peaks around 660
and 990 cm−1 agree well with the spectrum of crystalline bulk Cu2ZnSnS4 of the kesterite
modification [23]. The Sn deficiency in our NC samples (Figure 1) is unlikely to be the reason
for the A1 peak broadening because a very sharp Raman peak at 337 cm−1 was observed
for both Sn-poor, Cu-rich, or Zn-rich CZTS [41]. The FWHM (~30 cm–1) of the main peak
is comparable to that of the NCs synthesized in high-boiling-point solvents [49–54], and
the higher-order phonon features (at 658 and 995 cm−1) indicate a good crystallinity of the
CZTS NCs of small size, 3–4 nm [37], synthesized here under relatively mild conditions in
the water.

From the frequency position of the main Raman mode of 336 cm−1, we can assume that
the NCs synthesized with xCu = 3.2 (nominally Cu4) possess the typical kesterite structure.
The 330 cm−1 peak frequency of nominally stoichiometric Cu2 and Cu-poor Cu0.25 samples
indicates the formation of a so-called cation-disordered kesterite structure [55–59]. The same
peak position for the initial NC samples with xCu = 0.8 (Cu0.25) and 1.9 (Cu2) (Figure 4c)
may indicate the fact that this Raman peak position is indeed determined by the type of the
lattice structure/order, “ordered kesterite” or “disordered kesterite”, and the variation of
the (cation) composition within the range of stability of the particular phase has a minor
effect. This behavior can be explained by the fact that the mode corresponding to the
A1-symmetry involves mainly (covalent) S-S vibration, and the cation environment may
indeed have only a minor effect on its frequency.

The results of annealing further confirm the assumption above. Annealing the sample
with the highest copper content, xCu = 1.8 (nominally Cu4, annealed), does not affect
the peak position, 336 cm−1, and the peak width (Figure 4d). Annealing the samples
with xCu = 0.4 (Cu0.25) and 1.2 (Cu2) shifts the Raman peak from 330 up to 334 cm−1, also
without a noticeable narrowing of the peak. This shift can be understood as bringing more
order in the cationic sublattice, i.e., transforming the structure of the NCs from “disordered
kesterite” to “ordered kesterite”. Note that XPS reveals a decrease in the copper content
upon annealing. However, this does not contradict putting more cations into the right
lattice sites. Moreover, XPS mainly probes the surface (<10 nm), while Raman probes at
least 100 nm film thickness.

From observing Raman bands at 1300–1600 cm−1 (Figure 4b), which are characteristic
of amorphous carbon [60], one can conclude the (partial) decomposition of the ligands
upon annealing. However, the ligand carbonization is only partial, because the FTIR
measurements (discussed in the next section), which are more quantitative than the Raman
ones, show the intensity of ν(COO–) modes, proportional to the ligand content, decreasing
but not fully disappearing upon annealing. The background slope appearing in the Raman
spectra upon annealing can be related to the photoluminescence (PL) of the amorphous
carbon as well [61].

The Raman spectra presented in Figure 5 (for the Cu2 sample as an example) reveal
no effect of oxygen and water contained in the air during the annealing of the CZTS NC
films on the phase composition of the NC films. Surprisingly, no remarkable difference
between oxygen-containing and inert annealing environments, both at λexc = 514.7 nm and
325 nm, were observed. The distinct difference between spectra taken with “green” and
“UV” excitations has two reasons: resonance effects and much shallower probing depth of
the 325 nm light than that for 514.7 nm.

The spectra at “green” excitation reveal amorphous carbon Raman bands and PL
background after annealing in both air and N2 conditions. The PL can be related to the
forming of small amorphous clusters (carbon dots) [62]. No new peaks arise, which could
indicate the formation of secondary phases of CuxS or CuxSnSy. On the other hand, weak
peaks related to CuxS, ZnS, and ZnO dominate the spectra at UV excitation. Observing
ZnO and ZnS is not surprising because these wide-bandgap compounds can be resonantly
probed at UV excitation, as already proved in previous works on CZTS and other multinary
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Zn-containing NCs [23,27]. The CuxS, however, is usually much better detected at green
excitation [23,24,44]. In order to better understand this uncommon observation, we studied
the same three samples at different laser powers at λexc = 325 nm (Figure 6).
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Figure 6. The effect of UV illumination on the Raman spectra of the CZTS NCs with the nominal
content Cu2 for the initial film (a) and films annealed in air (b) and in N2 (c). The spectra measured
with 0.1 mW of the λexc = 325 nm before (bottom curves) and after (upper curves) illumination at
0.5 mW for 5 min.

We find that the formation of secondary phases in the initial and N2-annealed NCs can
be stimulated by increasing the excitation power of the UV laser. The NC film annealed in
air, on the contrary, exhibits better resistance to the photo-induced formation of secondary
phases. However, the content of these phases in the initial sample before UV is comparable
to the sample annealed in N2 (as can be inferred from the comparable intensity of Raman
peaks and signal-to-noise ratio in the bottom curves in Figure 6b,c). We already reported
the excitation dependence of secondary CuxS phase formation in CZTS in our previous
paper [30]. In particular, more CuxS was generated with shorter λexc. Those results agree
with the stronger photo-induced formation of the CuxS phase at UV excitation compared
to the “green” excitation.

3.3. Infrared Spectroscopy

Mid-infrared spectra allow us to register vibrational modes of ligands in the NCs
samples, namely the thioglycolic acid and/or thioglycolate metal salt derivatives, thus
allowing one to monitor the evolution of the organic part of the NC film with annealing
(Figure 7). The spectral region of 700–1100 cm−1, corresponding to C-C stretching and C-H
deformational bonds, is known as a “fingerprint” region for many organic compounds [63].
However, in our case, the intense stretching vibrations of O-C=O fragments detected in
the range of 1250–1750 cm−1 are of particular interest, since they allow for distinguish-



Electron. Mater. 2022, 3 145

ing between carboxylic (COOH) and carboxylate (COO–) groups and even determining
the type of bonding between oxygen atoms and metal ions [63]. A protonated COOH
group contributes to an FTIR spectrum with two individual C-O and C=O vibrations,
experimentally observed for liquid TGA at 1295 and 1715 cm−1, respectively (Figure 7d).
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Figure 7. Mid-FTIR spectra of the initial and annealed CZTS NC films with the nominal contents Cu4

(a), Cu2 (b), and Cu0.25 (c). The spectrum of the pure ligand (TGA) is shown for comparison (d).

Similar bands are detected in all CZTS samples before annealing. For a deprotonated
COO– group, the electron density between C-O and C=O is delocalized, making these
bonds indistinguishable and contributing to the FTIR spectrum with symmetric (lower
wavenumbers) and asymmetric (higher wavenumbers) vibrations of all three atoms [63].
The frequencies of these two vibrations and the splitting ∆ between them partially depend
on the heavy atom (metal ion) mass, but the type of bonding has an even greater influence
on the metal ion, determined by the size, charge, and coordination abilities of the latter.
Comparing our spectra with the literature data on Cu-, Zn-, and Sn-carboxylates [63,64], we
can conclude that, before annealing, the Cu4 and Cu2 samples reveal a chelate bonding of
thioglycolate to Zn and Cu (the ν(COO–)sym/ν(COO–)asym doublet at ~1395/~1570 cm−1,
respectively). The Cu0.25 sample demonstrates a bridging type of COO– bonding to Cu and
Zn (~1395/1590 cm−1). The TGA derivative in the sample Cu2 is additionally bonded to Sn
(~1395/1645 cm−1). After annealing at 220 ◦C, the bonds between COO– and Cu/Zn are
predominantly bridging, while other bonding types are suppressed or disappear. Another
effect of annealing is the elimination of the protonated COOH groups, most likely due to
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their chemical reaction with metal ions or degradation of the ligand. It should be noted
that the XPS study clearly shows the bonding of the TGA ligands to the NC surface via the
S-side (S−1 chemical component), in agreement with the strong chemical affinity between
sulfur and heavy metal atoms [65]. In turn, the FTIR results show that only part of the
carboxylic groups of the TGA molecules are protonated and the rest of the molecules are
deprotonated and coordinated to metal ions. The discrepancy can be due to a more complex
structure of the ligand shell. For example, TGA is bonded to the NC surface via the thiol S,
and the deprotonated COO– group binds to one of the ions (Zn2+, Cu2+, Cu+, Sn4+

, or even
Na+) available in the colloidal solution during the NC synthesis.

The intensity of the infrared spectra in Figure 7 shows quantitative changes in the
ligand content because they are taken on the same samples before and after annealing,
covering the entire sample area and maintaining the same optical path. The reduced
intensity of the FTIR peaks after annealing indicates fewer TGA derivatives in the samples,
suggesting partial decomposition of the TGA ligand. It can be seen that for the Cu4
sample, the ligand content is significantly reduced, the Cu0.25 sample is negligibly affected,
and the Cu2 sample is an intermediate case. Therefore, we can conclude that the ligand
decomposition (elimination) during annealing is proportional to the copper content in the
CZTS NC films. It should be noted that the Cu4 sample possesses the least amount of
ligands after annealing and, at the same time, shows the most significant conductivity. Thus,
one of the reasons for the increase in conductivity of the CZTS NC films after annealing
can be an improvement in the number of contacts and the shorter distances between NCs
and/or carbonization of the ligands as a result of ligand pyrolysis (decomposition).

3.4. Electrical Conductivity of the NC Films

Figure 8 shows the temperature dependence of resistivity of the CZTS NC thin films
with various Cu contents. Several conductivity mechanisms are usually observed in the
CZTS films [66]. At temperatures >100 K, the conductivity is determined mainly by the
concentration of free holes released from defect states and the thermal emission of holes
over the potential barriers. As the temperature decreases, the conductivity is dominated by
the Mott variable range hopping and nearest-neighbor hopping mechanisms [66]. A high
concentration of native defects may lead to Fermi level pinning and be responsible for the
high conductivity of the films studied and their strong dependence on the Cu content.

The conductivity of the NC films increases by a few orders of magnitude after anneal-
ing at 220 ◦C. Two principal factors can be assumed to lead to higher conductivity. First, a
larger number of lattice sites contribute free charge carriers, i.e., Cu vacancies in the case of
CZTS, CuxS, or other non-stoichiometric Cu-chalcogenides [66,67]. Our XPS results support
this option, showing a lower Cu content upon annealing (Figure 2). Another factor could be
the ordering of the cationic lattice upon annealing, concluded above from the narrowing of
the phonon Raman peak. A certain reduction of the free charge carrier concentration due to
partial elimination of Cu vacancies upon annealing, revealed by NIR absorption discussed
below, is apparently not detrimental for the resultant increased conductivity of the film
due to the first factor. A reduced concentration of the recombination sites and improved
interparticle transport due to the formation of highly conductive CuxS shells of CZTS
NCs are more significant benefits of the annealing for the net electrical conductivity. A
possible better connection between neighboring NCs upon annealing could also be due to a
decreased number of ligands between the NCs and their partial conversion into amorphous
carbon (which is presumably more conductive than the pristine ligand molecule, TGA), as
shown above by IR and Raman spectroscopies.
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Figure 8. Temperature dependence of the resistivity of the initial (i.e., dried at 120 ◦C) and annealed
at 220 ◦C in air CZTS NC thin films with various Cu contents.

The changes in charge transport properties upon annealing were detected at the
nanoscale by cAFM measurements. The conductivity of the initial samples was not suffi-
cient to be detected with a conductive tip. At the same time, the cAFM maps presented
for the annealed samples show a non-uniform spatial distribution of the local conductivity.
The sample with the highest Cu content, xCu = 1.8 (Cu4 after annealing), has a better
conductivity of the grains than regions between neighboring crystalline areas and a good
correlation of the NC position and current density. This probably originates from the better
structural quality of CZTS NCs with a Cu content close to the stoichiometric one and the
presence of the CuxS phase at the NC surface. For the sample with lower Cu content, the
cAFM maps become more inhomogeneous, with the lowest conductivity of large grains
and the highest conductivity of the surrounding areas. The macroscopic conductivity of
the Cu2 sample is lower than that of Cu4 due to the presence of nonconductive “spots”
(see Figure 9d), which is probably a consequence of the deficiency of Cu and non-uniform
spatial distribution of the conductive secondary phase CuxS at the NC surface. The XPS
data confirm the secondary phase formation on the surface during annealing. Obviously,
its contribution to the conductivity is more significant in samples with a high content of
Cu (xCu = 1.8), while the deficiency of Cu in a sample with xCu = 1.2 leads to its local high
resistance in some areas of the surface and inferior macroscopic conductivity.

3.5. Optical Absorption

Based on earlier systematic studies of the relationship between the plasmon peak
position and the concentration of Cu vacancies (VCu) in CuxS (or CuxSe) NCs [26,67–69],
the redshift of the plasmon peak upon annealing of the CZTS NC films in this work
(Figure 10a) indicates a decrease in the free carrier concentration possibly related to a
decreasing concentration of Cu vacancies (VCu). Similarly to the localized surface plas-
mon resonance (LSPR) in metal NCs, the spectral position of the plasmon band of the
p-type carriers in vacancy-doped NCs is determined by the carrier (hole) concentration:
ωsp = 1

2π

√
Ne2/ε0me(ε∞ + 2εm) [67]. From this equation, the effective concentration of

the free holes in the NCs can be evaluated: N~1021 cm−3, where N is charge carrier (hole)
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density, e is the electron charge, ε0 is the permittivity of vacuum, me is the mass of electron,
ε∞ is the high frequency dielectric constant of NC material, εm is the dielectric constant of
the NC environment.
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The size of the CZTS NCs used in this work was determined earlier to be 3–4 nm [37].
Based on this fact, the size of the CuxS that form as a secondary phase is unlikely to be
much larger after relatively soft annealing (220 ◦C). The plasmon peak position reported in
the literature for 3–6 nm CuxS is 0.5–0.6 eV [67].

The determination of the absorption edge of the NCs is not straightforward (Figure 10b).
As is common for semiconductor NCs, the position of the fundamental bandgap and absorp-
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tion edge is determined by the NCs size due to quantum confinement [70]. The bandgap
and absorption edge energies do not differ much for highly crystalline and stoichiometric
NCs, such as II–VI ones, which exhibit distinct absorption onset and peaks due to interband
optical transitions even for small NC sizes (<5 nm [71,72] or even <2 nm [73,74]) and
synthesized in water at low temperature (<100 ◦C) [72,74]. For non-stoichiometric and/or
cation-disordered NCs of I–III–VI and I–II–IV–VI compounds rich in cation vacancies, the
absorption onset is very smooth/smeared, making the determination of the bandgap very
inaccurate or hardly possible [75]. The bandgap values reported in the literature for 3–6 nm
CuxS NCs are 1.5–1.7 eV [67]. From Figure 10a it may be concluded that the interband
absorption starts in the range where the high-energy tail of the plasmon peak ends. With
the optical spectra plotted in the Tauc coordinates for direct transition, one can approximate
the absorption edge in the range of 2.15–2.25 eV (Figure 10b), which can correspond to the
interband absorption of the CZTS NC phase [37].

The decrease in the concentration of Cu vacancies (VCu) upon annealing, concluded
above from the plasmon peak behavior (Figure 10a), is in good agreement with the results
from Raman spectroscopy discussed in the previous section. In particular, the narrowing
of the phonon peak and its shift to the wavenumbers characteristic of ordered kesterite
structure corroborate a decrease in the VCu in the lattice.

4. Conclusions

Thin films of colloidal CZTS NCs synthesized using a “green” approach in water with
a variation of copper content were investigated by a set of experimental techniques to
establish the relationship between the copper content and their electronic, electrical, optical,
and vibrational properties. Raman scattering reveals changes in the CZTS phase structure
and the presence of secondary phases, particularly for CuxS. Mid-infrared absorption
by molecular vibrations reveals a transformation in the ligand content, the near-infrared
absorption shows free carrier (plasmon) band behavior, while absorption in the visible
spectral range allows the optical absorption edge to be determined. From the XPS data, the
elemental composition of the film surfaces, the presence of CuxS phases, and the positions
of energy levels confirming a strong p-type semiconductor character are determined.
Macroscopic conductivity and conductive AFM mapping monitored the changes in the
electrical conductivity of the NC films. From the analysis of these spectroscopic and
microscopic results, the increase in the electrical conductivity of the NC films with an
increase in Cu content and upon annealing (at 220 ◦C) is observed. This is explained by
three factors: the formation of the conductive CuxS nanophase, partial ligand removal,
and improved structural perfection. The presence of a CuxS phase at the NC surface was
concluded based on the analysis of the modified Auger parameter of copper, derived
from XPS data, and corroborated by Raman spectroscopy data. Partial ligand removal is
concluded from the agreement of the core-level XPS and vibrational IR spectra. Further
important information derived from a combination of photoelectron and optical data is
the work function, ionization potential, and electron affinity of the NC films. Finally,
an unambiguous dependence of the ligand removal efficiency on the actual Cu content
is established.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/electronicmat3010013/s1, Figure S1: A representative photograph
of the sample used for electrical measurements of the CZTS NC films in this work. NC film is
deposited on a glass substrate by spin-coating, gold contacts deposited on the NC film by thermal
evaporation, silver paste on top of the gold contact pads, and thermal paste on the bottom of the
substrate; Figure S2: XPS-derived copper contents in CZTS films, normalized for sulfur content
(S4) for comparison with the stoichiometric kesterite Cu2ZnSnS4. The data correspond to the films
heated at 120 ◦C (initial) and 220 ◦C (annealed). The dashed line is an eye guide for the ideal case
of matching the measured amount of copper with its nominal load, Figure S3: Extended Cu2p (a),
narrow Cu2p3/2 (b), and CuLMM Auger (c) high-resolution XPS spectra of pristine and annealed
CZTS NC films synthesized with different nominal copper contents; Table S1: Elemental compositions
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(in atomic %) derived from XPS on the CZTS NC samples with different nominal Cu content for the
initial and annealed films. The sulfide sulfur (S2-) associated with the NC structure and thioglycolate
associated with the NC surface (S1-) are taken into account, which is the most suitable approach
for representing the composition of TGA stabilized CZTS colloidal NCs according to our previous
work [37]; Table S2: Vibrational modes of carboxylic groups detected in the middle-infrared spectra
of Cu4, Cu2, and Cu0.25 initial (i.e., heated at 120 ◦C) and annealed at 220 ◦C samples [63,64].
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