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1. Synthesis of Nanosized Strontium Ferromolybdate Particles

The citrate-gel technique was used for the synthesis of Sr2FeMoOs-s (SFMO) nano-
particles using ultra-high purity Sr(NOs)2, Fe(NOsz)s-9H20, (NH4)sMo7O24 and citric acid
monohydrate CeHsO7-H20 as initial reagents. Synthesis details are described in [1]. Figure
S1 shows a flowchart of the manufacturing procedure.
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Figure S1. Flowchart of the fabrication of magnetically inhomogeneous Sr2FeMoQOs-» nanoparticles
by the citrate-gel technique [1].
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2. X-ray Diffraction

Experimental X-ray diffractograms were obtained at room temperature in a
DRON-3 X-ray diffractometer (Bourevestnik, Saint Petersburg, Russia) using the CuKe«
radiation at a scanning rate of 60 deg/h. Crystalline structure and the degree of super-
structural ordering of the iron and molybdenum cations were evaluated by means of the
ICSD-PDEF?2 database (Release 2000) and Rietveld refinement [3], a non-linear least-square
fitting of the whole diffraction pattern to a crystal structure model. Figure S2 illustrated a
typical XRD pattern.
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Figure S2. X-ray diffraction pattern of the fabricated Sr2FeMoOs-» nanoparticles.

Rietveld refinement was carried out by applying the PowderCell software package
[4]. The weighted residual of least-square refinement amounted to Rwy = 0.152, the ex-
pected (best possible Ruwp) residual to Rexp = 0.138 and the goodness of fit to GOF =
(Ruwp/Rexp)? = 1.21. The degree of superstructural ordering (P) was calculated by the for-
mula P = (2:SOFre — 1)-100% [5], where SOF is the seat occupancy factor of Fe ions refined
by the Rietveld method. Figure S3 illustrates the result of Rietveld refinement of the (101)
superstructural XRD peak in comparison to the ideal structure from the ICSD-PDF2 da-
tabase (Release 2000).
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Figure S3. Comparison of the superstructural (101) XRD peak of Sr2FeMoQOs-» with P = 88% (red
squares) with the ideal structure with P =100% (black solid line).
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3. Resonance Field versus Reduced Temperature
Figure 54 represents the resonance field Br versus reduced temperature 9= (1 - T/Tc)

with Tc the Curie temperature. The slope of this curve amounts to dB//d $=-1.825T.
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Figure S4. Resonance field Br versus reduced temperature 3= (1 - T/Tc). The linear part of the curve

is marked by a red line.

4. Field Dependence of the Magnetization
Figure S5 depicts the field dependence of the magnetization of the SFMO nanopar-

ticles measured at 5 K using a “Liquid Helium Free High Field Measurement System”

vibrating sample magnetometer (Cryogenic Ltd., UK).
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Figure S5. Field dependence of the magnetization of the SFMO nanoparticles measured at 5 K.
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