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Abstract: The urgent need to address environmental issues associated with the use of conventional
fossil fuels has driven the rapid evolution of the global energy landscape. This review explores the
background and significance of 3-G biofuel production, emphasizing the shift towards sustainable
alternatives amidst escalating greenhouse gas emissions. While various renewable energy sources
have gained prominence, biofuels have emerged as a promising solution for the transportation and
industrial sectors, particularly from microalgal biomass. The rationale for focusing on microalgal
biomass is based on its technical and environmental advantages. Unlike traditional feedstocks,
microalgae boast a high lipid content, enhancing biofuel production efficiency. Their rapid growth
rates and efficient carbon dioxide sequestration make microalgae frontrunners in scalable and sustain-
able biofuel production. This review aims to comprehensively analyze recent breakthroughs in 3-G
biofuel production from microalgal biomass, filling gaps in the existing literature. The topics covered
included species diversity, cultivation techniques, harvesting, pretreatment, lipid extraction methods,
and biofuel production pathways. Genetic engineering, downstream processing, energy-efficient
practices, and emerging trends, such as artificial intelligence and cross-disciplinary collaboration,
will be explored. This study aims to consolidate recent research findings, identify challenges and
opportunities, and guide future directions in microalgal biomass-based biofuel production. By syn-
thesizing unpublished research, this review seeks to advance our knowledge and provide insights for
researchers to foster sustainable and efficient 3-G biofuel production.

Keywords: biofuels; lipid content; microalgal biomass; renewable energy; sustainable alternatives

1. Introduction

A profound understanding of the technical complexities surrounding the conventional
use of fossil fuels is driving a shift in the current global energy landscape [1]. Environmental
challenges, notably the escalating impact of greenhouse gas emissions on climate change,
are steering research and innovation toward sustainable alternatives. Advanced technolo-
gies in renewable energy, including solar, wind, hydroelectric, and geothermal power, are
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emerging as viable solutions with a significantly lower carbon footprint [2]. Cutting-edge
research has focused on enhancing the efficiency and scalability of these renewable sources,
exploring innovations such as next-generation solar panels, advanced wind turbine designs,
and improved energy storage systems. Additionally, biofuels and hydrogen technologies
are gaining prominence as sustainable alternatives that address challenges related to trans-
portation and industrial processes [3]. Researchers are deploying genetic engineering in
biofuel production, tailoring microalgal strains for higher lipid yields, and optimizing
enzymatic pathways. Developing smart grids and integrating artificial intelligence (Al) for
real-time energy management further exemplifies the technical perspectives shaping the
global transition [4,5]. Collaborative international efforts, guided by policy initiatives such
as the Paris Agreement, are driving a concerted push towards a sustainable energy future,
with researchers at the forefront of innovation, aiming to tackle technical challenges and
optimize the deployment of clean energy technologies for maximum impact [6].

Microalgal biomass has emerged as a frontrunner in exploring sustainable biofuel
sources, supported by a thorough examination of various biofuel feedstocks. Microalgae
have technical and environmental advantages, making them an attractive choice for biofuel
production [7,8]. Compared to traditional feedstocks, such as corn or soybeans, microalgae
boast an exceptionally high lipid content, which is a pivotal factor in biofuel synthesis
efficiency [9]. This lipid-rich characteristic translates into a higher energy yield per unit of
biomass, which is crucial for addressing scalability concerns in biofuel production. Fur-
thermore, certain microalgal species exhibit rapid growth rates, facilitating large-scale
cultivation within short cycles [10,11]. This technical advantage optimizes biomass pro-
ductivity and enhances overall biofuel production. Additionally, the accelerated growth
rates of microalgae enable efficient carbon dioxide sequestration, offering environmental
benefits alongside biofuel production [12]. These technical and environmental benefits
make microalgal biomass a promising choice for long-lasting and effective biofuel feedstock.
It offers a promising way to meet future energy needs while causing the least damage to
the environment [13].

The scope and objectives of this review are designed to provide a comprehensive
analysis and synthesis of cutting-edge breakthroughs in 3-G biofuel production from
microalgal biomass. The primary aim is to consolidate and critically evaluate recent
research findings and advancements in the technical aspects of microalgae-based biofuel
production that are yet to be extensively covered in the existing literature. The scope
includes microalgal species diversity, cultivation techniques, harvesting, pretreatment
technologies, lipid extraction methods, and biofuel production pathways. This review
explores genetic engineering and strain improvement strategies, downstream processing
innovations, and energy-efficient and sustainable production practices. Furthermore, it will
analyze emerging trends, such as the application of artificial intelligence, the integration
of advanced sensors, and cross-disciplinary collaborations in 3-G biofuel research. The
overarching objective is to thoroughly understand state-of-the-art technologies, identify
challenges and opportunities, and offer insights into the future direction of microalgal
biomass-based biofuel production. By synthesizing unpublished and recent research
findings, this study seeks to contribute to advancing knowledge in the field and to guide
researchers, industry stakeholders, and policymakers in fostering sustainable and efficient
3-G biofuel production from microalgal biomass.

2. Microalgal Biomass as a Biofuel Feedstock

Microalgal biomass is a promising feedstock for biofuel production owing to its unique
characteristics and potential for sustainable and efficient conversion into renewable en-
ergy [14,15]. The microscopic size of algae facilitates high biomass yields in relatively small
cultivation areas, making them an attractive alternative to traditional biofuel feedstock [16].
Moreover, microalgae possess a remarkable ability to grow rapidly, enabling short cultiva-
tion cycles and frequent harvesting. This rapid growth contributes to high photosynthetic
efficiency and efficient carbon dioxide sequestration. Additionally, microalgal biomass is
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rich in lipids, carbohydrates, and proteins and provides versatile raw materials for various
biofuel pathways [17].

2.1. Microalgae Species Diversity and Selection Criteria

Microalgae exhibit an extensive diversity of species, each with a unique biochemi-
cal composition and characteristics. The selection of an appropriate microalgal species
is critical for designing a successful biofuel production system. Researchers typically
consider several key criteria during the selection process. Lipid content is a primary con-
sideration, as lipids are key precursors for biofuel production [18]. Microalgae with high
lipid contents, such as certain strains of Chlorella, Nannochloropsis, and Scenedesmus, are
often prioritized [19,20]. Moreover, adaptability to different environmental conditions is
crucial. Microalgae (Scenedesmus sp., Chlorella sp. Nannochloropsis sp, and Dunaliella sp.)
that can thrive across a range of climates, salinity levels, and nutrient concentrations are
ideal for large-scale cultivation, as they enhance the stability and resilience of production
systems [21]. The growth rate of the selected species is also a pivotal factor, as faster
growth translates to higher biomass yields and a more rapid turnover of cultivation cycles.
Furthermore, the selection process considers ease of cultivation and production scalability.
Some microalgal strains viz. Arthrospira platensis, Dunaliella salina, and Chlorella vulgaris
are more amenable to cultivation in open ponds, whereas others may thrive in closed
photobioreactor systems [22,23]. The scalability and economic feasibility of cultivating
the selected species on a commercial scale are essential considerations for the viability of
biofuel production [24].

2.2. Advances in Microalgal Cultivation Techniques (Drawbacks of Each Technique)

Advances in microalgal cultivation techniques have been the focal point of extensive
research efforts to enhance biomass productivity and overall efficiency in biofuel produc-
tion. Researchers have explored various innovative cultivation methods to optimize the
growth conditions of microalgae (Figure 1). Some noteworthy findings include advances in
closed system photobioreactors, which have gained prominence for their ability to provide
controlled environments for microalgal growth. These systems precisely regulate the tem-
perature, light intensity, and nutrient concentrations, resulting in improved biomass yields.
Compared to open systems, closed systems seem to have higher capital and operational
costs [25]. Additionally, such a system needs a lot of energy input to mix and maintain
optimal conditions. Researchers have improved the cultivation conditions for certain
microalgal strains using advanced monitoring and control systems [26]. This leads to
faster growth and increased lipid accumulation. Traditional open pond systems have been
improved through better design and management strategies. They are often vulnerable
to external contaminants from organisms as well as other environmental sources, such
as rainwater, which can alter the salinity and pH of the water, and due to this possibility,
the system yields a lower concentration of biomass in comparison to a closed system.
However, researchers have explored ways to minimize contamination, enhance sunlight
penetration, and improve mixing to create favorable conditions for microalgal growth [27].
Additionally, innovative paddlewheel systems and raceway pond designs have been in-
vestigated to increase cultivation efficiency and reduce energy consumption. The paddle
wheel component is subjected to wear and tear and needs regular maintenance [28]. Hybrid
cultivation systems that combine the features of both photobioreactors and open ponds
have emerged as promising approaches. These systems aim to capitalize on the advantages
of closed systems while maintaining the scalability and cost-effectiveness of open ponds
(Table 1) [29]. Hybrid systems often integrate enclosed modules within open-pond net-
works, providing better control over cultivation conditions. Mixotrophic cultivation, which
uses both organic carbon sources and photosynthesis simultaneously, has shown promise in
accelerating microalgal growth and increasing fat storage. However, this system integrates
two or more systems, and balancing these two systems simultaneously is a challenging
task [30]. This approach allows microalgae to utilize organic and inorganic carbon sources,
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making cultivation more versatile and adaptable to various environmental conditions [31].
Sustainable cultivation practices emphasize the importance of nutrient recycling and re-
source recovery. Researchers have explored methods to recover and reuse nutrients from
wastewater or residual biomass, thereby reducing the dependence on external nutrient
sources. Approaches like sustainable cultivation practices require significant startup funds.
This approach contributes to economic and environmental sustainability [32-34].

INTEGRATION OF ALGAL HARVESTING AND PRETREATMENT

(d
M » MICROALGAL CULTIVATION « @1

PROCESSING

' PRE-TREATMENT METHODS

NI FAWAN

INTEGRATION METHODS

Innovative harvesting as a preliminary
pre-treatment step

HARVESTING

-

Harvested water

CONTINUOUS
HARVESTING SYSTEM
Selection of energy-efficient

harvesting methods
Integration of advanced monitoring
and control systems
Optimization of resource utilization
strategies

Biomass

Integration of inline pre-treatment
modules

SUSTAINABLE PRACTICES g

Integration of Life Cycle Assessments (LCAs)
Development of Sustainable and Economically Viable Production Systems

Figure 1. Overview of microalgal cultivation, harvesting, and pretreatment technologies.

Table 1. Summary of algal strains, growth rates, cultivation methods, lipid content, and yields.

Algal Strain Rate of Growth Suggested Cultivation Lipid Content (%) Biomass Yield Reference
Method (g/m?/Day)

Chlorella vulgaris high open 30-50 20-25 [35,36]
ponds/photobioreactors

Scenedesmus very high open ponds 30-40 25-30 [37,38]

obliquus

Nannochloropsis sp.  moderate to high photobioreactors 30-60 15-20 [39,40]

Dunaliella salina moderate open ponds 20-40 10-15 [41,42]

Arthrospira platensis  high open ponds 10-20 15-20 [39,41]

Arthrospira platensis ~ very high open ponds 15-30 20-35 [43]

Phaeodactylum moderate to High ~ photobioreactors 20-40 10-25 [44]

tricornutum

Tetraselmis suecica high open 15-25 18-22 [44]

ponds/photobioreactors

2.3. Nutrient Requirements and Optimization Strategies

Much research has been conducted on the nutrient needs and best ways to grow
microalgae, which has led to some interesting findings that could help make biofuel pro-
duction systems sustainable and effective [45]. Research has identified critical roles for
nitrogen and phosphorus in microalgal growth and lipid accumulation. Studies have
reported that maintaining an optimal nitrogen-to-phosphorus ratio prevents nutrient limi-
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tation and maximizes biomass productivity [46]. Research shows that adjusting the N:P
ratio could enhance biomass productivity by 65%, where nitrogen is availed in sufficient
quantities [47]. Moreover, innovative strategies involve utilizing alternative nitrogen and
phosphorus sources (approximately 1.78:1 ratio), such as organic compounds or waste
streams, to enhance nutrient availability [48]. The substitution of conventional nitrogen
and phosphorus sources with organic nitrogen- and phosphorus-containing compounds
or waste can enhance nutrient utilization by enhancing the biomass yield by 74% and
the bioavailability of nitrogen and phosphorus in microbial aggregates [49]; also, main-
taining an optimal N/P ratio (10:1) increases the nutrient usage efficacy in algae [50].
These findings underscore the importance of nitrogen and phosphorus management in
achieving higher yields of microalgal biomass. Efficient carbon utilization is paramount
for photosynthesis and, consequently, for microalgal growth. Various strategies have
been explored to optimize carbon availability. Capturing carbon dioxide from industrial
emissions and integrating it into microalgal cultivation systems has been recognized as a
promising approach. This provides an additional carbon source and contributes to reducing
greenhouse gas emissions through carbon sequestration [51]. Micronutrients, including
iron, zinc, manganese, and molybdenum, play crucial roles in microalgal metabolism. The
research findings emphasize the importance of fine-tuning the concentrations of these trace
elements for optimal growth conditions. Studies on iron supplementation have shown that
it can improve photosynthetic efficiency and lipid buildup in microalgae. This makes it an
essential part of the strategies for optimizing nutrients [52].

Sustainable cultivation practices advocate nutrient recycling and resource recovery.
Research has demonstrated innovative methods to recover and reuse nutrients from resid-
ual biomass or wastewater, reducing the dependence on external nutrient sources [14,20].
These resource recovery strategies contribute to environmental sustainability and offer
economic benefits by minimizing the costs associated with traditional fertilizers [53], 2019.
Mixotrophic cultivation, in which microalgae simultaneously utilize organic carbon sources
and photosynthesis, has emerged as a promising optimization strategy. Research findings
have highlighted the benefits of mixotrophy in enhancing growth rates and biomass produc-
tivity. This approach is particularly valuable when nutrient availability is variable, showing
its adaptability and efficiency in nutrient utilization [54]. The application of precision
farming techniques, supported by advanced monitoring systems and sensors, has been
reported as a successful approach to nutrient optimization [55]. Real-time data on nutrient
levels, biomass density, and environmental conditions enable precise adjustments to culti-
vation parameters [56]. The integration of this technology enhances the overall efficiency of
nutrient management, contributing to higher yields and improved cultivation practices [57].
Combining mixotrophic microalgal biofilms can also aid in increased biomass production,
i.e., two- to three-fold, by achieving an average productivity of 5.3 to 12.2 g/m?/day,
and lipid content can be enriched 2- to 10-fold compared to autotrophic methods [58,59].
Genetic engineering studies have focused on enhancing the nutrient uptake capability of
microalgae. Researchers want to develop strains that use nutrients more efficiently by
changing genes related to nutrient transporters and metabolic pathways. These genetically
modified strains exhibit enhanced nutrient uptake, contributing to increased biomass and
biofuel yields [60,61].

3. Harvesting and Pretreatment Technologies

Research on harvesting and pretreatment technologies for microalgal biomass has
shown significant improvements, which can help solve problems related to efficient biomass
recovery and processing. The development of novel harvesting methods has been a key
focus, with the aim of streamlining the harvesting process and enhancing overall produc-
tivity. Some studies have examined the use of flocculation agents, which cause microalgae
cells to stick together, making sedimentation easier and easier to separate. Various natural
and synthetic flocculants have been studied to identify the most effective and environmen-
tally friendly option [62]. These methods offer a cost-effective approach for concentrating
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microalgal biomass and simplifying subsequent harvesting steps. Centrifugation and filtra-
tion techniques have been refined to improve efficiency and reduce energy consumption
during harvesting. High-speed centrifugation allows for the rapid separation of microalgal
biomass from the culture medium, whereas advanced filtration systems, such as membrane
filters, offer a scalable solution for harvesting [63]. Research findings emphasize the op-
timization of these techniques for specific microalgal strains and cultivation conditions.
For example, new methods use electric fields to move microalgae cells toward electrodes,
which allows for selective harvesting. This electro-harvesting method has shown promise
in terms of energy efficiency and reduced environmental impact [64]. Electro-harvesting
cuts energy wasting by 0.18 kWh/m?3 and battery wastage by 40-60%, and therefore, the
depletion of resources and environmental degradation is restricted [65,66].

Biosurfactants are naturally occurring chemicals with surfactant properties that have
been investigated to see if they could help harvest microalgal biomass. These substances
can alter the surface properties of the microalgal cells, facilitating their separation from the
culture medium [65]. Research findings highlight the effectiveness of biosurfactant-assisted
methods in improving harvesting efficiency while minimizing the need for chemical ad-
ditives. Bio-flocculant-microbial polymers produced by specific bacteria, fungi, or algae
have attracted attention owing to their use in harvesting microalgal biomass. Research has
identified specific strains capable of producing bio-flocculants that effectively aggregate
microalgal cells, simplifying the separation process [66]. This eco-friendly approach aligns
with the broad goal of sustainable biofuel production. Continuous harvesting systems aim
to provide a steady supply of microalgal biomass without disrupting cultivation processes.
These systems are often built into photobioreactors and continuously remove biomass while
maintaining the best microalgal growth conditions [67]. Research has focused on designing
efficient and continuous harvesting systems suitable for large-scale production. Research
findings on novel microalgal biomass harvesting methods highlight various innovative
technologies with advantages and specific applications. These advancements improve
harvesting efficiency and contribute to the overall sustainability and economic viability
of microalgal biomass as feedstock for biofuel production [68]. As the field continues to
evolve, ongoing research endeavors are expected to refine existing methods and introduce
new and more efficient approaches to address the evolving demands of the biofuel industry.

3.1. Pretreatment Techniques to Enhance Biomass Accessibility

Research on microalgal biomass pretreatment techniques has expanded our under-
standing of methods to improve biomass accessibility, which is a crucial step in optimizing
downstream processes for biofuel production. Table 2 outlines the advantages and disad-
vantages of various pretreatment approaches used to enhance microalgal biomass. Studies
have identified key techniques, such as high-pressure homogenization and bead milling,
which are effective in disrupting microalgal cell walls. These methods aim to achieve
smaller particle sizes and improve access to intracellular components, including lipids [69].
Optimization studies have focused on identifying the optimal parameters for specific mi-
croalgal strains to minimize energy consumption while maximizing disruption efficiency.
Ionic liquids, which are known to dissolve a wide range of biomass components, have
gained attention in recent research because of their potential for pretreatment. Studies have
indicated that IL-assisted pretreatment can disrupt microalgal cell walls and enhance the
accessibility of lipids [70]. This approach is considered promising for its selectivity and po-
tential to reduce the environmental impact compared to traditional solvents. Hydrothermal
liquefaction, which involves the treatment of microalgal biomass with high-temperature wa-
ter under pressure, has recently emerged as a research focus. This technique can efficiently
break down complex biomolecules and improve the accessibility of downstream processes.
Previous studies have investigated the optimal temperature and residence time conditions
to enhance biomass liquefaction and the subsequent extraction of valuable components.
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Table 2. Merits and demerits of pretreatment techniques to enhance biomass accessibility.
Pretreatment Technique Merits Demerits References
Mechanical disruption [71,72]
e low energy consumption e  potential for cell damage
high biomass accessibility e  requires specialized equipment
scalability e  imited to certain microalgal species
Chemical treatment [73,74]
efficient cell wall disruption e  chemical waste generation
enhanced lipid extraction e  environmental concerns
e  can be applied to various e high operational costs
microalgae species
Microwave treatment [74,75]
e  rapid heating e  uneven heating, leading to localized
selective targeting of cell overcooking
components e  limited penetration depth
e  reduced energy consumption e  equipment cost
Ultrasound [74,76]
e  non-invasive e  high initial investment
e  uniform treatment e  limited scalability
. enhanced mass transfer . equipment maintenance
e  reduced processing time
Enzymatic hydrolysis [72,74,76]
mild operating conditions e  enzyme cost
specific enzymatic action e  long processing time
e high selectivity e  potential contamination

Microwave-assisted pretreatment has recently seen advancements as a potentially
energy-efficient method. Research suggests that controlled microwave irradiation can
selectively rupture microalgal cells, thereby improving the release of intracellular compo-
nents [77]. Optimization studies have focused on determining the appropriate microwave
power and exposure time for different microalgal strains. Recent research has emphasized
the use of specific enzymes in biological pretreatment methods to enhance biomass ac-
cessibility. Enzymes, such as cellulases and hemicellulases, can selectively degrade cell
wall components [78]. Studies have explored the synergistic effects of combining different
enzymes and optimizing the conditions for effective biological pretreatment. Researchers
have investigated the synergies achieved by combining various pretreatment methods. For
instance, a combination of mechanical disruption and enzymatic treatment has demon-
strated enhanced biomass accessibility. Recent studies have explored the sequence and
conditions of these combined pretreatment approaches to achieve comprehensive cell wall
degradation [79]. In recent research, ultrasound-assisted pretreatment has gained attention
because of its potential to disrupt microalgal cells through cavitation. Studies have indi-
cated that ultrasound waves can effectively rupture cell walls, improving the accessibility
of intracellular components. Optimization focuses on frequency and intensity parameters
to balance efficacy and energy efficiency [80]. These recent research findings contribute to
the advancement of pretreatment techniques for enhancing microalgal biomass accessibility.
Ongoing efforts are aimed at developing scalable, energy-efficient, and environmentally
sustainable methods that can be integrated into large-scale biofuel production processes,
paving the way for the more efficient utilization of microalgal biomass as a valuable
feedstock [81].
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3.2. Integration of Harvesting and Pretreatment Processes

The integration of harvesting and pretreatment processes in microalgal biomass pro-
duction plays a key role in enhancing overall efficiency and streamlining downstream
processing for applications like biofuel production. This approach is essential for optimiz-
ing resource use, minimizing energy consumption, and improving the economic viability of
microalgae cultivation. As identified in recent research, the key aspects of this integration
include research exploring the development of continuous harvesting systems that seam-
lessly integrate with pretreatment processes [82]. These systems enable the continuous
removal of microalgal biomass while subjecting it to pretreatment methods. Continuous
systems improve overall productivity by minimizing downtime and maintaining optimal
conditions for both harvesting and pretreatment [83]. In-line pretreatment modules, when
placed within the photobioreactor systems, facilitate direct biomass treatment and elimi-
nate the need for additional time, thus making it efficient. This approach brings down the
operational costs, reduces the physical space occupied by the biomass system, and spatially
guarantees the right environment for treatment immediately after the biomass is harvested.
Emerging technologies such as membrane photobioreactors (MPBRs) and ceramic hy-
drophobic membranes enhance nutrient recovery and the CO; solution in the process,
increasing overall productivity [84]. In-line modules can include mechanical, chemical, or
biological pretreatment steps, ensuring a more streamlined and space-efficient production
process [85]. Innovative research has explored the utilization of harvesting methods as a
preliminary step in pretreatment. For example, mechanical harvesting techniques such as
centrifugation or filtration are engineered to induce mild stress on microalgal cells, initiat-
ing a pretreatment effect. This integrated approach minimizes the number of processing
steps and optimizes resource utilization [63]. The importance of selecting energy-efficient
harvesting methods that align with the subsequent pretreatment steps has been increasingly
recognized. Integration strategies aim to harmonize the energy demands of harvesting and
pretreatment processes to enhance overall sustainability. For example, energy generated
during harvesting, such as in electro-harvesting techniques, can be effectively utilized in the
following pretreatment stages. Synergistic protocols involve tailoring the harvesting and
pretreatment methods to work collaboratively, taking advantage of their complementary
effects [86].

Mechanical harvesting methods, such as high-pressure homogenization or bead
milling, can exert significant stress on microalgal cell walls, leading to cell disruption.
This mechanical stress weakens the structural components of the cell wall, including
polysaccharides like mannans and glucans, glycoproteins, or silica in species such as di-
atoms. As a result, the cell wall becomes more vulnerable to degradation during subsequent
chemical or enzymatic pretreatments. This increased susceptibility improves the effec-
tiveness of pretreatments by facilitating better penetration and breakdown of the cellular
matrix, thereby enhancing the recovery of valuable compounds such as lipids, proteins,
and bioactive molecules [87]. The findings highlight the potential for boosting overall
efficiency through strategic integration. A key area of focus has been the incorporation of
advanced monitoring and control systems, which offer real-time data on biomass density,
composition, and process parameters throughout harvesting and pretreatment. This in-
tegration allows for the more precise optimization of the processes, enhancing efficiency
and ensuring better control over the production workflow [88]. Integrating sensors and
automation allows for the adaptive control and optimization of conditions based on the
specific characteristics of the microalgal culture.

Studies have employed life cycle assessments (LCAs) to evaluate the environmental
impact and sustainability of integrated harvesting and pretreatment processes. By consider-
ing the entire life cycle of a production system, LCAs help identify areas for improvement
and optimize resource utilization, enhancing overall sustainability [89]. The high-yield
methods of algal cultivation and genetic engineering can improve biomass production
by three and reach the rate of 240-280 tons per hectare per year. Energy efficiency may
be enhanced to an extent of 1.5-2 times. Algal systems also provide a high energy yield
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by a factor of 16 per hectare, which is more than the yield from corn production [90-92].
Ongoing research continues to refine these integrated approaches by considering the spe-
cific needs of different microalgal strains and cultivation conditions. Figure 2 illustrates
that continuous harvesting systems seamlessly integrate pretreatment processes, enabling
continuous biomass removal while subjecting it to pretreatment methods, reducing down-
time, and optimizing productivity. In-line pretreatment modules within photobioreactor
systems allow for the immediate processing of harvested biomass, streamlining production
and space efficiency. Innovative harvesting techniques induce mild stress in microalgal
cells, initiating pretreatment effects, minimizing processing steps, and optimizing resource
utilization (Table 3). Energy-efficient harvesting methods complement pretreatment, en-
suring sustainability and harmonizing energy requirements [93,94]. Advanced monitoring
and control systems provide real-time data and optimize conditions based on biomass
characteristics. Life cycle assessments evaluate environmental impact and sustainability
and refine integrated approaches for efficient production systems.

Microalgal
cultivation

Continuous Harvesting system i e Ee e

module integration

Innovative Harvesting as
preliminary pre-treatment step

Energy efficient Harvesting
Methods selection

Advanced Monitoring and

Life Cycle Assessments (LCAs)
control systems

integration

Sustainable and E ically
viable production systems

Optimized Resource
Utilization stratergies

Figure 2. Schematic diagram of integration of harvesting and pretreatment processes.

Table 3. Comparison of microalgae and vegetable oil biofuels across key criteria [40,47,95-97].

Criteria

Microalgae Biofuels

Vegetable Oil Biofuels

Lipid yield

Growth conditions

Fatty acid composition

Environmental impact

Fuel quality

Production costs

Diversity of products

up to 58,700 L/ha o  lower yields, e.g., soybeans 400-500 L/ha

grows in non-arable land (can grow in seawater and

wastewater) e  requires arable land; competes with food crops

e  high in saturated and monounsaturated fatty acids

. lower carbon footprint; utilizes CO, from industrial
processes

. high combustion efficiency and low sulfur content

. currently higher due to extraction and processing;
research ongoing to reduce costs

° produces biodiesel, bioethanol, biogas, aviation fuel,
and hydrogen gas

. higher in polyunsaturated fatty acids (PUFAs)

. higher impact due to land use change and food
supply competition

e  good combustion properties may contain
impurities

. generally lower, but volatile agricultural prices

° primarily biodiesel and bioethanol
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4. Algal Biofuel Production Pathways

Lipid extraction is a critical step in algal biofuel production because lipids serve as
the primary feedstock for biofuel synthesis [98]. Efforts to advance lipid extraction tech-
nologies aim to improve efficiency, cost-effectiveness, and sustainability. Developments in
supercritical fluid extraction, particularly using carbon dioxide (CO,), have significantly
enhanced lipid extraction from microalgal biomass. Research indicates that supercritical
fluid extraction (SFE) provides greater selectivity and reduces solvent consumption, making
the process more environmentally friendly. Studies have indicated that supercritical fluid
extraction (SFE) offers higher selectivity and reduced solvent usage, contributing to a more
environmentally friendly process [99]. Ultrasound-assisted extraction has gained attention
because of its ability to disrupt microalgal cells and improve lipid recovery [100]. Recent
research findings highlight optimization studies that focus on ultrasound frequency, power,
and duration to maximize lipid extraction efficiency while minimizing energy consump-
tion [101]. The synergistic effects of combining enzymatic treatments with mechanical or
chemical extraction methods have been explored to enhance efficiency [102]. Researchers
have looked into microwave-assisted extraction methods, which have been investigated to
determine whether they can increase the rate of lipid extraction by breaking down cells and
making it easier for solvents to enter. Research findings emphasize optimizing microwave
parameters for efficient lipid recovery from various microalgal strains [103].

4.1. Conversion of Lipids to Biofuels: Current State-of-the-Art
4.1.1. Transesterification Processes

The heterogeneous catalysts include metal oxides and solid acids; the conversion
efficiency is nearly 100% in 30 min using 4-DBSA (4-Dodecylbenzenesulfonic acid) under
microwave heating at 76 °C, while the conventional processes take many hours. They
are also less corrosive than other mineral acid catalysts, reducing capital and operating
expenses associated with equipment repair. Lipase-catalyzed transesterification occurs
under relatively mild conditions, which provide high substrate selectivity, low side reac-
tions, high conversion rates, and better-quality biodiesel [104]. Other advancements like
microwave-assisted transesterification have a more minimized reaction time, but with high
conversion rates and a Response Surface Methodology (RSM), they have provided a way
of determining the right blend of factors such as the concentration of the catalyst and tem-
perature so as to achieve the maximum biodiesel yields. Another study on the interaction
of multiple enzymes in the process revealed that an enzyme cocktail enhances the overall
efficiency of the biodiesel production processes [105]. However, there are disadvantages to
the transesterification of microalgae for biodiesel. The use of edible oils or other specific
microalgal strains increases production costs, which remains an issue in terms of economic
feasibility. Again, the feedstock complexity means that the extraction and transesterification
of the FFAs (free fatty acids) necessitates additional steps requiring more effort. Environ-
mental factors make enzyme stability a challenge in enzymatic transesterification. Glycerol,
which is another product of transesterification, is quite challenging to purify and, more
than that, has minimal market value [106,107].

The major product of microalgae transesterification is biodiesel in the form of fatty
acid methyl esters or FAMEs (fatty acid methyl esters), which can be utilized in diesel
engines with the least pollution. Furthermore, through fermentation, microalgae biomass
may be converted into bioethanol, which is ideal for mixing in with gasoline [108]. Algal
oils are also converted into aviation fuels such as Jet A, cutting emissions, while biodiesel
derived from microalgae can be modified to fit maritime fuel standards. Biomass produces
a clean energy known as biogas through a process called anaerobic digestion, and some
types of algae can produce hydrogen gas. Some thermo-chemical conversion pathways
transform biomass to crude bio-oil, which is refined to produce fuels such as gasoline [109].
Overall, microalgal-based fuel demonstrates higher efficiency and quality compared to
conventional vegetable oil biofuels, as shown in Table 4.
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Ionic liquids have emerged as promising catalysts for transesterification, providing
advantages like reduced volatility and improved catalytic activity. Nanocatalysts, especially
metal nanoparticles, have been explored for their potential to enhance catalytic perfor-
mance. Additionally, ongoing efforts aim to optimize enzyme-assisted transesterification

by addressing factors such as enzyme stability, activity, and cost-effectiveness [110].

Table 4. Transesterification of algal oil using different catalysts.

Algal Strain ;F{?;ifz;erlﬁcatlon Reaction Conditions gfoﬁnc ‘.::;S:;r(l%) References
Chlorella .. 9:1 (CH30H/ 0il molar
protothecoides supercritical/CH;OH ratio), 400 °C, 4 min, 200 bar %5 (111]
pchizochitrium supercritical/CH;OOCCH :r?i'rll/(%{&?,gccm/ algae ratio, 643 K, 40 10 [112]
g{‘ll;;ils” in situ/C,HsOH gf;;zclﬁ%ig/ w), 10.1% H0, 100 [113]
1:1 n-hexane, 1:400
Nannochloropsis sp. 2 (%wt.) KOH molar ratio of >90 [114]
lipid/CH30H, 4 h, 60 °C
microwave-assisted/ 1:250 (oil: C;H50H molar ratio), 60 °C,
Chiorella sp. 2.5 (%wt.) NaOH 1:1 C,HsOH-to-hexane, 350 W, 6 min 943 [115]
Chlorella simultaneous 9:1 C;H50H-to-oil molar
minutissima esterification and ratio, 80 °C, 170 rpm, 96.5 [116]
transesterification/3% (w/w) H,SOy4 8 h
Chlorella 45:1 CH30H-to-oil molar
prololhecoides acid-catalyzed /100% H,SOy4 ratio, 30 °C, 7 h, 68 [117]
160 rpm
Chlorella in situ 10 wt% 8 mL/g of CH3OH-to-biomass 89.5 [118]
vulgaris KOH/AlL,O3 ratio, 60 °C,5h :
Scenedesmus 15 wt% 12:1 CH30H-to-0il molar >94 [119]
obliquus WO;/ZrO, ratio, 100 °C,3 h
Chlorella esterification followed 120:1 C,H5OH-to-oil molar
minutissima by transesterification ratio, 250 °C 98 [116]
Nb205 /504 300 Irpm, 4h
10 Wto/o
. immobilized 3:1 CH30H-to-0il molar
Scenedesmus obliquus Pseudomonas ratio, 35 °C, 12 h >91 [119]
fluorescence
recombinant
Chlamydomonas Fusarium 4:1 MeOH-to-oil ratio, 597 [120]
sp. heterosporum 30°C,32h, 35 rpm
lipase

4.1.2. Hydrothermal Liquefaction (HTL)

Recent advancements in hydrothermal liquefaction (HTL) have resulted in a concerted
effort to elevate both the quality of the bio-crude obtained and the overall efficiency of the
process. One significant aspect of this progress lies in upgrading techniques that involve
refining the bio-crude to meet the specific standards suitable for fuel applications. These
techniques, such as hydrodeoxygenation (HDO), play a pivotal role in removing oxygen-
containing functional groups from the bio-crude, thereby enhancing their stability and
compatibility with existing refining processes. Additionally, catalyst development has
become an important area of study, with scientists trying to find materials that can act
quickly, selectively, and reliably under harsh HTL [121]. This pursuit aims to optimize
reaction kinetics, minimize energy consumption, and extend the catalyst lifespan, all of
which enhance process efficiency and economic viability.

The bio-oil received is a complicated fluid consisting chiefly of oxygenated hydrocar-
bons. It usually comprises 79% carbon, 10% hydrogen, 3.8% oxygen, and 3-8% nitrogen
alongside less than 2% of the sulfur level, which is more than the petroleum crude oil.
Bio-oil itself has about a 245-cP viscosity at 40 °C, which is thicker than fuel. The density
is approximately 0.99 g/cm?; thus, it is easy to handle and store, and the moisture level
is normally 5-10% [40,122]. Furthermore, recent studies have highlighted the importance
of tailoring HTL conditions to specific characteristics of diverse algal strains. Different
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algae species possess varying compositions, necessitating HTL parameter adjustments to
maximize bio-crude yield [123]. Additionally, exploring the integration of HTL with other
processes, such as nutrient recovery, offers potential avenues for enhancing the sustain-
ability and efficiency of algal biofuel production. Coupling HTL with nutrient recovery
methods, such as recycling nutrients from residual biomass or wastewater treatment, helps
minimize the environmental impact of algal cultivation and biofuel production while also
improving the economic viability of HTL technologies [24,124]. These advancements collec-
tively contribute to the ongoing development and refinement of HTL as a feasible pathway
for converting biomass into renewable fuels (Figure 3).

Transesterification

(for biodiesel production)

«enhance lipid (fatty acid)
production

«focus on producing long-chain
fatty acids like C16 and C18.

*more resilient to stressors like
salinity, temperature
fluctuations, or nutrient
deficiency

«reduced nutrient input

«enhanced lipid extraction

«rapid growth rate

Hydrothermal Liquefaction
(for bio-crude production)

*biomass with higher lipid or
carbohydrate content and rapid
growth

*increase the cellular density,
providing more substrate for
HTL

«improving conversion efficiency
during bio-crude production

*can grow in high moisture
environments

« can withstand higher

Hydrodeoxygenation

(for drop-in biofuels)

«developed to produce lipids
with lower oxygen content
« generate oils with desirable

chemical properties
«improving lipid production-
increasing overall biofuel yield
« higher fatty acid
concentrations
*reduced catalytic
requirements
«increased resistance to

temperatures and pressures degradation
* produce biomass with fewer

impurities, such as sulfur or

nitrogen

Figure 3. The advantages of utilizing genetically modified algal strains for various biofuel produc-
tion methods.

4.1.3. Hydrodeoxygenation (HDO)

The HDO of microalgae necessarily works in two primary pathways. The first ap-
proach is the direct extraction of oil or lipids from microalgae biomass. In this process,
solvent extraction, or a mechanical approach, is commonly used to separate the lipid frac-
tion containing fatty acids and other essential chemicals. Once the lipids are obtained, they
are subjected to hydrotreatment or hydrodeoxygenation [125]. This HDO process purges
the lipids from oxygen and other heteroatoms to generate high-quality drop-in paraffinic
fuels. These fuels are precious because they are drop-in fuels that do not require major
changes to the existing fuel infrastructure. At the same time, they are appropriate for a
wide range of uses, such as SAF, shipping, and on-road transportation. The capacity to
utilize microalgal lipids for such fuels ensures a decrease in greenhouse emissions from
transportation and meets the growing global challenge for the availability of sustainable
transport energy.

Ongoing research in hydrodeoxygenation (HDO) has focused on catalyst innovation,
process optimization, and expanding its application to diverse lipid feedstocks. Catalyst
innovation in HDO has received significant attention, with researchers exploring advanced
catalysts, including supported metals and bifunctional catalysts, to enhance efficiency [126].
Catalyst recycling strategies, such as immobilization and regeneration, have been investi-
gated to improve economic feasibility. Recent studies have broadened the application of
HDO to diverse lipid feedstocks by considering various microalgal strains and feedstocks
with different compositions. Integrating HDO with other processes has emerged as a strat-
egy to improve overall efficiency, with researchers exploring holistic approaches to biofuel
production. Recent research findings have underscored the dynamic advancements in trans-
esterification, hydrothermal liquefaction, and hydrodeoxygenation processes [127]. These
technical perspectives and the latest research insights contribute to shaping more efficient,
cost-effective, and sustainable pathways for converting lipids into biofuels, particularly for
algal biofuel production (Figure 3).
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Hydrodeoxygenation (HDO) is an upgrading process that eliminates oxygen-containing
functional groups in bio-crude in order to increase the stability and energy content of the
feedstock. HDO enhances the heating value of the bio-oil, which makes it possible for
conventional engines to burn the bio-oil entirely [128]. Some recent works have looked at
numerous catalytic processes in order to rationalize the upgrading process. The enhance-
ment in using the CuO-CeO, /y-Al, O3 catalyst together with the Ni-Co/SAPO-34 catalysts
have also produced higher bio-oil yields, from 51% to 64.51%, and carbon recovery rates,
from 69.53% to 88.18%. Much attention has been paid to the synthesis of high-performance
heterogeneous catalysts for enhancing the overall performance efficiency of the process.
Surveys on biosynergistic effects between catalysts have revealed that the utilization of
alkali-metal catalysts improve bio-oil production. When the algal strain and the catalyst
are matched, then the reaction kinetics and product quality improve [129]. The integration
of hydrothermal liquefaction with the nutrient recovery processes can, therefore, act as
an enabler to reduce the environmental impacts of the cultivation of algae and can also
enable the reduction in costs of input nutrients. HTL can also be integrated with other
thermochemical processes to produce other useful chemicals and materials from biomass
resources. Biomass conversion is optimally achieved at temperatures between 250 °C and
450 °C and pressures of high and low energy consumption. Where the reaction conditions
are effectively managed, this leads to increased bio-crude production and better energy
recovery rates [130].

4.2. Exploring Alternative Pathways for Biofuel Synthesis

Exploring alternative pathways for biofuel synthesis is a dynamic area of research
driven by the need for diverse and sustainable renewable energy sources. Recent research
has illuminated various innovative approaches to biofuel production, considering alterna-
tive feedstocks and novel synthesis pathways [47].

4.2.1. Carbohydrate Fermentation

Recent research has focused on carbohydrate fermentation as an alternative pathway
for biofuel synthesis. This process involves the conversion of sugars derived from biomass,
such as starch or cellulose, into bioethanol through microbial fermentation. Recent studies
have identified and engineered microbial strains with enhanced capabilities for fermenting
diverse carbohydrates [131]. This includes optimizing the strains for improved ethanol
yield, robustness, and substrate utilization efficiency. Researchers have employed metabolic
engineering techniques to tailor microorganisms for efficient carbohydrate utilization. This
involves modifying the microbial metabolic pathways to enhance bioethanol production
while minimizing byproducts.

4.2.2. Hydrogen Production

Hydrogen production from microalgae, either through photobiological or dark fer-
mentation processes, represents an alternative pathway for biofuel synthesis. Microalgae
are a promising feedstock owing to their rapid growth and ability to produce hydrogen
under certain conditions [132]. Figure 4 illustrates the hydrogen production mechanism.
Photosynthesis is a complex biochemical process that is crucial for energy production
and the sustenance of algal cells. Initially, these cells absorb sunlight through pigments
such as chlorophyll, initiating light reactions wherein water molecules (H,O) are split into
oxygen (O), protons (H"), and electrons (e™). This process releases oxygen as a by-product.
Subsequently, in the Calvin cycle, electrons produced during the light reactions are utilized
to convert carbon dioxide (CO,) into organic compounds, predominantly sugars, such as
glucose, facilitating the synthesis of energy-rich molecules [133]. In addition, algal cells
undergo various metabolic pathways. Glycolysis, for instance, breaks down glucose into
pyruvate, generating electrons (e~) and protons (H*). Furthermore, pyruvate oxidation
occurs in the mitochondria through the citric acid cycle, producing more electrons (e™) and
protons (H*). These electrons are then transferred through the electron transport chain
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(ETC), releasing energy to pump protons (H+) across the membrane and establishing a
proton gradient. Moreover, within the algal cells, FeFe-hydrogenase and NiFe-hydrogenase
enzymes, located in chloroplasts and other cellular compartments, catalyze the reduction
in protons (H*) and electrons (e™) generated from metabolic pathways, resulting in the
production of molecular hydrogen (Hy). Thus, photosynthesis, associated metabolic path-
ways, and hydrogenase enzymes constitute vital mechanisms for energy conversion and
hydrogen production in algal cells. Recent findings have highlighted the selection and
modification of microalgal strains with higher hydrogen production capabilities. Genetic en-
gineering and selective breeding play a role in enhancing the intrinsic hydrogen-producing
abilities of microalgae. Studies have focused on optimizing bioreactor conditions for en-
hanced hydrogen production. This includes adjusting parameters, such as light intensity,
nutrient availability, and temperature, to create an environment conducive to hydrogen
synthesis [134].
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Figure 4. Mechanism of hydrogen production using microalgae.
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4.2.3. Synthetic Biology and Alternative Precursors

Advancements in synthetic biology have enabled the exploration of alternative precur-
sors for biofuel synthesis. Researchers are engineering microorganisms to produce biofuels
directly from non-traditional substrates such as lignocellulosic biomass or industrial waste
streams. Recent research has focused on pathway engineering in microorganisms to enable
the direct conversion of complex substrates into biofuels [135]. This includes the develop-
ment of pathways for biofuel synthesis from diverse precursors. Studies have explored
the use of industrial waste streams and agricultural residues as alternative precursors for
biofuel production. This approach contributes to waste valorization while providing a sus-
tainable source for biofuel synthesis [136]. Recent research findings collectively emphasize
the diversity and innovation in alternative pathways for biofuel synthesis, such as glycerols,
waste grains, and other forms of organic waste. One such study found that the production
of branched-chain alcohols and alkanes with favorable fuel characteristics can be achieved
by employing 2-keto acids as precursors. These approaches leverage genetic, metabolic
engineering, and process optimization advancements to offer sustainable and economically
viable solutions for producing renewable biofuels. As the field evolves, ongoing research
aims to address challenges, enhance efficiency, and contribute to developing a more resilient
and diversified bioenergy landscape [137].

5. Genetic Engineering and Strain Improvement

Genetic engineering and strain improvement are pivotal for optimizing microorgan-
isms to enhance biofuel production. Genetic engineering techniques have been employed
to enhance the growth rate and lipid productivity of microalgae. By manipulating the
genes associated with lipid biosynthesis and stress responses, researchers have developed
strains with improved biomass yields, making them more suitable for large-scale culti-
vation in biofuel production [138]. Advances in monitoring and control systems have
played a crucial role in optimizing microalgal cultivation. Real-time data on factors such as
biomass density, nutrient concentrations, and environmental conditions enable the precise
adjustments of cultivation parameters [139,140]. Automation and sensor technologies have
contributed to increased efficiency and reduced operational costs. Significant advance-
ments have been made in using tools like CRISPR-Cas9 and other genetic modification
techniques to engineer microorganisms for enhanced lipid productivity and optimized
biofuel yield [141].

5.1. CRISPR-Cas9 and Other Tools for Genetic Modification

In recent years, there has been a paradigmatic shift in genetic engineering with the
advent of CRISPR-Cas9 and other sophisticated tools. CRISPR-Cas9 allows for the precise
and targeted modification of genetic material, offering unprecedented control over the
manipulation of microorganisms for biofuel synthesis [142]. Studies have highlighted the
high precision of CRISPR-Cas9 in editing the specific genes involved in lipid biosynthesis
pathways. This tool enables researchers to engineer microorganisms and enhance their
biofuel production capabilities precisely [143]. Recent advancements have focused on the
multiplexing capability of CRISPR-Cas9, which allows the simultaneous modification of
multiple genes. This accelerates the strain engineering process and addresses multiple
factors that influence the biofuel yield. One such study showed that a set of tools for
genome engineering in microalgae, Nannochloropsis oceanica, had been designed using
Cas12a RNPs for high-throughput genome editing. This approach allows researchers to
build scarless and markerless mutants, enabling them to make strains with improved traits
in a shorter time frame, including increased lipid production [144]. Studies on Chlorella
sorokiniana showed that employing dCas9-based gene regulation systems may significantly
increase protein levels and lipid accumulation. This indicates a possible route for increasing
the target compound’s titer yields relevant to biofuel production [145].
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5.2. Enhanced Lipid Productivity Through Genetic Engineering

Genetic engineering has been employed to enhance lipid productivity, which is a
key factor influencing the efficiency of biofuel production (Figure 5). Researchers have
aimed to increase the lipid content of microorganisms by manipulating the metabolic
pathways involved in lipid biosynthesis. Recent studies have focused on optimizing the
metabolic pathways related to lipid synthesis. This involves the overexpression of key
enzymes or the introduction of novel pathways to redirect metabolic flux towards lipid
accumulation [146]. Genetic engineering has enhanced the ability of microorganisms to
efficiently utilize nutrients for lipid production. This includes modifying transporters
and metabolic regulators to maximize resource utilization [147]. Researchers are currently
exploring genetic modifications to induce lipid production under stressful conditions. This
strategy involves engineering microorganisms to respond to specific environmental cues,
thereby triggering increased lipid accumulation [148].
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5.3. Strain Selection and Development for Optimal Biofuel Production

Strain selection and development focus on identifying or engineering microorganisms
with traits that enhance biofuel yields. This process integrates traditional breeding with
modern genetic tools to produce high-performing strains [149]. Recent research highlights
the screening of natural microalgal and microbial strains with strong biofuel potential,
accelerated by advanced high-throughput techniques. Hybridization strategies further
enhance biofuel production by combining desirable traits from different strains to create su-
perior hybrids [150]. Genetic tools facilitate controlled hybridization, allowing researchers
to tailor strains to specific attributes. Researchers have employed adaptive evolutionary ap-
proaches to enhance the performance of selected strains over successive generations [151].
This iterative process exposes strains to specific conditions, allowing natural selection to
favor traits that are conducive to optimal biofuel yield. Innovations in genetic engineering,
including CRISPR-Cas9 and metabolic pathway engineering, have significantly optimized
microorganisms for biofuel production. These approaches have improved strain selection,
resulting in higher lipid yields for biodiesel production. (Table 5) [152].

Table 5. Functional genes and their expression related to lipid metabolism.

Microalgae Enzyme Genes Molecular Targeted Pathway Results References
Approach/Trans
-Formation Technique
Chlamydomonas reinhardtii Steroyl-ACP desaturase CrFAB; Overexpression of Fatty acid biosynthesis Increased fatty acid content [153]
functional genes i .
(alteration in fatty acid * ;%Ef/il fatty acid content:
composition)/glass beads . 2.4-fold increase in oleic
acid (18:1).
. slight increase in linoleic
acid (18:2).
Chlamydomona reinhardtii Starch debranching enzyme ISAT gene Overexpression Starch metabolism [154]
. 1.46-fold improvement in
lipid productivity under
light/dark conditions.
Chlorella sorokiniana - Random sgRNA Gene regulation via - [155]
CRISPRa-VP64 . . .
(CRISPRa) . highest lipid concentration
was 570 mg L.
Phaeodactylum tricornutum Diacylglycerol PtDGAT2B Overexpression; PUFA metabolism Triacylglycerol increases in [156]
acyltransferase 2 (DGAT2) heterologous expression N-starved culture.
. 37-fold increase without
growth impact.
CrDGAT2-1, CrDGAT2-5
] decrease in lipid
biosynthesis by 16-24%
and 24-34%, respectively.
Chlamydomonas reinhardtii Citrate synthase CrCIS Blocking of Citric acid synthesis [157]
competitive pathway . decrease in mRNA level
and increase expression of
triacylglycerol biosynthesis
pathway-related genes by
209-266%, increase
triacylglycerol
accumulation by 169.5%.
Chlamydomonas reinhardtii Phosphoenol pyruvate CrPEPC Blocking of Oxaloacetate (OAA) acid [158]
carboxylase competitive pathway synthesis . 20% increase in lipid
content.
. increase in
biosynthesis-related gene
expression
(DGAT /phosphatidate
phosphatase).

Chlamydomonas reinhardtii

Scenedesmus obliquus

accD, ENR1, PGP1,

Acetyl CO-A Carboxylase,
enoyl ACP reductase,
phosphatidyl-
glycerophosphate synthase,

monogalactosyldiacylglycerol,

sulfolipid synthase.
Starchless mutant

MGD1, SQD2

Overexpression of
Dof-type transcription
factor/agrobacterium-
mediated transformation

Starchless mutant (slm1)

Fatty acid and
glycerolipid biosynthesis

Fatty acid biosynthesis

total lipid content

increased by around 2-fold.

. increase in triacylglycerol
content from 45 + 1% to

57 £0.2%.

[159]

[160]
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Table 5. Cont.

Microalgae Enzyme Genes Molecular Targeted Pathway Results References
Approach/Trans
-Formation Technique
Chlorella ellipsoidea Acetyl Co-A carboxylase ACCase Overexpression of Fatty acid biosynthesis [161]
tran;)crfiption factor . lipid content increased
GmDof4 from 46.4% t0 52.9%.
. si%niﬁcant upregulation of
ACCase.
. increase in C18:1, C18:2,
C18:3, C16:0 fatty acids.
Phaeodactylum tricornutum Diacylglycerol DGAT2 Overexpression of Terminal step of fatty acid [162]
acyltransferase functional biosynthesis . increase in neutral lipid
gene/electroporation >
content by 35%.
. alter fatty acid profile.
. increase PUFA (EPA) by
76.2%.
Phaeodactylum trocornutum Mallic enzyme PtME Overexpression of Decarboxylation of malate [163]
functional gene topyruvate . lipid content increased by
2.5-fold (57.8% w/w).
Phaeodactylum tricornutum Glycerol-3-phosphate ptGPAT Overexpression of Triacylglycerol [164]
acyltransferase functional . biosynthesis pathway . increased neutral lipid
gene/ electroporation content by 2-fold (42.6%
w/w).

6. Emerging Trends in 3-G Biofuel Research

As the field of 3-G biofuel research continues to evolve, several emerging trends are
shaping the future. This includes the application of Al and machine learning for process
optimization, the integration of photobioreactors with advanced sensors, and the promotion
of cross-disciplinary collaborations for prospects.

6.1. Al and Machine Learning Applications in Process Optimization

Artificial intelligence (AI) and machine learning (mL) are integral tools in 3-G biofuel
research for optimizing complex processes. These technologies analyze vast datasets,
predict outcomes, facilitate real-time adjustments, and enhance overall efficiency [152].
Recent studies have explored Al-driven optimization algorithms that adapt to dynamic
conditions in 3-G biofuel production. These algorithms leverage predictive models to fine-
tune nutrient concentrations and temperature and light intensity parameters to improve
biomass and biofuel yields. Al applications extend to predictive maintenance, where
machine learning models analyze equipment performance data to anticipate and prevent
potential issues [165]. This proactive approach minimizes downtime and ensures the
continuous operation of photobioreactors and other essential components. Researchers are
increasingly relying on data-driven decision-making powered by Al The integration of
machine learning models helps to identify correlations and patterns within large datasets,
enabling researchers to make informed decisions for optimizing various stages of 3-G
biofuel production [166].

6.2. Integration of Photobioreactors with Advanced Sensors

The integration of advanced sensors with photobioreactors is a key trend in 3-G biofuel
research. These sensors provide real-time monitoring of environmental conditions, allow-
ing for the precise control and optimization of microalgae cultivation processes. Recent
advancements have focused on developing sensors that enable the online monitoring of crit-
ical parameters, such as pH, dissolved oxygen, and nutrient concentrations. Real-time data
acquisition facilitates immediate adjustment and ensures optimal conditions for microalgal
growth. Non-invasive imaging technologies, including fluorescence and spectroscopy, have
been employed to assess microalgal biomass composition and health [167]. These advanced
sensors contribute to a more comprehensive understanding of cultivation environments.
The integration of sensors with automated control systems enables closed-loop feedback.
This ensures a responsive and adaptive cultivation environment by automatically adjust-
ing parameters based on real-time sensor data, thereby contributing to enhanced overall
productivity [168].
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6.3. Interdisciplinary Collaborations

Cross-disciplinary collaborations represent a growing trend in 3-G biofuel research,
fostering diverse expertise in biology, engineering, data science, and environmental sci-
ence. Such collaborations open avenues for innovation and address multifaceted chal-
lenges [169]. Recent collaborations among biologists, engineers, and data scientists aim to
bridge knowledge gaps and accelerate progress. This interdisciplinary approach enhances
the understanding of complex biological processes, technological requirements, and com-
putational modeling for holistic advancements. Cross-disciplinary collaboration extends
to sustainability assessments by incorporating environmental scientists and economists.
Researchers have evaluated the ecological and economic impacts of 3-G biofuel production
to ensure a comprehensive understanding of its long-term viability. This trend toward cross-
disciplinary collaboration sets the stage for future prospects in 3-G biofuel research [170].
Collaborative efforts are anticipated to yield innovations in genetic engineering, cultivation
technologies, and sustainable practices, positioning 3-G biofuels as prominent components
of the renewable energy landscape. Emerging trends in 3-G biofuel research underscore the
integration of cutting-edge technologies, collaborative approaches, and a forward-looking
perspective. Al and machine learning optimize processes, advanced sensors enhance moni-
toring capabilities, and cross-disciplinary collaborations pave the way for sustainable and
impactful prospects for 3-G biofuels [171].

7. Challenges and Opportunities

Pursuing 3-G biofuel production faces various challenges, including technical complexi-
ties, regulatory considerations, and economic factors. Simultaneously, these challenges present
opportunities for innovation, collaboration, and the development of sustainable solutions.

7.1. Technical Challenges in 3-G Biofuel Production

Ensuring the stability of genetically engineered microalgae or microbes for biofuel
production is challenging, as shown in Table 6. Unintended genetic mutations or instability
during large-scale cultivation can affect the reliability and consistency of biofuel yields [172].
Despite technological advancements, optimizing downstream processing efficiency remains
challenging. Streamlining the separation, purification, and upgrading steps to minimize
energy consumption and costs are ongoing concerns [173]. The transition from laboratory-
scale experiments to large-scale commercial production introduces scale-up challenges.
Maintaining optimal conditions, preventing contamination, and ensuring large-scale cost-
effectiveness requires innovative solutionsc [174].

Table 6. Technical challenges in 3-G biofuel production.

Technical Challenge

Description

Feedstock selection and supply

Biomass
pretreatment

Extraction and conversion

o  Identifying suitable feedstocks with high lipid, carbohydrate, or protein content that
can be sustainably cultivated on large scales. Ensuring consistent and reliable
feedstock supply to meet production demands.

e Developing efficient pretreatment methods to break down complex biomass structures
and improve accessibility to fermentable sugars or lipid-rich components. Addressing
issues such as lignin removal, cellulose hydrolysis, and hemicellulose degradation.

° Establishing effective extraction techniques to efficiently recover lipids, carbohydrates,
or proteins from biomass. Optimizing conversion processes, such as transesterification
for lipids, fermentation for carbohydrates, or hydrolysis for proteins, to maximize
biofuel yields.
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Table 6. Cont.

Technical Challenge

Description

Process integration and scale-up

Catalyst

development

Carbon capture and utilization

. Integrating various unit operations seamlessly within the production process. Scaling
up biofuel production from laboratory or pilot-scale to commercial-scale operations
while maintaining process efficiency and cost-effectiveness.

e  Advancing catalyst technologies for the efficient conversion of biomass-derived
intermediates into biofuels. Developing catalysts with improved selectivity, stability,
and activity under the harsh conditions encountered in biofuel production processes.

e  Exploring methods for capturing and utilizing CO, emissions generated during
biofuel production. Developing carbon capture and utilization (CCU) technologies to
mitigate greenhouse gas emissions and enhance the overall sustainability of biofuel
production.

o  Implementing strategies for efficient water usage and resource management
throughout biofuel production. Minimizing water consumption, recycling process

Water and resource management water, and utilizing wastewater treatment technologies to reduce environmental

Techno-economic analysis

impact.

e  Conducting comprehensive techno-economic analyses (TEAs) to evaluate the
economic feasibility and competitiveness of 3-G biofuel production processes.
Identifying key cost drivers, optimizing process parameters, and assessing market
viability to ensure commercial success.

7.2. Regulatory and Economic Considerations

The biofuel sector encounters intricate challenges in reconciling economic feasibility,
environmental sustainability, and food security. First-generation biofuels contend with
food production for cultivable land, whereas second and third-generation biofuels present
promising alternatives [175,176]. Nonetheless, these advanced biofuels encounter technical
and economic obstacles, such as elevated production expenses and logistical difficulties in
biomass procurement [177]. The industry must adapt to changing regulatory frameworks,
tackle issues related to land use alterations, and surmount the “blend wall” constraint [178].
Attaining cost equivalence with traditional fuels presents a considerable challenge for
extensive adoption. To promote sustainability, biofuel production must prioritize marginal
lands, waste materials, and dedicated energy crops to reduce competition with food pro-
duction. Ongoing investment in research, favorable policies, and technological innovation
are essential for the industry’s expansion and sustainability [175,177].

8. Future Directions and Conclusions

Continued advancements in genetic engineering tools, such as CRISPR-Cas9, hold
promise in addressing strain stability challenges. Precision genome editing can contribute
to the development of more robust and predictable biofuel-producing organisms [179].
Research on innovative separation and purification technologies, including advanced mem-
brane filtration and continuous chromatography, offers potential solutions for streamlining
downstream processing and enhancing efficiency. Therefore, a supportive regulatory envi-
ronment that incentivizes sustainable biofuel production is essential. Governments and
international bodies can play a pivotal role in creating policies that encourage investment
and innovation in the 3-G biofuel sector. Implementing economic incentives such as sub-
sidies or tax credits can promote the development and adoption of 3-G biofuels [180].
Encouraging private sector investment and fostering collaboration between industries and
research institutions can drive economic viability. Increased research funding for inter-
disciplinary studies and technology development can spur innovations in both technical
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and regulatory aspects. Investing in cutting-edge research and development is crucial
for overcoming current challenges. In conclusion, the challenges and opportunities in
3-G biofuel production reflect a dynamic landscape that requires a concerted effort from
researchers, policymakers, and industry stakeholders. Addressing technical challenges
through genetic tools and innovative downstream processing, navigating regulatory con-
siderations with supportive policies, and fostering economic viability through incentives
are key steps toward realizing the potential of 3-G biofuels. As the field continues to evolve,
collaboration, innovation, and commitment to sustainability are instrumental in shaping
the future of renewable bioenergy.
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