
Citation: Temim, S.; Talbi, L.;

Bensebaa, F. Analysis and

Multiobjective Optimization of a

Machine Learning Algorithm for

Wireless Telecommunication. Telecom

2023, 4, 219–235. https://doi.org/

10.3390/telecom4020013

Academic Editors: Shuaibing Li,

Guoqiang Gao, Guochang Li, Yi Cui,

Jiefeng Liu, Guangya Zhu and Jin Li

Received: 22 February 2023

Revised: 6 April 2023

Accepted: 10 April 2023

Published: 17 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Analysis and Multiobjective Optimization of a Machine
Learning Algorithm for Wireless Telecommunication
Samah Temim 1 , Larbi Talbi 1,* and Farid Bensebaa 2

1 Computer Science and Engineering Department, University of Quebec in Outaouais,
Gatineau, QC J9A 1L8, Canada

2 Energy, Mining and Environment Research Centre, National Research Council,
Ottawa, ON K1A 0R6, Canada; farid.bensebaa@nrc-cnrc.gc.ca

* Correspondence: larbi.talbi@uqo.ca

Abstract: There has been a fast deployment of wireless networks in recent years, which has been
accompanied by significant impacts on the environment. Among the solutions that have been proven
to be effective in reducing the energy consumption of wireless networks is the use of machine learning
algorithms in cell traffic management. However, despite promising results, it should be noted that
the computations required by machine learning algorithms have increased at an exponential rate.
Massive computing has a surprisingly large carbon footprint, which could affect its real-world
deployment. Thus, additional attention needs to be paid to the design and parameterization of
these algorithms applied in order to reduce the energy consumption of wireless networks. In this
article, we analyze the impact of hyperparameters on the energy consumption and performance of
machine learning algorithms used for cell traffic prediction. For each hyperparameter (number of
layers, number of neurons per layer, optimizer algorithm, batch size, and dropout) we identified a
set of feasible values. Then, for each combination of hyperparameters, we trained our model and
analyzed energy consumption and the resulting performance. The results from this study reveal a
great correlation between hyperparameters and energy consumption, confirming the paramount
importance of selecting optimal hyperparameters. A tradeoff between the minimization of energy
consumption and the maximization of machine learning performance is suggested.

Keywords: energy consumption; cell traffic management; hyperparameters; LSTM; machine learning;
optimization

1. Introduction

According to Cisco’s Annual Internet Report analysis and forecasts, the number of
connected devices is set to increase from 700 million in 2018 to 3.2 billion by 2023 [1].
Additionally, Cisco AIR has revealed that by 2023, there will be 5.3 billion total Internet
users (66% of the world’s population) compared to 3.9 billion in 2018. Its rapid growth is
attributed mainly to the successful development and deployment of fifth generation (5G)
wireless networks [2]. The densely deployed base station (BS) network is a promising archi-
tecture for 5G and future generations, as it can improve system capacity and throughput
by deploying a large number of BSs per unit area. However, this architecture has to deal
with increasing energy due to network expansion, and the fact that BSs usually account for
about 57% of total mobile network demand [3,4].

In order to reduce the energy consumed by BSs, various approaches have been devel-
oped, with particular emphasis on techniques that incorporate the concept of “sleep mode”.
It takes advantage of changing traffic patterns on hourly, daily, and/or weekly basis. For
this, it is possible to selectively switches lightly loaded BSs to low energy consumption
modes. This approach has the potential to save a significant amount of energy. Other
approaches [5] manage energy demand by monitoring the traffic load in the network and
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then deciding whether certain elements of the network need to be turned off/on. The
purpose of sleep mode techniques is to save energy by selectively turning off BSs during
“off-peak” hours.

Traffic prediction plays an important role in the design, management, and optimiza-
tion modeling of a cellular network. Cellular traffic prediction can be used to monitor
and control the energy consumption of the wireless network. Currently, as part of the
overall greenhouse gas (GHG) mitigation plan, predicting fourth generation (4G) long-term
evolution (LTE) and 5G traffic is of great interest to the telecommunications industry.

Artificial intelligence (AI) models have been widely used to predict mobile traffic,
such as developing a prediction model to manage cellular network traffic [6]. Past studies
have shown that deep learning techniques are capable of modeling and predicting cellular
network traffic with great performance [7–13].

The huge growth in the number of machine learning algorithms (MLAs) has led to
high demand for energy, very often of fossil origin. The carbon footprint of the cellular
network will likely increase, as the energy sector is currently responsible for around 70%
of GHG emissions [14]. In addition, electricity demand will continue to increase due to
digitization. Given the exponential growth in the deployment of MLA-based systems, a
large portion of electricity production would be consumed by the telecommunications
sector [15]. The optimization of MLAs with the aim of further reducing energy consumption
is therefore crucial and deserves significant consideration. However, this factor is not
often considered by MLA developers. Model precision and the capacity to generate
new data are key selection criteria during the MLA development stage. The lack of a
quantification methodology for MLAs energy consumption hinders the deployment of a
long-term solution to reduce GHG emissions in the Information and Telecommunications
(IT) sector.

Until recently, there have been few peer-reviewed publications focused on quantifying
energy consumed by MLAs in the telecommunications field. Furthermore, there are very
few studies that aimed to estimate the amount of energy consumed by MLAs and their
environmental impacts. However, over the past three years, we have seen more and more
studies focusing on this topic. One of the first studies estimating the energy consumed by
MLA was carried out by Eva et al. [16]. They presented a software tool that estimates energy
consumption along with two use cases that enhance the study of energy consumption in
machine learning.

Lacoste et al. [17] provided the Machine Learning Emissions Calculator, which relies
on self-reporting. The tool can estimate the carbon footprint of a Graphics Processing
Unit (GPU) compute by specifying hardware types, hours used, cloud providers, and
regions. However, depending on where and how energy is sourced, stored, and delivered,
the rise of compute-intensive AI research can have significant, negative environmental
effects. Attention was first drawn to the environmental impact of AI research by the seminal
work of Strudel et al. [18], which provided a high-level estimation of the financial and
environmental costs. In reference [19], the authors developed the carbon-tracker tool for
monitoring and predicting the energy consumption and carbon footprint of the MLA in the
training phase. Additionally, in reference [20], the authors proposed a tool (neuralPower)
based on a layer-based predictive framework to estimate the energy consumption of convo-
lutional neural networks. Canziani et al. [21] assessed image classification model accuracy
as a function of model size and gigaflops required during inference. They also measured
the average power draw required during inference on GPUs as a function of batch size.
Rodrigues et al. [22] proposed SyNERGY, which is a detailed measurement of energy (i.e.,
at specific layers) and a predictive framework for deep neural networks on embedded
platforms. Their measurement framework provides an accurate breakdown of actual power
consumption and performance across all layers of neural networks. Yang et al. [23] de-
veloped an energy-sensitive measurement algorithm for convolutional neural networks
(CNNs) that directly uses the energy consumption of a CNN to guide the sizing process.
The energy estimation methodology uses parameters extrapolated from real measurements.
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The study carried out by Brownlee et al. [24] explores the tradeoff between accuracy and
energy consumption in machine learning models. They propose a genetic improvement
approach to optimize the accuracy–energy tradeoff, showing promising results on sev-
eral benchmark datasets. The work of Dai et al. [25] proposes a platform-aware model
adaptation method called Chamnet, which optimizes the network architecture to fit the
specific hardware platform, reducing energy consumption and improving efficiency. They
achieved significant improvements in accuracy and energy efficiency compared to other
state-of-the-art methods. Brownlee et al. [26] also investigated the energy consumption of
machine learning algorithms, proposing a search-based optimization method for the energy
reduction of ubiquitous algorithms such as k-means, logistic regression, and decision trees.
They showed that their approach can reduce energy consumption while maintaining the
accuracy of the models. Garcia-Martin et al. [16] presented an estimation framework for en-
ergy consumption in machine learning, which can be used to estimate energy usage before
running a particular model. They provided a thorough analysis of the energy consumption
of various machine learning models, highlighting the importance of energy optimization in
machine learning.

Motivated by the aforementioned problems and limitations of past publications, it
is crucial to conduct more thorough investigations into hyperparameters, as they play a
significant role in the tradeoffs between performance and energy consumption and develop
more precise and energy-efficient models. The present study focuses on exploring the im-
pact of hyperparameters on the energy consumption and performance of machine learning
algorithms used for cell traffic prediction. This paper proposes an original method based on
hyperparameter optimization and grid search. We specified a set of values for each hyper-
parameter (number of layers, number of neurons per layer, algorithm optimizer, batch size,
and dropout rate). We then trained our model for each combination of hyperparameters
and explored the energy consumption and performance results. The best hyperparameters
can then be selected based on the minimal objective function.

The study is organized as follows. In Section 2, the methodologies employed in this
study are discussed in detail. Section 3 describes and discusses the results. Section 4
describes the related work and Section 5 summarizes the novelty achieved in this work.

2. Materials and Methods

This section presents our approach in regard to exploring the impact of hyperparame-
ters on energy consumption, and the performance of deep learning algorithms used for
cell traffic prediction. The proposed methodology, summarized in Figure 1, includes three
underpinning steps. Below, each step is described in detail.

2.1. Data Processing Module
2.1.1. Dataset

The data used in this research were published by Kaggle [27]. The data were col-
lected from 4G cell traffic. The dataset includes 57 cells (BSs) for approximately one year
(1 year × 24 h × 57 cells). The database under study then contains the following fields:

• Cell ID (57 cells).
• Date and time: timestamp of the traffic measurement.
• Traffic: cell-specific traffic at each timestamp.

2.1.2. Data Normalization and Transformation

Cellular data are considerably complex and are composed of underlying signals with
vastly different properties. Moreover, cell data is distributed randomly. To alleviate the
effect of outliers from our analyses, min-max normalization is considered. This technique
scales data into the range (0, 1). The formula used to achieve this is as follows [28]:

xnormalized =
x − min (x)

max (x)− min (x)
(1)
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where min (x) is the minimum of the data and max (x ) is the maximum value of the data
traffic. Real-time prediction of data traffic requires continuous data input and learning.
Hence, we employ the notion of the sliding window, which indicates a fixed number of
previous timeslots to learn and then predict the current data traffic. Finally, we split the
processed data into two sets: training and testing. Our feature set should contain the
traffic values for the last 24 h, while the label or dependent variable should be the traffic
value at the 25th hour. In order to train the LSTM (Long Short-Term Memory) model by
use of a training dataset, data needs to be converted into the shape acceptable for LSTM
architecture. Therefore, data require reshaping into a three-dimensional format. The first
dimension is the number of records or rows in the dataset, which in this case is 8732. The
second dimension is the number of time steps, which is 24, and the last dimension is the
number of indicators that are equal to 1 for the given dataset.
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2.2. Module Development

There are two parameters used in the proposed module: hyperparameters and model
parameters. Hyperparameters are parameters supplied to the model (e.g., model archi-
tecture, activation function, and more) and differ from model parameters (e.g., weights
and biases) derived from backpropagation training stage. Hyperparameters control the
learning; for this reason, we have recently used hyperparameter optimization to accurately
predict cellular data through a machine learning algorithm [29].

In this study, we consider approximately all contributing hyperparameters to capture
the entire impacts of hyperparameters: the number of layers, the number of neurons per
layer, the dropout rate, and the optimizers. To reduce energy consumption and enhance
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prediction performance simultaneously, the values of these hyperparameters need to be
optimized. To this end, we considered the following methods.

2.2.1. Grid Search

The most widely used method to optimize hyperparameter configuration space is the
grid search (GS) [30]. GS can be described as an exhaustive exploration search algorithm
that evaluates all the combinations of hyperparameters given in the grid configuration. GS
operates by assessing the Cartesian product of a finite set of values defined by the user.

In our experiment, the GS was used to generate the error values and energy con-
sumption as a function of the possible combinations of the hyperparameters. This will
help to exploit and analyze the effects of the hyperparameters on the performance and
energy consumption of the model. First, we defined the range of possible values for the
hyperparameters (Table 1). Then, we trained the model for each combination from the
predefined list of values. We generated 12,288 combinations corresponding to 12,288 train-
ing. The model is then evaluated based on two criteria: energy consumption and model
performance using Equation (10), described below. Once all the combinations are evaluated,
the model with the hyperparameter set that achieved the best performance and the lowest
energy consumption is considered optimal.

Table 1. Hyperparameters values.

Hyperparameters Values

Optimizer [Adam, RMSProp, Nadam]

Batch size [32–512 with a step of 32]

Layers number [1, 2, 3, 4]

Number of Neurons in each layer [8–256 with step of 8]

Dropout rate [0.1, 0.2]

Epoch 120

Activation function ReLu

2.2.2. Long Short-Term Memory (LSTM)

LSTM is a special kind of Recurrent Neural Network (RNN) with additional features
to memorize the sequence of data. They were explicitly designed to avoid long-term
dependency issues, which is the cause of the gradient problem in normal RNNs. The ability
to learn long-term dependencies is due to the structure of LSTM units, which incorporate
gates that regulate the learning process. The structure of the LSTM unit contains forget
gate ft, candidate layer Ct, input gate It, output gate Ot, and memory state Ct. The relevant
mathematical formulas are as follows [31]:

ft = σ
(

Xt ∗ Wf + Ht−1 ∗ Wf + b f

)
(2)

Ct = tanh (Xt ∗ WC + Ht−1 ∗ WC + bC) (3)

It = σ(Xt ∗ Wi + Ht−1 ∗ Wi + bi) (4)

Ot = σ(Xt ∗ Wo + Ht−1 ∗ Wo) (5)

Ct = ft ∗ Ct−1 + It ∗ Ct (6)

Ht = Ot ∗ tanh(Ct) (7)
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where Xt is the input vectors, Ht−1 is the previous output cells, Ct−1 are the previous
memory cells, Ht are the current output cells, Ct are the current memory cells, W, b are
the weight matrices, and the bias vectors, respectively. Using the combination of these
equations, the LSTM unit can be expressed as follows:

ht = f (ht−1, Xt, ψ) (8)

where f is the LSTM function and ψ is the vector parameter in the LSTM.
The input gate determines whether or not to let the new input in. An output gate

decides what information to output, and memory gate chooses which new data must be
stored in the cell. These gates are analog gates based on the sigmoid function, which works
in the range 0–1.

2.2.3. The Learning Algorithm

Optimization is carried out by retraining the model with different combinations of
hyperparameters (optimizer, batch size, number of layers, number of neurons per layer) and
evaluating its performance (energy consumption and prediction accuracy). The training
steps of the model are listed in the Algorithm 1.

Optimizers

Optimizers play a crucial role in improving performance and training speed. Selecting
an appropriate optimizer is a non-trivial task. The choice of optimizer depends on the
specific problem and the tradeoffs between computation time, convergence speed, and
accuracy. In our study, we opted for the three most commonly used optimizers in sequen-
tial data problems; Adam (Adaptive Moment Estimation), RMSprop (Root Mean Square
Propagation), and Nadam (Nesterov-accelerated Adaptive Moment Estimation).

Adam is a first-order gradient-based optimization method for stochastic objective
functions based on lower-order adaptive moment estimates. The advantages of using Adam
include ease of implementation, efficient computation, and low memory requirements.

RMSprop divides the weight learning rate by a moving average of magnitude. The
magnitude sizes of the gradients vary by weight and evolve over time, hence the difficulty
of selecting a single global learning rate. This aspect of issue is handled by RMSProp by
maintaining a moving average of the squared gradient and changing the updates of the
weights by this magnitude.

Nadam is an extension of the Adam algorithm that incorporates the Nesterov momen-
tum and can lead to better performance of the optimization algorithm.

Dropout

The dropout layer was added to improve the predictive performance of the model and
prevent overfitting [32]. In the dropout layer, the model randomly deactivates the neurons
in a layer with a certain probability. When the dropout value is added to a layer, the neural
network will ignore selected neurons during training, and the training time will be faster.
In general, the dropout rate can range from 0.1 to 0.5. However, it is important to note that
choosing the optimal dropout rate is typically a trial-and-error process, and can depend
on factors such as the complexity of the model, the amount of training data, and the task
being performed. In our case, we chose rates of 0.1 and 0.2 based on the complexity of the
model and our database. We considered various factors to find the best dropout value for
our model, including the effects of regularization on learning and the overall performance
of the model.

Batch Size

One of the main hyperparameters to adjust before starting the training process is the
batch size. The batch size is a parameter that specifies the number of training samples
that will be used during training to perform an update of the network parameters [33]. To
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determine the impact of batch size on model consumption, we set the batch size between
32 and 512 with a step of 32, because our model begins to stabilize from 512.

Hidden Layers

Hidden layers consist of recurrent cells whose states are affected by both past states
and current inputs with feedback connections. Recurrent layers can be organized in
various architectures to form different LSTMs. Different cells and internal connections,
therefore, allow the LSTMs to have different capabilities. To investigate the impact of the
hidden layers on the power consumption and performance of the model, we considered
their number ranging from 1 to 4, because beyond 5 layers, the model began to exhibit
overfitting due to the increased complexity of the network compared to our dataset.

Number of Units Per Layer

The units indicate how many neurons are in a specific layer. We carefully considered
the number of neurons per layer for our model architecture, and ultimately decided on
values ranging from 8 to 256. Our decision was based on several factors, including the size
and complexity of our dataset, as well as the nature of the task at hand. We found that
beyond 256 neurons, the model became increasingly complex and prone to overfitting.

Alglgorithm 1: Algorithm of the Proposed Method
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2.3. Evaluation Module

The proposed framework was evaluated using different hardware and software envi-
ronments. Table 2 shows the equipment used to assess the proposed method.

Table 2. Optimization result.

Weights Layers Batch Size Number of Units Optimizer Dropout OFmin

W1 = W2 = 0.5 3 64 184 RMSprop 0.1 0.39397401

W1 = 0.7
W2 = 0.3 3 64 184 Nadam 0.1 0.24012428

W1 = 0.3
W2 = 0.7 3 32 72 Nadam 0.1 0.54496929

To evaluate the performance of the proposed model, the Root Mean Square Error (RMSE)
was used to estimate the prediction accuracy, and the PyRAPL tool was used within this study
to quantify the energy consumption as a function of the hyperparameter combination.

Each time we tested different hyperparameters, the model needed to be trained on
the training data, predictions made on the validation data, and the model needed to
be evaluated.

2.3.1. Evaluation Metrics with RMSE

We opted for the RMSE metric, which measures the average error between the pre-
dicted values and the real values, taking into account the square root of the deviations.
This metric is particularly useful for evaluating the performance of regression models with
outliers, as it further penalizes large errors. RMSE is a measure often used to evaluate the
accuracy of the prediction obtained by the model. The formula for calculating RMSE is
as follows:

RMSE =

√
1
N ∑(yi − ŷi)

2 (9)

RMSE measures the square root of the mean of the deviation squares, which quantifies
the difference between the predicted values and the actual ones. Where yi is the actual
value, ŷi is the predicted value, and N represents the total number of predicted traffic data.

2.3.2. Measurement of Energy Consumption

To measure the impact of hyperparameters on the energy consumption of the model,
the energy consumption of the algorithm during its execution needs to be measured. This
experiment used PyRAPL, which provides a Python interface to Intel “Running Average
Power Limit” (RAPL) technology. RAPL estimates the power consumption of a CPU
and has been available on Intel CPUs since the Sandy Bridge generation. RAPL provides
measurements for the energy consumption of the whole CPU socket package [34].

All experiments were performed on a PC with an Intel(R) Core (TM) i5-1035G1 pro-
cessor, running at a speed of 1.00 GHz 1.19 GHz, with 8 GB of RAM, and running on
the Windows 10 operating system. The deep learning model was implemented using the
Tensorflow 2.4.1 library and the Python programming language. The complete model was
trained on a single CPU for 120 epochs, which took approximately 520 h.

2.3.3. Objective Function Minimization

Our problem addresses the tradeoffs involved in a two-objective optimization problem,
minimization of energy consumption and prediction error. For this, we defined the objective
function (OFmin) as follows:

OFmin =

[
W2

1

⌈
Ec − Ec,u

Ec,max

⌉2
+ W2

2

⌈
RMSE − RMSE,u

RMSE,max

⌉2
]1/2

(10)
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where, Ec and RMSE are the energy consumption and the error, respectively. Subscript
u refers to the utopia solution, while max refers to the maximum values of the objective
functions. The utopia solutions for this problem can be assumed to be equal to zero, where
W1 and W2 are used as weights to scale and give priority to the terms.

3. Results and Discussion

In this section, the results of the simulation and optimization are presented and discussed.

3.1. Exploiting the Influence of the Number of Units per Layer on the Energy Consumption and
Performance of the Model

To exploit the influence of the number of units per layer on the energy consumption
and performance of the model, we defined the range of units between 8 and 256 with a step
of 8 and with a large search space of 7022 hyperparameter combinations. Figure 2a shows
the evolution of the energy consumed in microjoules as a function of the number of units
per layer. Each point in Figure 2a corresponds to a set of hyperparameters from the ranges
defined in Table 1.
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Figure 2b presents the dependence of RMSE on the number of neurons per layer.
The simulation results show that a large number of units per layer increases the power
consumption for training the model. However, the prediction error decreases with the
increase in the number of units per layer. There is therefore a tradeoff which should be
managed in such a way that energy consumption is minimized, and prediction accuracy
simultaneously remains acceptable.

We concluded that the number of units affects the energy consumption and the perfor-
mance of the model. Thus, if the goal of the problem is to achieve the best performance, then
a large number of units is the most appropriate solution. However, if power consumption is
the major factor in an application, then a large number of units is unfavorable. In addition,
increasing the number of units unnecessarily leads to an overfitting problem.
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3.2. Exploitation of the Influence of the Batch Size on Energy Consumption and Model Performance

In this section, we assess the impact one of the most important hyperparameters. The
goal is to determine the impact of batch size hyperparameter on the energy consumption
and accuracy of the proposed deep learning model. To obtain consistent results, different
values for the batch size are chosen (Table 1).

Figure 3a,b summarizes the simulation results related to the impact of batch size on
energy consumption and performance. We can see in Figure 3a that energy varies with the
value of the batch size, and the largest value of the energy consumed by the model is for
the small values of the batch size. This is due to small batch sizes require more resources
(CPU and software) to see all the data and higher number of iterations. Figure 4b shows the
variation of the RMSE as a function of batch size. In Figure 3b, we can see that the batch
size of 32 gives raise to the best result, and the large RMSE values resulted in batch size
values of less than 250.
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It is evident from these simulations that energy consumption increases with the
decrease in the batch size, but the performance improves with the increase in the batch size.
These results demonstrate that using a large batch size minimizes the energy but increases
the prediction error of the model. From these results, we can conclude that the batch
size has a significant impact on the energy consumption and performance of the model.
Thus, a large batch size should be used to reduce energy consumption and achieve good
model performance.

3.3. Impact of the Number of Layers on the Energy Consumption and Performance

In order to study the influence of the hidden layers on the energy consumption and
performance of our model, we changed the values of the hidden layers from two to four.
Figure 4a shows the energy consumption of the model as a function of the number of
hidden layers. We can see that the energy consumption is lowest with two layers. However,
there is no difference between the energy consumption of three and four layers.
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To analyze the influence of the number of hidden layers on the prediction accuracy,
the variation of RMSE as a function of the number of hidden layers is shown. Based on
the simulation results shown in Figure 4b, it can be seen that the prediction error is low
when the number of layers is three or four. However, the RMSE is high when the number
of layers is two.

Selecting the number of hidden layers in a neural network is one of the major problems
in the field of artificial neural networks. Arbitrary selection of the number of hidden layers
can lead to high power consumption and lower model accuracy. If power consumption is
the most important criterion in an application, a small number of hidden layers is more
suitable, but if the performance of the model is the most important factor, a large number
of hidden layers is more suitable.

3.4. Exploiting the Impact of Dropout Rate on Energy Consumption and Model Performance

The regularization of neural networks is an important task for the reduction of overfit-
ting. Dropout is a widely used regularization approach for neural networks.

In this section, we analyze the impact of the dropout rate on model energy consump-
tion and performance. For this purpose, we tested different values for the dropout rate,
shown in Table 1. Figure 5a,b shows the evolution of the model’s energy consumption and
prediction error, respectively, as a function of the dropout rate. From Figure 5a,b, it can be
seen that the dropout rate has no effect on energy consumption and prediction error.

Based on these observations, we conclude that the dropout rate has no effect on the
model energy consumption and performance. However, dropout is more widely used to
prevent overfitting.
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3.5. Examining the Influence of Optimizer Type on Energy Consumption and Model Performance

The optimizer is an important hyperparameter for neural network tuning, but it has
not received much attention. To illustrate the impact of optimizer type on the energy
consumption and performance of our model, we selected three optimizers that are most
commonly used in prediction problems: Adam, RMSprop, and Nadam.

Figure 6a, b demonstrates the impact of optimizer type on energy consumption and
error prediction, respectively. For this, we tested three types of optimizers: Adam, Nadam,
and RMSprop.
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From the data shown in Figure 6a, b, we can see that there is no difference in energy
consumption between the different optimizers, but in terms of model performance, RM-
Sprop shows superior performance. Adam and RMSprop provide the same performance.

The selection of an optimization algorithm for the training process has a significant
influence on the performance results. From the experiment results, we conclude that the
type of optimizer does not affect the energy consumption of the model, but the type of
optimization influences the performance of the model.
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3.6. Correlation Matrix

To assess the interdependence between the hyperparameters, energy consumption,
and the performance of the model, we chose the widely-used Pearson correlation. This
statistical technique produces a correlation coefficient that ranges from −1 to +1, rep-
resenting the strength and direction of a linear relationship between two variables. A
correlation coefficient of +1 implies a perfect positive correlation, where an increase in
one variable is associated with a proportional increase in the other variable. In contrast,
a correlation coefficient of −1 indicates a perfect negative correlation, where an increase
in one variable corresponds to a proportional decrease in the other variable. When the
correlation coefficient is 0, there is no linear relationship between the two variables. A
correlation coefficient greater than 0.7 is deemed a strong correlation, implying a robust
linear relationship, whereas a correlation coefficient less than 0.3 is considered a weak
correlation, indicating a less pronounced linear relationship.

Next, we focused on identifying the best combination of hyperparameters that would
allow for low energy consumption and superior performance. Figure 7 shows the correla-
tion matrix used to study the dependency between the different hyperparameters, energy
consumption, and model prediction error, simultaneously.
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In the correlation matrix, the Pearson correlation coefficients between the hyperparam-
eters, energy consumption, and RMSE are indicated. It can be observed that there is a very
strong correlation of 0.77 between the number of units and the energy consumption of the
model, which means that an increase in the number of units per layer increases the energy
consumption. Additionally, there is a moderate dependence of 0.38 between the number
of hidden layers and the energy consumption of the model, implying that increasing the
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number of layers moderately increases the energy. It can also be observed that there is
a weak correlation between the dropout rate and energy, indicating that an increase in
dropout rate does not affect the energy consumed by the model.

A relatively strong correlation of 0.58 is observed between the batch size and the pre-
diction error, meaning that an increase in batch size will increase the error. The correlation
between RMSE and the number of units per layer is −0.38, so an increase in the number
of layers will reduce the prediction error. It can also be observed that there is a moderate
negative correlation of −0.28 between RMSE and the number of hidden layers, indicating
that increasing the number of hidden layers moderately reduces the error. Regarding the
dropout rate and RMSE, there is a weak correlation between the two parameters, so the
dropout rate does not affect the prediction error.

3.7. The Best Hyperparameters

In order to determine the optimal hyperparameters for our model, we utilized Equa-
tion (10) and examined two main criteria: minimizing energy consumption and ensuring
acceptable prediction error. By varying the weight values, we were able to identify the
ideal combination of hyperparameters that yielded the lowest objective function, as shown
in Table 2.

From our analysis, we found that assigning equal weight values of 0.5 to w1 and w2
leads to the best combination of hyperparameters to reach the minimum objective function.
This combination included three hidden layers, a batch size of 64, 184 units, the use of an
RMSprop optimizer, and a dropout rate of 0.1.

However, we also recognized the importance of prioritizing specific criteria depending
on the goals of the model. To emphasis on minimizing energy consumption, we adjusted
the weight values to w1 = 0.3 and w2 = 0.7, which led to the optimal combination of
hyperparameters consisting of three hidden layers, a batch size of 64, 184 units, the use of a
Nadam optimizer, and a dropout rate of 0.1.

Conversely, to prioritize reducing the error in the objective function, we chose w1 = 0.7 and
w2 = 0.3, which resulted in a different optimal combination of hyperparameters: three hidden
layers, a batch size of 32, 72 units, the use of a Nadam optimizer, and a dropout rate of 0.1.

Overall, our approach demonstrates the importance of carefully considering the
relative weights of different criteria when optimizing the hyperparameters, in order to
achieve the desired outcomes for the model.

4. Related Work

Past research has inadequately explored the effects of hyperparameters on the model
performance and energy consumption. Table 3 compares our study with other relevant
publications. We have particularly emphasized the importance of energy efficiency in ma-
chine learning and proposed different approaches to optimize energy consumption, while
maintaining a reasonable level of accuracy. Different datasets, machine learning algorithms,
and techniques were used in those studies. However, in our work, we showed for the first time,
to the best of our knowledge, a novel approach to analyze and optimize hyperparameters in a
deep learning algorithm during the training phase, aiming to achieve a better balance between
algorithm performance and energy consumption. This proposed framework could be expanded
to other cellular networks (e.g., 5G) and energy optimization approaches.
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Table 3. Comparison with related work.

References Machine Learning Algorithms Dataset Approaches

[24] Multilayer perceptron Medical data set (diabetes, glass,
ionosphere, iris)

Explored the tradeoff between energy
consumption and accuracy for different
hyperparameter configurations of a popular
machine learning framework

[25] Neural network ImageNet

This approach leverages existing efficient
network building blocks and focuses on
exploiting hardware characteristics and
adapting computational resources to
accommodate target latency and/or
power constraints.

[20] Neural Networks Not stated

HyperPower, a framework that enables
efficient Bayesian optimization and random
search in the context of power-
and memory-constrained

[26] Multilayer perceptron Not stated
Tool for measuring the energy consumption
of JVM programs using a bytecode level
model of energy cost.

[16] Convolutional neural network
Data stream mining

Poker-Hand
Forest
Cover type

The goal is to provide useful guidelines to
the machine learning community, giving
them the fundamental knowledge to use and
build specific energy estimation methods for
machine learning algorithms.

Proposed work Recurrent neural network (LSTM) Traffic data set

Exploring and optimizing the
hyperparameters of machine learning
algorithms employed in cellular
traffic prediction.

5. Conclusions

In this study, a bottom-up framework was developed and implemented to consider
the impact of hyperparameters on model performance and energy consumption. The study
highlights the importance of selecting an appropriate set of hyperparameters to optimize
model performance and minimize energy consumption of deep learning algorithms used
in cellular traffic prediction. Moreover, the study used a multi-objective optimization
approach to simultaneously minimize the Root Mean Square Error (RMSE) and energy
consumption, resulting in an optimal tradeoff solution. We have shown that an appropriate
set of hyperparameters contributes significantly to improved model performance and
energy consumption. The proposed method presented in this paper paves the way to
investigate the impact of hyperparameters on energy consumption and error prediction in
deep learning models.
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