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Abstract

The continuous demand for uninterrupted super-fast wireless communication services can
only be fulfilled by transmitting electromagnetic waves at high frequencies. This study
investigates the impacts of atmospheric visibility on Free Space Optical (FSO) Communica-
tion links operating at three Near-Infrared (NIR) frequencies, 353 THz (850 nm), 273 THz
(1100 nm), and 194 THz (1550 nm), in some selected business-hub cities (Ikeja, Calabar,
Abuja and Kano) in Nigeria. Fifteen years (2009-2023) of visibility data retrieved from the
archive of the National Oceanic and Atmospheric Administration (NOAA) were utilized
to investigate the impacts of seasonal visibility on fog-induced specific attenuation. Ker-
nel density estimation (KDE) was used to estimate and categorize seasonal visibility as
low-visibility (LV) and high-visibility (HV) during wet and dry seasons. The triangular
kernel provides the best estimation across all the stations with lowest Integrated Square
Errors (ISEs). Similar seasonal trends were observed for the computed fog-induced specific
attenuations at the selected wavelengths. Specific attenuation shows double peaks noticed
in LV dry and LV wet seasons. Maximum specific attenuations of about 0.27 dB/km,
0.22 dB/km, 0.23 dB/km, and 0.27 were observed at 850 nm in Ikeja, Calabar, Abuja, and
Kano, respectively, during the LV dry season. The variability of visibility and its effects
on specific attenuation is moderate in Abuja compared to other stations. The results will
find applications in the design and implementation of the FSO communication link for
optimum performance in tropical regions.

Keywords: atmospheric visibility; FSO communication; NIR; KDE; fog-induced specific
attenuation

1. Introduction

Visibility is a critical parameter in atmospheric sciences, representing the maximum
distance at which an object or light source can be distinctly perceived by the human eye
under prevailing meteorological conditions [1,2]. In countries like Nigeria, characterized
by diverse climatic and geographical features, fog-induced reductions in visibility pose
substantial risks to aviation, ground transportation, and telecommunication systems. These
visibility impairments extend beyond operational disruptions, contributing to economic
losses, increased accident rates, and diminished efficiency across several sectors [3]. Fog
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formation is governed by multiple meteorological and environmental factors, including
temperature, relative humidity, wind patterns, and topography. In Nigeria, the interaction
between the humid tropical monsoon climate of the south and the arid Sahelian condi-
tions in the north creates unique spatio-temporal fog patterns. These patterns are further
modulated by seasonal transitions, especially during the Harmattan period, when dry,
dust-laden winds from the Sahara Desert significantly reduce visibility in the central and
northern regions of the country [4,5]. Conventional fog monitoring typically relies on
specialized instruments such as visibility sensors and transmissometers, which offer high-
accuracy, real-time data. However, these instruments are often expensive to acquire and
maintain, difficult to deploy over large spatial scales, and lack portability due to their size
and power requirements [6]. These limitations are particularly challenging in developing
regions like Nigeria, where infrastructural and financial constraints hinder widespread
implementation. Consequently, alternative methods for visibility estimation are necessary.
Emerging alternatives include satellite observations, remote sensing technologies, and
statistical approaches such as kernel density estimation (KDE) [7,8]. Numerous studies
have investigated the impacts of fog on visibility and signal attenuation. For instance,
Studies conducted by Kaur [9] in Delhi which utilized seven years visibility data observed
that fog conditions can lead to significant reduction in the effective range of FSO link. Simi-
larly, Nadeem et al. [10] developed an empirical attenuation model using visibility data,
revealing significant signal loss (up to 0.68 dB/km) in fog-prone Sahelian environments.
Other studies have reported that fog-induced attenuation often follows a normal mixture
distribution, which is vital for accurate statistical modeling [11]. Furthermore, local mi-
croclimatic variations can lead to non-uniform fog distributions along transmission paths,
complicating efforts to predict visibility-related signal loss [12]. Kernel density estimation,
a non-parametric spatial analysis technique, has emerged as a powerful tool for assessing
complex environmental datasets. Unlike traditional gridded averages or histograms, KDE
preserves spatial variability and uncovers localized patterns that may be overlooked using
conventional methods [13]. KDE has been successfully applied in various meteorological
and environmental applications, including rainfall pattern analysis, pollutant dispersion,
and thermal mapping [14]. Despite growing recognition of the hazards associated with fog
in Nigeria, there remains a paucity of research focused on its spatio-temporal variability
and its direct impact on critical infrastructure. Most existing studies emphasize general
atmospheric parameters, such as rainfall and temperature trends, while neglecting the de-
tailed assessment of fog density and its influence on visibility attenuation. Additionally, the
relationship between fog density and signal degradation remains insufficiently explored,
leaving significant gaps in our understanding of its implications for aviation safety and
telecommunication reliability [3,15]. By applying KDE to visibility datasets, this study
aims to generate high-resolution spatial maps that highlight the regions most susceptible to
fog-induced attenuation. This spatial information will support informed decision-making
by stakeholders in aviation, road transport, and telecommunications. Specifically, this
study estimates seasonal visibility patterns across four major Nigerian cities and evaluates
the effect of visibility loss on fog-induced attenuation at three selected frequency bands.

2. Methodology
2.1. Climatology of the Research Locations

This study focuses on four distinct locations in Nigeria, Ikeja, Calabar, Abuja, and
Kano, strategically selected to represent major geoclimatic zones across the country’s
tropical equatorial climate. As presented in Table 1, these sites correspond to Nigeria’s
major climatological regions defined by Olaniran and Sumner [16], namely, the Coastal
zone, the Guinea savannah, the midland zone (Derived savannah), and the Sahel savannah.
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The Sahelian zone lies in the far north, bordering the Sahara Desert, while the midland
savannah spans the central belt and includes Abuja, the nation’s capital. The Coastal zone,
covering the southernmost areas, is influenced by maritime conditions due to proximity to
the Atlantic Ocean [16,17]. Due to data unavailability, no site from the Guinea savannah
zone was included in the present analysis. Two stations—Ikeja and Calabar—were selected
within the Coastal zone to examine the maritime influence of the Gulf of Guinea. Nigeria
generally experiences two major climatic seasons annually: the wet season (April/May
to October/November) and the dry season (November to March), although onset and
cessation periods vary slightly with location [18-20]. The dry season is dominated by
the Harmattan, a dry and dust-laden wind originating from the Sahara Desert, which
significantly influences visibility and atmospheric clarity, particularly in the northern and
central regions [21]. Conversely, the wet season results from the northward movement of
moist air masses from the Atlantic Ocean, bringing rainfall across much of the country.
These two different air movements—the dry Tropical Continental (cT) and the wet Tropical
Maritime (mT)—are divided by the Inter-Tropical Discontinuity (ITD), a low-pressure area
that changes position and marks the change in season. The duration and intensity of
seasonal conditions vary by zone, with the Coastal zone typically experiencing a longer
rainy season than the Sahelian region, which has a shorter and more intense wet period.

Table 1. The study locations and their characteristics [22-24].

Station Geoclimatic Zone Lat (°E) Lon (°N) Elevation (m) Annual Rainfall (nm)  Temperature Range (°C)
Tkeja Tropical Coastal 6.6018 3.351 35 1500-2000 22-33
Calabar Tropical Coastal 4.975 8.341 32 >3000 23-31
Abuja Midland Savannah 9.056 7.498 840 1200-1500 19-37
Kano Sahel Savannah 12.002 8.5919 469 600-1000 1841

Table 1 provides details about the study stations, such as the geoclimatic classification,
latitude in degrees east, longitude in degrees north, station elevation in meters, annual
rainfall in millimeters and typical ambient temperature range in degrees Celsius.

The visibility data used for the research was retrieved from the NOAA archive of the
National Centers for Environmental Information [25]. The average monthly values of the
visibility for an average year were computed to reveal the seasonal variation in visibility on
a monthly basis. Although there are two prevailing seasons in Nigeria, the monthly mean
visibilities were classified into four sub-seasons based on the variability of the dataset. The
four sub-seasons are presented in Table 2. Data retrieval, extraction, and analysis were
carried out using version 3.13.0 of the python programming language.

Table 2. Seasonal classification of visibility.

Sub-Season Months Remarks

Caused by high humidity, water vapor content,

1 Low-Visibility Wet Season Jun-Aug and cloud cover

2 High-Visibility Wet Season Sep—-Nov

3 Low-Visibility Dry Season Dec-Feb Caused by Harmattan, dust, and particulate matter
4 High-Visibility Dry Season Mar-May

2.2. Kernel Density Estimation (KDE) Techniques for Estimation of Seasonal Visibility

KDE techniques are used for analyzing non-parametric data for decision-making
and to gain insight into data distribution [26]. The non-parametric estimation techniques
are fully flexible techniques, as the true nature of the distribution of the statistic can be
identified and compared with the estimates [27]. The data structure does not follow any
prescriptive form since the probability density function (PDF) is obtained from a data
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sample. The characteristics concerning the data structure can be disclosed easily since it
does not impose on the pattern of distribution. A set of smooth curves known as kernels,
with each curve representing a data point in the dataset, helps improve the estimation
accuracy. The kernel function f(v) of a variable v is expressed in Equation (1).

fo) = Y, K (v _hX”) M

where m is the sample size, i is the width commonly called bandwidth, and X}, is the nth

observation of the data. The kernel density estimate is obtained by integrating all these curves
into the densities of each data point. The monthly average visibilities for all the stations
were simulated by using the four kernels described below. The bandwidth is decided by
providing a compromise between the oscillation of the data and the curvature to detect the best
window width, commonly referred to as the optimum bandwidth. This is achieved through
the application of various types of kernel function provided in Equations (2), (6), (8) and (10),
with their corresponding optimal bandwidths in Equations (3), (5), (7) and (9), respectively.
A low value of optimized bandwidth indicates a better density estimation, which is an
indication of a smoother and better density estimation.

2.2.1. Gaussian Kernel

The Gaussian kernel provides certain values which have proven to be smooth density
estimates for a given set of data. They are most beneficial when the applied data are
normally distributed. The Gaussian non-parametric kernel density estimate is given as [28]

f(v) = Eexp(—f) @

The optimal bandwidth  is expressed as
106 xc
= "m

where ¢ is the standard deviation of the data, m is the sample size of the variable v.

h (3)

Although the Gaussian kernel is primarily utilized for several applications because of
its fine smoothing ability, its limitation is that it over smoothes the peak and sharp edges
due to the features of its support type, which is infinite.

2.2.2. Epanechnikov Kernel

The Epanechnikov kernel is a parabolic function introduced by Epanechnikov in
1969 [29]. It possesses good performance in terms of bias—variance tradeoff due to its fixed
bandwidth and minimization of mean integrated square error (MISE), hence it is widely
adopted. The kernel function is expressed in Equation (4) [29].

f@) = 2(1~), forlo| <1 @)
The optimal bandwidth is expressed is given as
h— 234 x 0 5)

om
2.2.3. Triangular Kernel

This is a finite kernel that has a simple basic structure which works between the
extremes of continuity and local flexibility. It is a piecewise linear kernel function with
a triangular shape, known for its simplicity and interpretability. Although it is easier to
apply and faster than the Gaussian kernel, it is not as continuous as the Gaussian kernel
and it compromises near-boundary values. The triangular kernel density function f(v) and
the optimal bandwidth / are presented in Equations (6) and (7), respectively [30].
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f(v) =1=[v], for[v|<1 (6)

1.06 x o
" 7
It is the quickest and least complex kernel density estimation strategy commonly
used for handling large datasets. However, it has low smoothing capabilities, but it is
very effective in simple applications, as it considers only nearby data points. It is used
for real-time, high-speed data feed applications. The rectangular density function and the

optimum width are presented in Equations (8) and (9), respectively [31].

f(o) = 5, forlol <1 ®

234 x 0
h= o ©9)
To establish the estimated probability density functions described above, the kernel
functions were applied to the seasonal visibility dataset. The kernel with least error was
determined for each station by calculating the Integrated Squared Errors (ISEs) numerically

using Equation (10), and then comparing the various results from all kernels.

ISE=Y"" [f(xn) — f*(xn)]*Ax (10)

where f(xy) is the true density function, f*(x,) is the kernel density estimate, and Ax
is the spacing between data grid points. The ISE is a measure of the error between the
estimated density function of a given dataset and the actual estimated density function of
the dataset using kernel density estimation. For the four stations, seasonal visibilities were
also estimated with the help of the four kernel models described above. The kernel with
the lowest ISE value provides the best kernel that describes the sharpest median value of
a dataset. The kernel with the smoothest fit for training the estimation on the dataset is
determined by the optimum bandwidth. Therefore, the epoch with the lowest optimum
bandwidth was deemed to enhance the estimation smoothness of the kernel.

2.3. Estimation of Fog-Induced Attenuation

Attenuation caused by fog depends on several factors, such as location, particle size
distribution, liquid water content, and average particle diameter. The particle concentration
and size distribution can vary significantly from one location to another, making the
prediction of fog-induced attenuation on optical signals primarily reliant on empirical
models based on experimental observations.

The empirical model, specifically the Kruse model, is judged to be the most reliable
model for calculating fog-induced attenuation [32-34]. It uses visibility data to characterize
the density of fog and subsequently estimate the attenuation due to fog, as presented in
Table 3 and Equation (11), respectively. The NIR wavelengths (850 nm, 1100, and 1550 nm)
were selected for the FSO communication link due to their low atmospheric attenuation
and compatibility with optical devices like lasers and photo detectors [35-37].

Table 3. International Visibility Code for different types of weather conditions [38].

Weather Condition Visibility (m)
Dense fog <40

Thick fog 40-200
Moderate fog 200-770
Light fog 770-1000
Mist 1000-2000
Haze 2000-4000
Poor Visibility 4000-10,000
Good Visibility 10,000-40,000

Excellent Visibility >40,000
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Visibility (km)

The Kruse model relates the atmospheric specific attenuation to the meteorological
visibility of the atmosphere and the optical wavelength, A according to Equation (11).

3912 [ A\ Y
T Vikm) <550 nm) (1)

where « is the specific attenuation in dB/km, V is the visibility of the atmosphere in
kilometers, A is the wavelength in nanometers, 550 nm is the reference wavelength for
the maximum spectrum of the solar band, and q is a parameter related to the particle size
distribution of the atmosphere. The value of the index q in the Kruse model depends on
visibility, according to the conditions in Equation (12).

1.6if V > 50 km
g=< 13if6km <V <50km (12)
0.585V1/3if 0km < V < 6 km

3. Results and Discussion
3.1. Validation of Visibility Data Retrieved from NOAA

The hourly visibility data retrieved from the NOAA site was validated with the
visibility data measured by the Nigerian Meteorological (NiMet) Agency in 2012. Only
visibility data for Ikeja station was available at NiMet, hence the data validation was based
on a single station. The Nimet visibility data were measured using a radiosonde at two
synoptic hours, which were 9:00 and 15:00 h daily, with some missing data for the available
year. Consequently, the corresponding hours of the NOAA visibility data for Ikeja station
were extracted and compared with the NiMet data for the same station. The time series
plot of the visibility data from the two sources are presented in Figure 1.

Visibility (NOAA)
Visibility (NiMet)

2012-01-01 09:00:00
2012-01-12 15:00:00
2012-01-24 09:00:00
2012-02-04 15:00:00
2012-02-16 09:00:00
2012-02-27 15:00:00
2012-03-10 09:00:00
2012-03-21 15:00:00

2012-04-02 09:00:00
2012-04-13 15:00:00
2012-04-25 09:00:00
2012-05-06 15:00:00
2012-05-18 09:00:00
2012-05-29 15:00:00

o 2012-06-10 09:00:00

2 2012-06-21 15:00:00
2012-07-03 09:00:00

3 2012-07-14 15:00:00
2012-07-26 09:00:00
2012-08-06 15:00:00
2012-08-18 09:00:00
2012-08-29 15:00:00
2012-09-10 09:00:00
2012-09-21 15:00:00
2012-10-03 09:00:00
2012-10-14 15:00:00
2012-10-26 09:00:00
2012-11-06 15:00:00
2012-11-18 09:00:00
2012-11-27 15:00:00
2012-12-09 09:00:00
2012-12-20 15:00:00

P
=
I

Figure 1. Comparison of the time series plots of Ikejavisibility data retrived from NiMet and NOAA.

It could be established as evidence in Figure 1 that the values of the visibility overlap
at most of the data points. The co-efficient of correlation between the two datasets was
found to be 0.897, which indicates a high level of reliability. The high correlation coefficient
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between the two datasets at this location is a strong indication of the reliability of NOAA
visibility data under similar climatic conditions. Moreover, similar studies have reported
consistent agreement between satellite-derived or model-based visibility data and ground
observations, especially when the atmospheric conditions are not highly variable [39-42].
The minor variationscould be attributed to missing data, especially in the Nimet dataset,
as observed during data preprocessing. The missing data are usually due to a lack of
measurement caused by equipment failure and other administrative reasons. NOAA data
are more consistent because the data is measured by the weather observatory stations
situated within the airports of the study locations. The obersation, measurement, and
storage of atmospheric parameters such as visibility, temperature, humidity, wind speed,
wind direction, etc., is part of the airports’ ethical standards for flight operation. The
locations of the two meteorological stations could also be responsible for the slight variation
in the measurements. The crow-fly distance between NiMet and Muritala Muhammed
Airport (MMA) and the stations is approximately 5 km [43].

3.2. Monthly and Seasonal Variation in Visibility Across the Selected Stations

The monthly means of the daily visibility across the selected stations for the studied
years were computed and are presented in Figure 2. The plot illustrates the clear impact
of seasonal weather patterns on atmospheric visibility across different regions in Nigeria.
A critical observation of the monthly trend revealed that the curves depict double-peak
patterns in all the stations. A similar trend was reported by Akpootu et al. [44], who
conducted their study on Ikeja alone. The first peak occurs between May and April, while
the second peak reigns between September and October. This clearly indicates that both
the wet (April-October) and dry (November-March) seasons experience low and high
visibilities. Consequently, the calendar months were divided into four categories, namely,
low-visibility (LV) wet season, high-visibility (HV) wet season, low-visibility (LV) dry
season, and high-visibility (HV) dry season, as presented in Table 2.

11,000 —=— lkeja Calabar —+— Abuja Kano
10,000 : o o ,__,\
T 200 = W :
> 8000 ; » \
3 7000
&
> 6000 r
5000
4000
A Q% N ¢ N SN e e e
& & @ N ] OSSP
\’b <<Q\,O e Q&Q’ O(: OA‘ZJ Q,Q’Q/
S 2 9

Figure 2. Variation in the atmospheric visibility monthly means across the study locations.

The low-visibility (LV) wet season reigns between June and August, when visibility is
heavily impaired by high humidity and cloud formation in the atmosphere, especially in
the coastal stations. It can be observed in Figure 2 that the coastal stations have the lowest
visibility during this period.

Specifically, Calabar and Ikeja possess minimum wet season visibility of about
7.99 and 8.23 km, respectively, in July. The gradual increase recorded in August could
be attributed to the famous deluge of rainfall called the August break [45-48]. The reduc-
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tion in visibility is apparently negligible in the savannah stations due to the low frequency
of cloud formation in these regions during this period. Kano, which belongs to the Sahel
savannah, had a maximum visibility of 9.82 km in June.

The high-visibility (HV) wet season occurs between September and November as
a result of the gradual end of the wet season. Kano maintained the highest visibility,
of about 10.15 km, in the high-visibility (HV) wet season and throughout the average
year in all the study locations. Ikeja and Calabar possess the lowest visibilities of about
8.72 and 8.9 km in October due to the extended rainy season, attributed to the Coastal zone.

The third season is the low-visibility dry season observed between December and
February, when all stations experienced all-time low values throughout the year. The onset
of the Harmattan in the coastal stations is responsible for the reduction in visibility to an
all-time low of about 5.98 and 5.94 km in Ikeja and Calabar. However, visibility increased
to maximums of about 7.7 and 8.05 km in Ikeja and Calabar as the Harmattan disappeared
in February. Although an absence of rainfall is expected in the savannah during the LV dry
season, the gradual formation of a dust-laden atmosphere attributed to the onset of the
dry season is expected to affect visibility. Visibility drops further in January because of the
intense Harmattan commonly observed in most stations. The Harmattan is driven by the
northeast trade winds that blow from the Sahara Desert towards the Gulf of Guinea. These
winds transport dry and dusty air across the Sahel region and into southern West Africa,
including Nigeria [8,23]. The poor visibility often disrupts road, air, and sea transportation.
Flight delays and cancelations are common due to the dense dust haze. FSO communication
signals are heavily attenuated since they rely on visibility.

The last season is the high-visibility dry season period, when visibility rises steadily
from March to May as the Harmattan varnishes completely. Visibility attains peak values
in most stations between April and May due to the absence or rarity of rainy events. The
atmosphere experiences clear-air conditions during this period. The occasional rainfall
helps to reduce the dust levels as the precipitation clears particles from the atmosphere.
A maximum visibility of about 10.1 km was recorded for Abuja, while a minimum value of
9.45 km was observed in Ikeja in the month of May.

Conclusively, the visibility values across all the study locations lie within the “very light
mist” classification as shown in Table 3. Ikeja experienced the most significant seasonal change,
with a distinct dip around the middle of the year. Calabar also experienced high seasonal
changes, but these were less extreme compared to Ikeja. Although Kano possesses the least
variability between May and November, Abuja has the fewest overall seasonal changes.

3.3. Annual Trend of Visibility Across the Study Locations

The trends in atmospheric visibility over the years of study were investigated across the
four stations. The yearly averages of the visibility values were computed and are presented
in Figure 3. Generally, visibility has decreased over the studied years due to meteorological
and aerosol-related factors [22]. Specifically, a sharp decline was observed in the mid-2010s
(2014-2016) across all stations. This could be a consequence of Saharan dust outbreaks and
other factors, such as vehicular emissions, biomass burning, and industrial activities, which
have been proven to have reduced the aerosol index and visibility substantially in many
parts of Nigeria in the mid-2010s [3,5,49].

It was observed that annual visibility in Ikeja, the capital of Lagos State, was stable at
a mean value of about 9.5 km between 2009 and 2012, followed by a gradual decline from
2013 to 2014. The visibility stabilizes at about 8.3 km from 2014 to 2023. The continuous
decrease in visibility over the study years could be attributed to the rapid urban development,
industrial engines, and vehicular emissions of the densely populated Lagos [22]. These air
pollution sources contribute significantly to visibility degradation [50]. Calabar possessed
a higher average yearly visibility of about 10 km between 2009 and 2015. The value dropped
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Visibility (m)

to a minimum of about 6.2 km in 2021, followed by a slight recovery until 2023. The significant
change in the atmospheric conditions is linked to the increase in anthropogenic activities or
shifting rainfall patterns affecting particulate washout in this area [51]. A similar trend was
observed in Abuja, but with a more pronounced decrease in the mid 2010s when compared
to other stations. The average visibility lay at around 10 km until 2013, when visibility
dropped drastically to about 7.3 km, and maintained a fairly stable level of 6.7 km until
2017. A higher value of approximately 8.8 km was attained between 2016 and 2023. The
rapid increment in visibility which began in 2017 was caused by the annihilation of El-Nino,
which had suppressed rainfall in the past, the return of La-Nina conditions in 2017, which
likely contributed to better monsoonal activity, especially in the Central region of Nigeria
(Abuja), and the relatively lower transboundary Saharan dust transported to Abuja [5,8,52,53].
Visibility in Kano also dropped from about 9.4 km in 2009 to 8.2 km in 2014, as observed in
other stations. However, the city experienced low annual variability with an average value
of 9.3 km between 2017 and 2023. This suggests more stable atmospheric conditions were
likely influenced by a drier climate, consistent Harmattan, low humidity, with less seasonal
fog or moisture compared to the coastal cities (Ikeja and Calabar). Consequently, Kano
experienced the highest visibility of about 9.3 km after the decrease in the mid 2010s [49].
The comparatively low atmospheric visibility in Ikeja and Calabar may be controlled through
air quality management and regulatory policies to mitigate potential risks in critical sectors
such as health, telecommunication, and transportation.

10,000 A

9000 A

8000 4

7000 +

Locations

—e— Abuja
lkeja
—e— Calabar
—e— Kano
'19@ '15’@ '190 '15’4 '19{5 '15?& '19{) '15’& '190 '15’@ ,@q '15;1'0 '»61:\’ '15;1? '19’9
Year

Figure 3. Temporal variation in the annual mean trend of visibility across the study locations.

3.4. Application of KDE Techniques for the Estimation of Spatio-Temporal Distribution of Visibility

The Gaussian, Epanechnikov, rectangular, and triangular kernels of KDE were de-
ployed for the estimation of seasonal median visibility for each of the four-season classi-
fications in Table 2 across all the stations. The probability density functions for the four
stations in the LV wet, HV dry, LV wet and HV dry seasons are shown in Figures 4-7,
respectively. The actual seasonal visibility data is compared with the estimations obtained
using different the Gaussian, Epanechnikov, rectangular, and triangular kernels.
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Figure 4. Probability density functions of visibility during the low-visibility wet season period for
(a) Ikeja, (b) Calabar, (c) Abuja, and (d) Kano.
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Figure 5. Probability density functions of visibility during the HV wet season for (a) Ikeja, (b) Calabar,

(c) Abuja, and (d) Kano.
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Figure 6. Probability density functions of visibility during the LV dry season for (a) Ikeja, (b) Calabar,
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Although each kernel has its unique optimum bandwidth, as shown in Table 4, the
estimated visibilities are approximately equal but have significantly different ISEs, which
were verified by the Friedman test. The triangular kernel has the sharpest fitting due to its
low values of ISE among other kernels throughout the four seasons in all the stations, as
depicted in Table 4. Moreover, the triangular kernel provides the best and most preferred
estimation because it possesses the lowest optimum bandwidth among other kernels. This
is clearly evidenced by the triangular kernel trend lines and legends in Figures 4—7. The
low values of the ISEs for all the kernels indicate that the KDE methods provide good
estimation of the seasonal visibility relative to the actual seasonal visibility values.

Table 4. Comparison of the performances of the four kernels.

Gaussian Epanechnikov Rectangular Triangular
Station Season
h Vis (m) ISE (E-5) h Vis (m) ISE (E-5) h Vis (m) ISE (E-5) h Vis (m) ISE (E-5)
LV Wet 34437 10,800 14 371.66 10,800 1.6 760.22 10,800 0.9 259.9 10,800 0.4
Tkeja HV Wet 34393 11,288 1.7 371.19 11,288 2.3 759.25 11,288 15 25957 11,288 1
LVDry 42022 8008 0.9 453.52 8008 1.1 927.67 8008 0.8 317.15 8008 0.3
HVDry  319.16 11,261 1.1 344.45 11,261 13 704.56 11,261 0.8 240.87 11,261 0.2
LVWet  859.96 11,058 07 1898.41 11,058 0.9 928.11 11,058 0.4 649.03 11,058 0.6
HV Wet  724.06 11,600 0.8 159839 11,600 12 781.43 11,600 0.7 546.46 11,600 0.3
Calabar 7y Dry  738.61 9800 0.4 1630.53 9800 0.8 797.15 9800 0.9 557.45 9800 1.3
HVDry 10484 10,020 2.2 231442 10,020 0.7 113148 10,020 1.1 791.26 10,020 0.6
LVWet  475.88 11,252 0.7 105057 11,252 0.9 513.61 11,252 0.5 359.17 11,252 0.4
Abuja HV Wet  334.06 9902 17 737.44 9902 24 360.53 9902 14 252.12 9902 0.8
LVDry  430.75 9850 1.2 950.9 9850 15 464.88 9850 0.9 325.22 9850 0.4
HVDry  461.62 9890 1.1 1019.04 9890 1.7 498.18 9890 1 348.4 9890 0.5
LVWet  418.82 9850 17 924.56 9850 2.1 452 9850 14 316.1 9850 0.7
HV Wet  532.65 9900 14 1175.86 9900 1.8 574.86 9900 1.1 402 9900 0.9
Kano LVDry  602.05 9800 2.1 1329.05 9800 25 649.76 9800 1.8 454.38 9800 13
HVDry 55338 9899 1.9 1221.63 9899 24 597.24 9899 15 417.67 9899 1.1

Figure 4a—c display the probability density functions (PDFs) of visibility during the
low-visibility (LV) wet season period for Ikeja, Calabar, Abuja, and Kano, respectively. This
implies that the mean atmospheric visibility for all the study stations could be classified
as very light mist. Visibility is concentrated below 10 km, with a significant spike around
6-8 km in Ikeja. Although the Gaussian and Epanechnikov kernels provide a sharp fit
at the edges in approximating the actual visibility distribution, the triangular kernel has
the smoothest fit. Similar occurrences were observed in other stations, but visibility has
a broader variability in Calabar, with peaks between 6 and 15 km. Variability is more
evenly distributed in Abuja, with a lower range of 4 to 10 km, as depicted in Figure 4c.
Figure 4d shows that Kano has the lowest range of 4 to 8 km, with sharp peaks likely due
to significant atmospheric dust or particulate matter during the LV wet season.

Figure 5a-d present the PDFs of the four locations in the HV wet season. In Ikeja,
visibility is concentrated below 15 km, with sharp peaks around 6-10 km. This reflects
improved atmospheric conditions as a result of temporary rain downpour (August break)
during the HV wet season compared to the LV period in the wet season. The visibility
in Calabar is clearer, with higher variability between 10 and 20 km indicating clearer
atmospheric conditions due to consistent rainfall and proximity to the Atlantic Ocean. The
consistent rainfall implies that the presence of cloud formation only lasts for a very short
period. In Abuja, visibility is distributed between 6 and km, with a significant concentration
around 8-10 km as depicted in Figure 5c. This reflects moderate wet season conditions,
where rainfall reduces dust particles in the atmosphere. Visibility is concentrated below
10 km, with sharp peaks around 7 km in Kano. The relatively lower visibility in Kano
compared to other locations is likely due to the combination of lingering dust and moderate
wet season rainfall in Sahel savannah [54]. The triangular kernel aligns closely with the
actual visibility data with sharp peaks. The Gaussian and Epanechnikov kernels provide
smoother approximations while the rectangular kernel has the lowest performance across
all stations in the HV wet season.
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The PDFs for the four kernels in the four stations during the LV dry season are presented
in Figure 6a—d. Visibility in Ikeja is primarily concentrated below 10 km, with peaks around
5-7 km. This reflects the influence of the Harmattan, where dust particles transported by the
hot wind from the Sahara significantly reduce visibility. In Calabar, visibility is distributed
more evenly, with a broader range spanning 2 to 15 km, as depicted in Figure 6b. The
coastal stations moderate the impact of the Harmattan due to higher humidity and less
dust deposition during the LV dry season. This is corroborated by the work of Balarabe
et al. [49], who reported that coastal areas experience less-severe visibility reduction during
the Harmattan season compared to inland regions. Visibility shows considerable variation,
with notable peaks between 4 and 10 km. Figure 6c shows that a significant drop in visibility
below 5 km is evident, reflecting the inland influence of the Harmattan. Visibility is heavily
concentrated below 10 km, with a strong peak around 5 km in Kano. This reflects intense
Harmattan effects in northern Nigeria (Shahel) during the dry season. The lower visibility
levels in Kano compared to other locations are attributed to its proximity to the Sahara
Desert, where dust storms are more frequent [21,49]. The LV dry season corresponds to
Harmattan conditions, marked by dry northeast trade winds carrying dust and reducing
visibility. Coastal locations (Ikeja and Calabar) experience less severe reductions in visibility
compared to inland (Abuja) and northern (Kano) regions. The triangular kernel captures
sharp peaks effectively in almost all the stations with concentrated distributions. The
Gaussian kernel provides a smooth fit across the stations, effectively capturing central
trends. The Epanechnikov kernel performs well in capturing broader and less concentrated
distributions, especially in Calabar and Abuja. The rectangular kernel is less accurate, with
abrupt transitions that deviate from actual data patterns.

The performance of the kernels during the HV dry season is displayed in Figure 7a—d.
Visibility is concentrated around 7-10 km, with a peak at approximately 8 km in Ikeja.
Visibility spans a broader range, primarily concentrated between 10 and 20 km, with a peak
near 12 km in Calabar as depicted in Figure 7b. The proximity of these stations to the coast
and maritime air likely contributes to its higher visibility levels during the dry season.
The relatively lower values observed in Ikeja may be attributed to smoke emissions from
combustion engines and other industrial activities in the densely populated city. In Abuja,
visibility peaks around 10 km, with significant variability between 7 and 12 km. The
improved visibility during the HV dry season is a result of reduced humidity and moderate
dust levels compared to the LV dry season. Visibility in Kano is consistently below 10 km,
with a peak near 8 km. Despite being in the HV dry season, Kano’s visibility was limited
compared to southern coastal regions due to its proximity to dust sources in the Sahara
Desert. The triangular kernel aligns closely with the actual data, capturing the sharp peaks
effectively. The Gaussian and Epanechnikov kernels provide smoother but slightly less
accurate approximations for sharp peaks. The rectangular kernel is less accurate, especially
in the savannah stations.

3.5. Variation in Fog-Induced Specific Attenuation with Visibility at Different Wavelengths

The variation in the computed fog-induced specific attenuations with visibility at 850 nm,
1100 nm, and 1550 nm are presented in Figure 8. It can be observed that specific attenuation
decreases with increasing visibility at all wavelengths. This is because lower visibility is
usually caused by a higher concentration of fog or cloud in the atmosphere, which results in
higher scattering and absorption of the optical signals, hence higher specific attenuation.

The 850 nm wavelength curve, which is the shortest wavelength, exhibits the high-
est specific attenuation at all visibility levels because electromagnetic waves of shorter
wavelengths are more susceptible to scattering effects, particularly Mie scattering, which
dominates in foggy conditions [33]. The 1100 nm wavelength curve shows a lower attenua-
tion compared to 850 nm because its wavelength is longer, hence the attenuation values
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lie between 850 nm and 1550 nm at all visibility levels. The lowest specific attenuation is
observed at 1550 nm because longer wavelengths are less affected by scattering, making
them more robust for optical communication during foggy conditions. At a low visibility
of about 6 km, specific attenuation at 850 nm, 1100 nm, and 1550 nm is 0.4 dB/km, 0.25,
and 0.15 dB/km, respectively. At a moderate visibility of about 10 km, which is the approx-
imate prevailing annual mean visibility at all the study stations, the specific attenuations
at 850 nm, 1100 nm, and 1550 nm are 0.22 dB/km, 0.16 dB/km, and 0.10 dB/km, respec-
tively. At a high visibility of about 20 km, the specific attenuation at 850 nm, 1100 nm,
and 1550 nm is 0.05 dB/km, 0.03, and 0.01 dB/km, respectively. This is a rare, severe
condition that usually lasts for a short period, and it can result in total signal outage in

optical communication.

—>—SA at 850 nm
SA at 1100 nm
04 SA at 1550 nm
0.35

0.3
0.25
0.2
0.15
0.1
0.05

Specific Attenuation (dB/km)

6 8 10 12 14 16 18 20
Visibility (km)

Figure 8. Variation in specific attenuation with visibility at 850 nm, 1100 nm, and 1550 nm.

3.6. Estimation of Seasonal Fog-Induced Specific Attenuation for FSO Communication

The seasonal fog-induced specific attenuation for free-space optical (FSO) communica-
tion at the three wavelengths (850 nm, 1100 nm, and 1550 nm) across the four Nigerian cities,
Ikeja, Calabar, Abuja, and Kano, are presented in Figures 9-12, respectively. Generally, the
LV dry season witnesses the highest specific attenuation across all wavelengths due to high
concentration of dust-laden wind, and particulate matter in the atmosphere. Attenuation is
slightly lower in the LV wet season due to the presence of rainfall and humidity. Specific
attenuations further reduced in the HV wet season compared to the LV wet season, but
were moderately affected by cloud. The lowest specific attenuation prevails in the savannah
stations during the HV dry season but occurs during the HV wet season in the coastal
stations, indicating different favorable seasons for FSO communication.

M Specific Attenuation at 850 nm
Specific Attenuation at 1100 nm
Specific Attenuation at 1550 nm

0.2
0.1 I I
0

LV Wet HV Wet LV Dry HV Dry
Season Season Season Season

Specific Attenuation (dB/km)

Figure 9. Comparison of the four-season specific attenuation in Ikeja.
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Figure 10. Comparison of the four-season specific attenuation in Calabar.
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Figure 11. Comparison of the four-season specific attenuation in Abuja.

B Specific Attenuation at 850 nm
B Specific Attenuation at 1100 nm

03 B Specific Attenuation at 1550 nm

0.25
0.2
0.15
0.1

0.05

Specific Attenuation (dB/km)

LV Wet HV Wet LV Dry HV Dry
Season Season Season Season

Figure 12. Comparison of the four-season specific attenuation in Kano.

Specifically, Ikeja possesses the highest attenuation of about 0.27 dB, 0.19 dB, and 0.13
dB, witnessed during the LV dry season at 850 nm, 1100 nm, and 1550 nm, respectively.
These values decreased slightly in the HV dry season compared to the LV dry season,
reflecting the influence of improved visibility, after which it increased in the LV wet season,
though moderated by humidity and cloud formation, but remained the lowest at 1550 nm.
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The lowest attenuation dominates in the HV wet season across all wavelengths, with values
of about 0.20 dB/km for 850 nm, 0.14 dB for 1100 dB/km, and 0.09 dB/km for 1550 nm.
This is obviously due to the rare occasions of rainy events, the absence of the Harmattan,
and dust-laden wind.

Similar seasonal trends were observed in Calabar because it also belongs to the coastal
tropical zone. The highest specific attenuations of 0.22 dB/km, 0.16 dB/km, and 0.10 dB/km
were recorded in the LV dry season, while lowest specific attenuations of 0.19 dB/km,
0.14 dB/km, and 0.08 dB/km were recorded in the HV wet season at 850 nm, 1100 nm, and
1550 nm, respectively.

The seasonal trend is different in Abuja, which is a midland savannah region. The
specific attenuations are comparatively higher than those observed in the coastal stations,
reflecting the inland effects of fog and reduced visibility. Maximum attenuation of about
0.23 dB/km, 0.17 dB/km, and 0.11 dB/km occurred in the LV dry season at 850 nm,
1100 nm, and 1550 nm, respectively. This is due to the combined effects of fog, haze, and
dust from the surrounding terrain during the LV dry season [55]. A minimum attenuation
of about 0.21 dB/km was recorded for 850 nm, 0.15 dB/km for 1100 nm, and 0.09 dB/km
for 1550 nm in the HV wet season. This implies that the HV wet season is the most favorable
season for FSO communication in Abuja.

The seasonal variation in specific attenuation in Kano follows the same trend as Abuja,
most likely because the two stations are situated in the savannah region. Kano witnessed
the highest attenuations among all stations and seasons in the LV dry season with values of
0.27 dB/km, 0.19 dB, and 0.12 dB/km at 850 nm, 1100 nm, and 1550 nm, respectively. The
proximity of this station to the Sahara Desert increases the contribution of dust storms and
particulate matter to fog-induced specific attenuation. Significant improvement in visibility
reduced the specific attenuation in the HV dry season to a minimum of about 0.21 dB/km
for 850 nm, 0.16 for 1100 dB/km, and 0.10 dB/km for 1550 dB/km. This implies FSO
links propagating at any frequency in Kano suffer the most severe fog-induced attenuation
among all the study stations.

The improvement of FSO communication systems under fog-induced attenuation
conditions is highly necessary so that multimedia activities like satellite internet access,
satellite television broadcasting, satellite radio broadcasting, and satellite-based video
conferencing are not impaired in smart cities where uninterrupted high-speed wideband
internet services are essential. Transmission optimization techniques such as adaptive
frequency switching could be incorporated into FSO communication systems to optimize
the Quality of Service (QoS), especially during the LV wet and dry seasons. The perfor-
mance of smart infrastructure that utilizes technologies such as the NB-loT, proposed by
Ghoumid et al. [56] for seamless communication, can be enhanced by relying on efficient
FSO communication links.

4. Conclusions

The seasonal variation in visibility was studied using four KDE techniques. The
triangular kernel outperformed others, with very low ISE and the best optimum bandwidth
in almost all the study locations. The visibility data was utilized to compute four-season
fog-induced specific attenuations in the study locations. The results indicate that specific
attenuation exhibits double peaks, occurring in both the LV dry and LV wet seasons due
to low visibility. Conversely, low specific attenuations prevail during the HV dry and
HYV wet seasons, where improved visibility conditions enhance signal transmission. The
major contributing factors to intense specific attenuation in the LV dry season are dust,
haze, and particulate matter, particularly in the northern regions. High humidity, water
vapor content, cloud cover, and vehicle emissions enhance specific attenuation in the LV
wet season. Specific attenuation attained the highest value at the Sahel savannah (Kano)
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in the LV dry season, reaching about 0.27 dB/km at 850 nm, due to the influence of the
Sahara Desert. The midland savannah station (Abuja) experiences moderate attenuation
because visibility is temperate in the inland and central regions compared to the northern
and coastal regions of Nigeria. The estimated specific attenuations are recommended
for the design, implementation, and optimization of FSO communication links, ensuring
robust and efficient localized optical transmission under varying atmospheric conditions
in the selected regions. It is recommended that future work concentrates on improving
attenuation models through the use of present meteorological data, machine learning
predictions, and dynamic FSO system adaptations for reducing signal degradation when
visibility deteriorates.
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