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Abstract: Organic molecules are gaining special attention over the last years in the corrosion area
thanks to their general low achievable cytotoxicity, structural versatility, and environmentally friendly
obtainment methods. Under those approaches, synthetic organic motifs have attracted the interest of
researchers due to their variated methods of obtention through molecular manipulation via diverse
chemical reactions, allowing the production of adequately planned structures or repurposing their
original application in the case of drugs. This review summarizes general aspects that are desired
in organic molecules as corrosion inhibitors, presenting selected works published in the 2022–2023
period and emphasizing the importance of finding novel and different organic corrosion inhibitors.
Patents were not considered in this review. Scifinder, Google Scholar, and Web of Science were
employed as databases. Mathematical and analytical methods involved in the search for corrosion
inhibitors are out of this review’s scope.

Keywords: green chemistry; environmentally friendly; corrosion process; drug; heterocyclic; natural
product

1. Introduction
1.1. Corrosion Process Fundamentals: Chemistry, Society, Economy, and Environment

The corrosion process can be generically described as a situation where an electron is
lost from a substance or material, leading to its oxidation. It has been chemically described
so far as M(s) →M+ + e−, wherein M is the oxidized metallic material, i.e., iron. Due to its
exergonic nature, the corrosion process is a thermodynamically favorable phenomenon
that occurs in metallic structures, given the metal’s lower energy in its oxidized state. A
key point that must be noticed is that oxidation occurs simultaneously with reduction,
characterizing a redox process. Therefore, there must be an oxidizing agent to receive those
lost electrons. Many conditions accelerate the process of oxidation, such as the presence
of salt water, acidic medium (pH < 4 to remove protective oxide films), temperature,
metal reactivity, metal impurities, carbon dioxide, and high levels of oxygen [1,2]. Being a
process contrary to a sustainable purpose, corrosion demands the constant replacement
of disposable pieces in corrosion-favorable environments, which boosts waste production
and pollution. This is particularly disadvantageous in high-productivity industries with
processes relying on long pipelines, i.e., oil/gas distribution [3]. Additionally, in cases
where the parts cannot be replaced, such as in monuments and large bleachers, the repair
costs, and hazardous conditions for humans are the primary drawbacks of the corrosion
process. Globally, corrosion is estimated to cost up to USD four trillion annually. [4].

1.2. Organic Molecules in the Corrosion Inhibition Process

Organic corrosion inhibitors form a uniform passive film on the metal surface, specifi-
cally in the case of green inhibitors protecting the structure/material from the aggressive
oxidizing agents [5]. That film is adsorbed in the metal’s surface physically, chemically, or
in a mixed type of both. Additionally, the ideal molecule should be in an optimal range of
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interaction force with the metal’s surface according to Sabatier’s principle, independently of
the interaction type. If it is too strong, it might weaken neighboring atomic interactions on
the metal structure and cause metal dissolution. Otherwise, if it is too weak, the molecule
will not protect the surface adequately, as it will not persist on the metal surface [6]. So,
in the end, the type of adsorption does not determine whether the organic molecule will
achieve its goal or fail. Moreover, to reduce and/or avoid the corrosion process, corrosion
inhibitors should be employed with the lowest concentration possible. If a given inhibitor
needs to be in a high concentration to be effective, a concerning collateral effect is that it
might act against the structure preservation due to the over-formation of inhibitor–metal
interactions, which will exert a similar effect as strong interactions [7].

Many mathematic methods for the adsorption mechanisms, namely adsorption isotherms
(i.e., Langmuir, Freundlich, Langmuir–Freundlich), and experimental methods to eval-
uate the corrosion inhibition potential (i.e., weight loss measurement, electrochemical
impedance spectroscopy, and scanning electron microscopy) are extensively described in
the literature [8–11]. However, it is out of this article’s scope to conduct mathematical and
experimental approaches rather than focus on the chemical aspects regarding the corrosion
inhibition potential of organic molecules.

Although there have been some good correlations, relying solely on the difference
between HOMO and LUMO energies to predict inhibition efficiency is not enough, and
other patterns or factors should be taken into consideration to improve the accuracy of
predictions, as many factors play key roles in the corrosion process, such as the surface
model, force fields, electrified solid/liquid interfaces, and formed and broke bonds [12–14].
As Kokalj and Costa [15] elegantly said, “correlation does not imply causation”. While
it poses a challenge, predicting viable organic molecules as corrosion inhibitors is still a
worthwhile and feasible task. To achieve better results, the corrosion inhibitor molecules
must comply with some requisites, such as being water soluble, having proper functional
groups, being synthesized through greener synthetic routes, and having recurrent molecular
frameworks [16,17]. In this article, we emphasize the following factors that have been
established as key molecular features to achieve promising corrosion inhibition, which
encompasses functional groups and molecular frameworks, such as the presence of atoms
with an unpaired electron pair (P, N, O, and S), unsaturated bonds (sp2 and sp carbons) and
aromatic portions π-electrons, heterocyclic nucleus, and electron donor substituents (i.e.,
-OCH3, -OH, -SH, -CH3, and -NH2) [2,7]. It is noteworthy that organic frameworks can
easily achieve those characteristics if they are not intrinsic through many known types of
reactions (i.e., reduction, oxidation, cyclization, and nucleophilic substitution) [18]. With the
pertinent structural components, the inhibitor’s unpaired and π-electrons can adequately
interact with the metal atoms’ d-orbitals and initiate the formation of a protective film
through donor–acceptor interaction, characterizing chemical adsorption. However, when
the molecule and the metal surface are electrically charged, electrostatic attraction forces
can rule their interaction and cause physical adsorption (Figure 1) [5,19].

To overcome the environmental, economic, and social challenges regarding the cor-
rosion process, organic corrosion inhibitors emerged as an elegant solution in the early
1980s [20]. We can highlight, as their main benefits, the lower or lack of significative toxicity,
which directs them towards a greener solution when compared, for example, with the
inorganic ones based on chromates [21] and molybdates [22]. As a direct consequence of the
achievement of greener inhibitors, drugs have been explored as corrosion inhibitors [23–25].
As examples, the antitubercular drug streptomycin [26] and the antibacterial drug penicillin
G [27] demonstrated very good results, inhibiting as high as 90% of the corrosion process
(Figure 2). It is worth noting that drugs usually detain the major structural aspects desired
to achieve high corrosion inhibition potentials, such as heteroatoms and balance between
hydrophobic and hydrophilic groups. Additionally, amino acids, natural extracts, carbohy-
drates, polymers, and gums are possible green chemistry solutions as organic compounds
against corrosion (Figure 2) [8,14,28–35]. Moreover, macrocyclic compounds are a particu-
larly interesting class of organic molecular motifs. The organized heteroatoms, specifically
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nitrogen and oxygen, present in certain molecules facilitate closer sp2 hybridization and
improve electronic interactions with the metal surface. As a result, these molecules can
form more efficient hydrophobic films, leading to better metal–inhibitor interactions and
improved corrosion inhibition [8]. Those aspects can be observed in the promising corro-
sion inhibition potential of MOAT and BMOAT, where the incorporation of hydrophobic
benzene units in the macrocycle motif (BMOAT) greatly increased the corrosion inhibition
potency (Figure 2) [36].
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2. Synthetic Organic Corrosion Inhibitors

Using the search input “synthetic and organic corrosion inhibitor -review -extract”
Google Scholar found a great number of almost 1500 works published in the 2022–2023
period. Web of Science was consulted using the search input “(synthetic AND organic
corrosion inhibitors) NOT review NOT extract” and found only one pertinent reference.
Lastly, SciFinder found 121 references employing the same search input of Web of Science.
Therefore, we selected examples to exemplify each of the desired molecular characteristics
of the synthetic organic corrosion inhibitors presented in the last section, summarized the
diversity of molecular functionalities comprising the organic chemistry world, and wrote a
reader-friendly revision work. The main points taken into consideration to select the works
were green synthetic approaches and the different molecular motifs/organic functions.
Ionic liquids, metal–organic frameworks, covalent organic frameworks, nanoparticles, and
complexes were not considered for this article’s scope. Many organic molecules present two
or more functions/motifs (i.e., a triazole nucleus and a Schiff base in the same molecule),
and they will be designated by their generic names assigned by the authors.

2.1. Mannich Bases

Since the early 1960s, Mannich bases attracted the attention of synthetic chemists [37,38],
mainly due to their abundance of organic functions (ketone, amine, and alcohol), leading
to a versatile molecular motif with application purposes that vary from medicinal chem-
istry [39] to polymer chemistry [40]. After more than 60 years, Zhang and colleagues [41]
synthesized in a single-step protocol three Bis-Mannich bases differing only by the size of
the central aliphatic chain (Figure 3) as corrosion inhibitors. M4M, M6M, and M8M contain
central chains with four, six, and eight carbon atoms, respectively. Briefly, the synthesis
protocol consisted of the dissolution of the adequate diamine compound in the alcoholic
medium at acidic pH followed by the addition of formaldehyde and acetophenone. This
simple reactional workup is in line with a green chemistry initiative using benign solvents
and reagents and presents excellent atomic efficiency (over 70% in this example) [42,43].
In the corrosion inhibition assays based on the weight loss method, all the compounds
presented excellent results (over 85% corrosion inhibition) under the lowest concentrations
tested (0.05% wt) and at high temperatures. This is indicative of their excellent stability and
surface adhesion. In high-temperature assays, M8M demonstrated exceptional potential
as a corrosion inhibitor compared to commercially available inhibitors HB-3 and HT-196.
All three compounds achieved over 99% inhibition at 110 ◦C and 120 ◦C. Lastly, contact
angle assays pointed higher angles for longer aliphatic chains, and this implies a better
displacement of water molecules by the M8M derivative, which is more hydrophobic.
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a single-step reaction with high atomic efficiency and presented outstanding corrosion inhibition
potential (η).

2.2. Schiff Bases

By reacting different primary amines with vanillin, a natural nontoxic compound,
Fernandes and coworkers [44] synthesized three imines as corrosion inhibitors, namely
VTRIS, VCNG, and VTOS (Figure 4). The synthetic approach involved a single-step protocol
employing low-toxicity solvent and reagents with excellent atomic efficiency and allowed
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the recovery of almost 87% of the solvent used in every reaction. Weight loss measurements
pointed out that at the highest concentration tested for each compound, only VCNG
achieved over 90% corrosion inhibition. The analysis of the VTRIS and VTOS structures
shows that spatial disposition also plays a key role in the formation of the covering film.
VTRIS achieved the same inhibition potential as VTOS but with twice its concentration,
implying that the sp3 carbon configuration was not as efficient as the planar structure of an
aromatic ring.
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Under a different approach, Zinad and coworkers [45] synthesized two hydrazone
derivatives as corrosion inhibitors, namely PPEH and MPEH (Figure 4). The single-step
synthetic protocol involved the reflux of both reactants (phenylhydrazine and an adequate
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ketone) under alcoholic media with catalytic acetic acid. The weight loss assay pointed
out that the presence of an electron donor substituent exerted major improvement in the
anti-corrosive potential, as MPEH presented an 8% increase compared to PPEH at the same
concentration (5 mM).

Moreover, in the Schiff bases approach, Haitout and coworkers [46] synthesized two
hydrazones as corrosion inhibitors (Figure 4). The only difference between the compounds
was the substituent at one of the aromatic rings. INBP and DBIP present a nitrous group
and a diethylamino group as substituents, respectively. Weight loss assays showed that the
electron donor substituent demonstrated similar corrosion inhibition potential. Specifically,
at a concentration of 5 mM, DBIP and INBP exhibited corrosion inhibition rates of 97%
and 95%, respectively. The explanation relied on the acidic media potential to reduce the
nitro group to an electron-rich amino group, which leads to similar corrosion inhibition
potentials. Moreover, the saturation of inhibitors at higher concentrations led to metal
dissolution without a significant increase in corrosion inhibition.

Another work comprising Schiff bases derivatives reports the synthesis of two thio-
carbohydrazide (1 and 2) and two carbohydrazide (3 and 4) derivatives (Figure 4). [47]
The synthetic protocol comprised a single-step procedure where the reactants were mixed
under reflux in the ethanolic medium. The excellent yields (80–97%) corroborated the
atomic efficiency premise of green chemistry. The weight loss assay evidenced that there
was no significant difference between the sulfonated and oxygenated derivatives, as well
as methylated or ethylated terminations. However, the exception is the aromatic deriva-
tive 4, which has approximately 10% more inhibition activity than the others). Despite
being an electron-poor system due to fluoride electronegativity, its planarity and plenty of
unsaturated bonds from the aromatic system seemed to be paramount for hydrophobic
interactions and to form a more effective protection film on the metal’s surface.

In line with the examples of Schiff base derivatives discussed herein, Bimoussa and
colleagues synthesized a semicarbazone (SMC) and a thiosemicarbazone (TSC) from the
enone (Figure 5) [48]. Potentiodynamic polarization was employed to measure the inhibi-
tion potential of the three compounds. It was observed, via theoretical and experimental
approaches, that C = S and C = O groups had a minor influence on the anticorrosive activity,
and nitrogen atoms played a key role in the increase in enone activity.
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corrosion inhibition and its inhibition potential (η).

2.3. Six-Membered Heterocyclic Nucleus

Mehta and coworkers [49] designed two pyrimidine derivatives (5–6) as corrosion
inhibitors (Figure 6). The synthetic protocol to obtain those six-membered heterocyclic
derivatives bearing two nitrogen atoms consisted of a single-step procedure employing
low toxicity or nontoxic cheap reagents/solvent. The weight loss assays pointed to better
inhibition for derivative 6 at every tested concentration (up to 97% against 93.9% from 5
at 250 ppm). This difference was explained by the superior electron donating potential
for the empty metal’s d-orbitals of the cyano group over chloride atom and sulfur over
oxygen. Interestingly, a further increase in the inhibitor’s concentration did not result in
better inhibition potential since, at this point, the metal surface is completely covered.
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Another class of six-membered heterocyclic compounds synthesized as corrosion
inhibitors involves piperazine base ligands (Figure 6) [50]. Piperazine derivative 7 was
achieved in a single-step reaction with excellent yields as well as its reduced derivative 8. To
evaluate the corrosion inhibition potential of the compounds, electrochemical impedance
spectroscopy was used. The results showed that the reduced derivative 8 was more
effective, exhibiting over 20% higher inhibition than compound 7. Further analysis showed
that the enhanced inhibition efficiency of compound 8 could be attributed to its superior
stability in acidic media compared to compound 7. Lastly, a theoretical assay comprising
HOMO and LUMO energy difference, namely GAP, pointed out that compound 7 is the
best inhibitor, contrary to the experimental assays. The authors attributed this divergence
to the complexity involving this kind of data, given that many variables play key roles in
corrosion assays, as explained in Section 1.2.

2.4. Five-Membered Heterocyclic Nucleus

Five-membered heterocyclic compounds belong to a particularly special class of or-
ganic molecular motifs. The interest in this kind of molecular motif relies on many field
areas. Firstly, promiscuous medicinal chemistry applications as antitumoral, antimicrobial,
antibacterial, and antifungal agents [51–54]. Secondly, material chemistry with liquid crys-
tals research [55]. Lastly, this class of molecular motifs hinges on agricultural chemistry
(insecticides and herbicides) [56]. Regarding their molecular aspects, they differ in position
and type of heteroatom, as demonstrated in the following selected examples.

Imidazole nucleus is particularly interesting among the many five-membered hetero-
cyclic compounds due to its aromaticity and two nitrogen atoms capable of donating their
unpaired par of π-electrons [57]. Under this concept, three imidazole derivatives (PDI, PAI,
and PMI) were prepared as corrosion inhibitors (Figure 7) [58]. The synthetical procedure
formed all the derivatives in good yields and comprised four steps: bromination of ketone
9; reduction of cyanopyridine 10a-c; obtainment of intermediate amidines 11a-c; cyclization
between 11a-c and 12. Potential dynamic polarization was responsible for the corrosion
inhibition potential for the three tested molecules at the concentration of 4g/L.
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The values for PDI, PAI, and PMI were ranked in the following order: 95.93%, 69.61%,
and 20.46%. The results were explained by the difference in the position and number of
nitrogen atoms, which systematically decreased the aromatic nucleus electron density.

Two bis-pyrazole derivatives were prepared by Cherrak and coworkers (Figure 7) [59].
The only difference between them was the linker of the two pyrazoles; while P2PZ presents
an aliphatic chain, O2PZ has an ether linker. The preparation involved a single-step
procedure consisting of reflux under an ethanolic medium in the presence of hydrazine
monohydrate. Both inhibitors presented good activity at the highest concentration tested
(1 mM). However, the difference in geometrical disposition and the influence of protonated
form given the acidic media turned a simpler aliphatic chain more advantageous to ade-
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quately interact with the metal’s surface. The result was an almost 10% better activity for
P2PZ (87.98%) compared to OP2Z (78.83%).

The triazole nucleus is so versatile that it represents a research area on its own [51,60,61].
As a relevant example for this review focus and size, we present the triazoles (13–15) syn-
thesized by Abdelsalam and coworkers using ultrasound-assisted methods in an ethanolic
or aqueous medium (Figure 7) [62]. Considering the achieved yields of 85–95%, this is a
great example of an environmentally friendly synthetic protocol given the non-toxic nature
of solvents, excellent atomic efficiency, and clean low energy necessary for the reactional
system work. Electrochemical frequency modulation was employed to assess the corrosion
inhibition potential of the triazole compounds. It was noted that they presented a similar
behavior under the different concentrations tested and responded well to discretionary
increases in their concentration, with better corrosion inhibition (up to 87.29–91.68% at
1.00 mM). Overall, the triazole nucleus has proven to be a very reliable choice in terms of
the obtainment of corrosion inhibition.

Two thiophene derivatives (OXM and TET) were synthesized as corrosion inhibitors
in single-step procedures and with high yields (Figure 8) [63]. Electrochemical impedance
measurements pointed to very similar behaviors between the tetrazole-substituted TET
and oxime-substituted OXM, as both compounds presented good responses in terms of
activity as the tested concentration increased. At the highest concentration tested (1 mM),
both compounds presented over 90% anticorrosive inhibition.
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and their corrosion inhibition potential (η).

One last example of a five-membered heterocyclic compound comprises two oxadia-
zole derivatives (16–17) (Figure 8) [64]. The synthetic procedure required two steps and
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furnished the products with excellent yields (>80%). Weight loss assays pointed to a slight
advantage (about 5%) in every tested concentration for 16 over 17. A plausible reason may
lie in the reduction of the nitro group to amino given the acid media in the presence of
iron as a catalyst. At the highest concentrations tested of 250 and 300 ppm, 16 achieved the
optimal concentration, as its anticorrosive activities started to decrease, while 17 started to
achieve its maximum potential, as further increments did not show an appreciable upgrade
in corrosion inhibition.

2.5. Polycyclic-Based Compounds

The indole’s impressive track record in medicinal chemistry makes it unnecessary to
further highlight its widespread and effective use. [65,66]. However, a gossypol indole (GI)
was proposed as a novel green corrosion inhibitor in an aggressive alkaline–saline medium
composed of NaOH 1 M and NaCl 1 M (Figure 9) [67,68]. The synthetic procedure involved
a one-pot methodology furnishing the desired GI in high yields (69.7%). Electrochemical
impedance spectroscopy revealed the promising potential use of GI as a corrosion inhibitor
in the aggressive alkaline–saline medium since high inhibition values (88.54%) were found
under the lowest concentration tested (2.8 µM).
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Similar to the indole nucleus, quinoline has a significant and well-respected history in
the field of medicinal chemistry [69,70]. Therefore, under a different approach, quinoline
analogs 18 and 19 were prepared to explore their anticorrosive potential (Figure 9) [71].
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Weight loss assays pointed to almost the same potential for corrosion inhibition at the
highest concentration tested (10−3 M) for both compounds. However, it was observed that
the extra amino group in the BQMT structure led to the acquisition of higher anticorrosive
potential, 18 (74.0%) > 19 (60.8%), in the lowest concentration tested (10−6 M) along with a
better response to concentration increments.

The coumarin nucleus was also explored in corrosion inhibitor development [72]. Two
coumarin derivatives (20a-b) were prepared in the quite extensive synthetic procedure,
in which we highlight the starting material ethylene glycol (Figure 9). Electrochemical
impedance spectroscopy pointed to almost the same behavior against corrosion inhibition
for both derivatives, with activities superior to 95% in the highest tested concentration of
750 µM. Moreover, with melting points bearing 300 ◦C, both coumarin dyes were presented
as potential thermodynamically resistant corrosion inhibitors.

Under a similar approach with polycyclic compounds, Caihong and coworkers [73]
prepared a hybrid compound 21 consisting of three different fused heterocycles: pyrazole,
pyran, and pyrimidine (Figure 10). The green synthetical procedure took only a single-step
multicomponent one-pot methodology, furnishing 21 in high yields (92%) [74]. Weight loss
measurement allowed the observation of high corrosion inhibition at 200 mg/L (94.46%),
proving the potential application of multiple heterocyclic nuclei fused in one molecule
as a viable approach to obtain novel promising anticorrosive compounds. Moreover, the
weight loss assays conducted at higher temperatures demonstrated the high activity of the
compound, even at 330 K (over 80%). Furthermore, the compound’s high melting point
(266–268 ◦C) underscores its potential as a thermodynamically resistant inhibitor.
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2.6. Carbazones and Carboxamides

Carboxamides (22–24) have been prepared by different synthetic protocols with ex-
cellent yields to serve as anticorrosive agents (Figure 11) [75]. The weight loss assays
were carried out in various concentrations. We will focus on the lowest, where the com-
pounds showed the most significant difference, and the highest ones, where the compounds
achieved their maximum anticorrosive capacity due to the complete covering of the metal’s
surface. This work is quite interesting as the reason for the anticorrosive activity results is
justified by structural details. Derivative 23 has the advantage of possessing more aromatic
nuclei. However, carboxamide sp3 nitrogen, which detains the stronger electronic density,
is involved in resonance with its adjacent aromatic nucleus. As a result, this derivative is
unable to chemically bind to the metal surface, which explains why its activity is more than
10% lower than the other two. As for the other two derivatives, this is explained via the
difference between the number of nitrogen atoms.
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inhibitors and their respective anticorrosive potential (η) at 303 K.

2.7. Miscellaneous

Despite the great myriad of functions and molecular motifs covered in the previ-
ous topics, there are some additional interesting suitable uses of organic molecules to
be employed as corrosion inhibitors due to intrinsic characteristics already listed, such
as the abundance of heteroatoms, low cytotoxicity, presence of unsaturations, and abun-
dant occurrence in nature. For example, mono-isoxazoline MIC [76] and bis-isoxazoline
BMIC [77] fused (R)-carvone derivatives were prepared to employ the same procedure
consecutively (Figure 12). The weight loss assay showed that incorporating a second isoxa-
zole nucleus significantly increased the compound’s anticorrosive activity. This increased
activity was observed even at lower concentrations, indicating a higher efficiency compared
to the compound without the second isoxazole nucleus. Unfortunately, the conjugated
alkene from the α,β-unsaturated ketone is in resonance with the carbonyl group, which
means that its π-electrons are not as available as they should be to boost higher yields in a
3 + 2 cycloaddition reaction.

Rosin, a resin obtainable from pine trees, had its structure modified via two synthetic
procedures involving heating and dehydration, furnishing RI (Figure 12) [78]. Weight
loss assay showed its promising anticorrosive activity at both the lowest and highest
tested concentrations. Another example encompasses a synthetic dye (CNN) obtained
by a diazonium salt procedure in high yields (Figure 12) [79]. The weight loss assay
demonstrated a linear relationship between the tested concentrations, with the exception
of the lowest (28 µM) and highest (140 µM) concentrations, where only a 4% increase was
observed. The dye approach was considered an optimal resource for the petroleum industry,
mainly because it maintained up to 55% inhibition at 140 mM and 338 K. Moreover, CNN
presented a high melting point of 230–232 ◦C, indicating promising thermal stability.

Organoselenium compounds (NMSeCN and NMSe2) were prepared to be used as
corrosion inhibitors (Figure 13) [80]. The synthetical procedure encompassed two steps for
NMSeCN and three steps for NMSe2, and both furnished the desired compounds in yields
above 95%. Weight loss measurements showed that both derivatives met the expectation
as potential corrosion inhibitors with over 90% activity at the highest concentration tested
(6.4 mM). This is in line with the fact that a selenium atom is as good as a sulfur atom in
terms of nucleophilicity/polarizability, allowing great interaction with a metal’s valence
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orbitals [81]. Nonetheless, the symmetrical compound bearing the double number of
functions, and heteroatoms presented better potential in all tested concentrations. Moreover,
NMSe2’s high melting point (149–150 ◦C) indicated a good thermal resistance.
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A eugenol oligomer (EO) was prepared in a single step, using BF3·OEt2 as an initiator,
with a high yield (72.3%) as a green corrosion inhibitor (Figure 13) [82]. One of its main
features was thermal stability since the first structural cracking only occurred above 629 K
due to polymeric chain rupture. At all tested concentrations used in the weight loss assays
(at 333 K), EO showed minimal increase in corrosion inhibition potential, meaning that it
already has high potential at low concentrations.

Two sweetener-based compounds were explored as novel corrosion inhibitions
(Figure 14). The sucrose derivative (SDCI) [83] was identified as a green and thermally
stable compound, retaining its molecular motif even at temperatures as high as 420 K. In
addition, potentiodynamic polarization results demonstrated the potential application of
SDCI as a high-temperature corrosion inhibitor. At a concentration range of 2.2–9.0 mM
and a temperature of 363 K, SDCI showed a corrosion inhibition range of 80.6–94.3%.
The synthetical procedure employed a one-pot methodology. As for saccharin derivative
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(NPS), [84] a green inhibition was achieved through a one-step procedure, employing
a relatively low-cost, abundant, renewable, and non-toxic feedstock with an inhibition
potential of up to 92.31% at the highest tested concentration.
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Phosphonic acids derived from natural products such as undecylenic acid and oleic
acid were synthesized by Ruf and coworkers (Figure 15) [85]. The synthetic procedures
furnished the corresponding derivatives PA1 and PA2 in high yields (>80%) employing
one-pot methodologies. In this work, the compounds’ anticorrosive activity was evalu-
ated in different concentrations of saline solution. Two commercially available corrosion
inhibitors, octylphosphonic acid (OPA) and 1,3,5-triazine-2,4,6-triaminocaproic acid (TC),
were employed as control compounds. It was found that PA1 was so potent that it achieved
outstanding corrosion inhibition (99.74%) in the most challenging media (3.0% NaCl),
where control inhibitors did not show significant results.
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3. Conclusions

The versatility in the synthesis of organic molecules that can be used as corrosion
inhibitors can be justified by the abundant reactions which allow a plethora of functional
and structural manipulations in different molecular frameworks (i.e., the addition of
heteroatoms in several carbon motifs and exploration of diverse substituents, especially
aromatic ones), which contributes to elevate their corrosion inhibition performance. More-
over, environmentally friendly synthetic strategies (one-step protocols, multi-component
approaches, and cheap reagents), and the absence of toxic components, i.e., metals, are
important points that contribute to the use of organic molecules in the corrosion inhibition
market. Furthermore, the structural features of many organic compounds designed or
used as drugs in medicinal chemistry make them compatible with corrosion inhibition
applications, and they have been shown to be effective at extremely low concentrations
(ppm range). That point enlarges the meaning of drug repurposing beyond the “same drug,
different diseases” to “same organic compound, different applications”. In a general aspect,
there are no preferred organic molecular motifs, as all of the different examples successfully
showed high corrosion inhibition potential (quinolines, triazoles, hydrazones, etc.). So, the
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real challenge comprising organic molecules in corrosion inhibition lies in achieving low or
no toxicity levels through friendly and cost-effective obtainment methods.

Although computational and theoretical methods in chemistry have evolved signifi-
cantly, relying solely on these approaches to search for novel corrosion inhibitors may not
be entirely reliable. Instead, they provide valuable predictions and explain more deeply
the inhibitor’s behavior after the correct experimental procedures to further clarify the
phenomena and bring robustness to this research environment.

When it comes to logistics, corrosion inhibitors can simultaneously save time and
money by delaying complex repair services and dismissing oxidized material substitution,
especially in hard-to-reach places, such as extensive oil/gas pipelines. Within the previous
points, it becomes clear why these kinds of molecules have attracted the special interest of
researchers as an elegant solution for the corrosion process consequences.
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