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Abstract: The penetration of ions plays an important role in the durability of concrete structures. This
study aims to establish the feasibility of using dental X-ray equipment to measure the concentration
and penetration of iodide within cementitious systems. This technique is known as checking ion
penetration (CHIP). This test uses iodide as a tracer because it has a high electron density, and so
it can be observed with X-ray imaging as it penetrates the concrete. Concentration profiles from
CHIP are used to calculate the apparent diffusion coefficient (Dac). These results are similar to
measurements from bulk chloride ponding tests. The Dac is used to predict the service life or evaluate
the quality of an as-built concrete structure or concrete mixture. Because of the wide availability
of dental equipment, CHIP shows promise to be used as a method to measure the in-place quality
control of the concrete.

Keywords: X-ray microscopy; TXM; chloride intrusion; service life; durability; corrosion; CHIP;
dental X-ray

1. Introduction

Concrete has been used for over a century as the building material of choice for long
service life. The durability of concrete is often threatened by the transport of outside ions
that cause deterioration of the concrete or the reinforcing [1]. The most common way to
quantify the resistance to outside chemical penetration is by using electrical methods to
indirectly investigate the microstructure. The most common electrical tests are the rapid
chloride permeability test (ASTM C1202) and the electrical resistivity tests (AASHTO TP95
and ASTM C 1760). These tests have challenges predicting the resistance to outside chemi-
cals when supplementary cementing materials (SCMs), certain chemical admixtures, steel
fibers, and some particular aggregates are used in the mixtures, or when the tempera-
ture/moisture or amount of carbonation content varies within the mixtures [2–10].

The most trusted method to investigate ion ingress into cement-based materials is the
bulk diffusion test. This test is completed by placing a salt solution on top of the sample
as described in ASTM C 1556 and AASHTO T259, followed by a titration test on powder
taken at different depths within the sample [11–14]. Because the powder from the concrete
contains about 75% aggregate and 25% paste by volume, a large amount of powder is
needed to be sure that the chlorides in the paste are well characterized. These tests are
time-consuming and labor-intensive, and so they are not widely used.

Several studies have used X-ray imaging techniques to simplify the ASTM C 1556 test.
Some of these include using X-ray fluorescence (XRF) and X-ray microtomography [15–26].
The equipment needed for these measurements is expensive, time-consuming, and needs
significant sample preparation. Recently, transmission X-ray microscopy (TXM) using
µCT equipment has been used to place iodide in water and observe the change in X-ray
absorption. TXM is useful because it is non-destructive, fast, requires minimal sample
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preparation, and the technique can image at a spatial resolution of 200 nm to 20 µm [27–32].
TXM is a non-destructive technique (NDT), and so it allows the sample to continue to be
investigated with TXM to study the penetration of ions with time, or the same sample
could be used in another experiment such as porosity, X-ray diffraction, or microstructure
imaging. The apparent diffusion coefficient from TXM and X-ray fluorescence (µXRF)
mapping is within 5% to 13.5% [27]. Others have compared the rate of iodide penetration
to the rate of chlorides, and the results indicate that iodide serves as a satisfactory tracer to
represent the diffusion and penetration of chloride in a cementitious system. More details
are provided in Appendix A.

The goal of this study is to develop a test method that is guided by TXM but uses low-
cost and widely available dental X-ray equipment to determine the rate of fluid transport
within cement-based materials with less time and cost. This device will be known as
checking ion penetration (CHIP). The main components of a dental X-ray unit are the
control panel, tube head, position-indicator device (PID), and sensor (or indicator). Like
X-rays taken in other applications, dental X-rays use electromagnetic radiation to capture
images of the object of interest. The radiation beam generated from the tube head passes
through the object, reaches the sensor, and creates 2D images of the object.

Emerging countries are creating massive volumes of concrete infrastructure, and more
testing is needed to evaluate the durability of their in-place concrete. Annual world cement
production (which can represent concrete production indirectly) is expected to increase
considerably from now to 2050. The largest share of this growth will take place in China,
India, and other developing countries on the Asian continent [33]. The growth of concrete
demand increases the need for a widely available, reliable, fast, and economic test method
to evaluate the durability performance of the produced concrete. Since dental equipment
is so ubiquitous and CHIP requires very simple sample preparation, this makes CHIP a
promising technique for emerging countries to use as a viable quality control method to
evaluate the durability of their concrete. Moreover, the performance of different cementi-
tious systems (e.g., types of cement, admixtures, SCMs, latex and polymer additives, etc.)
and different construction and repair techniques and practices (e.g., surface finishing and
treatment, sealers, concrete pouring, and casting methods, curing methods, etc.) can be
evaluated by CHIP in a short time. Therefore, CHIP can be used as a reliable and fast tech-
nique to evaluate the long-term performance of a technique or method before implementing
it in the field. This performance evaluation capability could be used to help practitioners
make informed decisions in choosing a proper material or construction practice for each
project to meet the long-term requirements and expectations of that project.

2. Overview of the Experiments

This study is divided into two parts. The first will focus on establishing CHIP, and the
second will determine the variability of the method. In the first part, the results of CHIP are
compared with TXM. The investigated samples are summarized in Table 1. The concrete
samples were cored from ten different bridge decks. Two more miniature cores were taken
from one of the bridge decks to complete Part II of the study. Therefore, in total, twelve
concrete samples were tested. Next, the variability of CHIP was investigated by looking at
a larger number of samples.

Table 1. Type and number of samples used in each part of the study.

Sample Type Used for Each Part of the Study Paste w/cm = 0.35 Paste w/cm = 0.40 Paste w/cm = 0.45 Concrete Core

Part I: Establishing CHIP
(tested with both TXM and CHIP) 8 8 8 12

Part II: Variability study of CHIP (tested only by CHIP) 27 27 27 12
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3. Methods
3.1. Sample Preparation
3.1.1. Materials

For making the paste samples, ASTM C150 Type I Portland cement [34] was used. The
chemical composition of the cement is shown in Table 2. Tap water at room temperature
was used during the mixing. No chemical admixtures or secondary cementitious material
were used in these samples.

Table 2. Chemical composition of cement with bulk XRF (% weight).

SiO2 Al2O3 Fe2O3 CaO MgO SO3 K2O Na2O P2O5 TiO2 Mn2O3 SrO ZnO Cr2O3 LOI

17.39 4.87 4.71 65.15 1.40 2.51 0.48 0.46 0.13 0.39 0.11 0.15 0.03 0.09 2.12

3.1.2. Mixture Proportion and Mixing

Mixture proportions of the paste samples are provided in Table 3. The paste samples
investigated had three different water-to-cement (w/cm) ratios of 0.35, 0.40, and 0.45. Dif-
ferent w/cm ratios were chosen to create samples with different fluid transport properties.
The components were mixed according to ASTM C305 [35].

Table 3. Mixture proportions.

Mixture Cement (g) Water (g)

Paste (w/cm = 0.35) 891 312
Paste (w/cm = 0.40) 891 354
Paste (w/cm = 0.45) 891 401

3.1.3. Sample Preparation
Paste Samples

Cylindrical micro vials with an inside dimension of 9.5 mm × 46 mm were used as
a mold to cast samples, as shown in Figure 1. Vials were partially filled within 5 mm of
the top to provide a space for ponding solution on top of the sample. The samples were
consolidated by physically rodding with a 1.45 mm wire. The consolidation was considered
to be finished when all visible air voids were removed from the samples. Twenty-seven
samples were made from each mixture. Then, the plastic lids of the vials were closed.
The sealed samples were then transferred into a covered box in a 23 ◦C moist curing
room for 28 d. The moisture room used for curing the samples meets the requirements of
ASTM C511 [36].
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After curing, a hexagonal nut was attached to the bottom of the samples with epoxy.
This nut was matched with the hexagonal socket to load the samples consistently in the
X-ray machine at different times. The stage and sample are shown in Figure 2. The hose
clamp shown in Figure 1 was used to prevent the movement of the applied solution between
the walls of the sample holder and the sample. This ensured that the only penetration into
the sample would come from the surface or a one-directional penetration.
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Concrete Samples

To investigate CHIP on the concrete samples, twelve 19.05 mm (3/4 in) in diameter
cores were taken from ten in-service bridge decks. The prepared samples had different mix
designs, w/b ratios, and ages (provided in Appendix B). All sides of the samples except
the finished surface were covered with hydrophobic wax. Coating the sides of the sample
allows for one-dimensional diffusion from the top. Next, a nut was glued at the bottom of
each sample, as shown in Figure 3.
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3.2. Diffusion Test

Diffusion is the movement of a substance from an area of high concentration to an
area of low concentration. The diffusion test uses 0.6 mol/L potassium iodide (KI) salt
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solution on top of each sample. The concentration was chosen to obtain satisfactory contrast
between the tracer and the sample [27]. Since X-ray imaging can detect materials with
high electron density, then the iodide from the KI salt can be imaged as it penetrates
the concrete. Fortunately, iodide and chloride ions are similar in size (iodide radius is
206 pm versus a chloride radius of 167 pm). Additionally, previous testing has shown that
iodide gives diffusion coefficients 24% higher than chloride [27]. This means that iodide
penetration can provide important insights into the ability of cementitious materials to
resist ion penetration.

Before starting the test, samples were scanned with both CHIP and TXM to obtain the
initial images of the original samples called reference radiographs. To start the diffusion
test, 150 mg of the solution was placed on the surface of the paste samples for 14 d. This
solution was placed 2 mm above the surface of the paste sample. For the concrete samples,
the solution filled the space between the sample and cell walls to reach 2 mm above the
sample surface. The KI solution was refreshed every five days to ensure the concentration
is constant. During the experiment, the lids of all vials were sealed to prevent evaporation
and change in the solution concentration. All samples were kept at room temperature
(23 ◦C) during the experiment. After 14 d of ponding, the same samples were scanned with
both CHIP and TXM from the same orientation imaged in reference radiographs to capture
subsequent radiographs.

When a solution with high electron density penetrates a sample, the penetrated depths
in the subsequent radiographs look different in comparison to the reference radiograph. By
comparing the subsequent radiograph of each sample with its reference radiograph, quanti-
tative concentration profiles and penetration depths of the solution can be found. From this
concentration profile then the apparent diffusion coefficient and surface concentration can
be obtained. These are engineering parameters that combine the impacts of fluid transport
mechanisms of diffusion, absorption, convection, and chemical binding in one term. This
work compares the results from CHIP and TXM by investigating the measured surface
concentration and apparent diffusion coefficient on the same samples in both techniques.
This provides a quantitative way to compare the two methods.

3.3. X-ray Imaging Techniques
3.3.1. TXM Method

A laboratory Skyscan 1172 µCT scanner was used. Each sample was loaded on a
fixed stage between the X-ray source and the detector. When X-rays are used to investigate
the sample, some X-rays are absorbed, and others pass the sample to reach the detector.
The detector produces grayscale images called radiographs based on the received X-rays.
The schematic view of the mechanism of imaging in this method is shown in Figure 4.
Radiographs were grayscale images in which each pixel has a gray value between “0”
and “255”. The gray values change by density, thickness, chemistry, or a combination
of these. Denser or thicker materials absorb more X-rays and are therefore darker in the
TXM radiographs. Air absorbs fewer X-rays and has been commonly displayed as light
gray in the background of each radiograph. As the KI solution penetrates the sample, the
penetrated depths are subjected to gray value change such that the affected regions become
darker, and therefore gray values decrease compared to the reference radiograph.

Since each radiograph should be compared with its reference radiograph, it is neces-
sary to obtain radiographs from identical orientations at each interval of scanning. This
identical orientation is obtained by using the stage shown in Figure 2. A consistent ori-
entation is critical when concrete samples are investigated because of the inclusion of the
larger aggregates.
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Figure 4. Schematic view of the mechanism of imaging in the TXM method.

3.3.2. CHIP Method

This method was very similar to the TXM. The only differences were the X-ray source
and X-ray settings. An overview of this method is shown in Figure 5. Like TXM, captured
radiographs are grayscale images in which each pixel has a value between “0” and “255”.
Like TXM, to investigate the gray value change in each sample over time, it is necessary to
take images at a constant orientation at each measurement. The same sample test setup as
shown in Figure 2 was used with CHIP to obtain consistent orientations for each image.
One thing to note is that the CHIP measurement only takes 20 s compared to the 60 s for
the TXM. This could be helpful when running a large number of samples.
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3.4. Data Collection in Both CHIP and TXM Methods

All samples were scanned before applying the solution with both TXM and CHIP
to measure the initial gray values for each sample. This image was called a reference
radiograph. The elevation used for each sample was recorded to use the same height for
taking consistent images at the next imaging time.

To compare the results of CHIP with TXM, the same side of each sample scanned
in TXM was scanned in CHIP. As the preliminary results shown in Figure 6 indicate, the
diffusion coefficient changes by 8.9% from 14 d of ponding to 28 d of ponding. Therefore, the
apparent diffusion coefficient (Dac) reaches an almost constant value after 14 d of ponding.
For this reason, the measurements were made after 14 d of ponding with the tracer solution
to evaluate the long-term performance of a cementitious system. By assuming that the
concrete is uncracked, the Dac obtained after 14 d of ponding can be a good representative
of long-term durability performance. The reason that the concrete was assumed to remain
uncracked is that by occurring the first crack on the concrete, none of the evaluations of
durability characteristics (e.g., porosity, permeability, etc.) are valid, and they change as the
concrete cracks more. More details on the data analysis and calculation of Dac are provided
in Section 3.5. After applying the 0.6 mol/L KI solution on top of the sample for 14 d,
the subsequent radiograph was taken. Before taking the subsequent radiograph of paste
samples, the solution in the vial was poured off, the remaining solution was removed by a
paper towel, and then the hose clamp was removed. Before taking the second radiograph
of concrete samples, samples were pulled out from the solution and then dried off with a
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paper towel. All the settings used in the TXM and CHIP techniques are summarized in
Table 4.
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Table 4. Settings used in TXM and CHIP imaging techniques.

Parameter TXM CHIP

Pixel size (µm) 8.97 15
Voltage (keV) 100 120
Current (µA) 100 7000

Filter 0.5 mm Al + Cu 1.5 mm Al *
Exposure time (s) 8.25 8

* No additional filter was used. The dental X-ray head had an inherent 1.5 mm Al filter.

3.5. Data Analysis of Both Imaging Techniques

To be able to compare the images from the two methods, the CHIP images had to
be transformed to match the gray value range of the TXM method. To do this a software
code [37] was prepared to import each image, process the image, and write the output
image in BMP format. More details are explained in Appendix C.

To analyze the radiographs, a software programming code [37] with minimal user
intervention was prepared to align the subsequent images taken after 14 d of ponding
with the reference image for each sample. Alignment of the radiographs means applying
local displacements (i.e., shift and rotation) to the subsequent radiograph of one individual
sample in a way to have it projected on the reference radiograph. Then, to obtain the
average of gray values at each depth for each sample, the central region of each radiograph
with a width of 0.88 mm (approximately 100 pixels in TXM radiographs and 60 pixels
in CHIP radiographs) as shown in Figure 7a was used in the analysis. This was done to
eliminate edge effects called cupping artifacts [38]. Each line shows the location where the
gray value was measured over the depth of the sample. The final gray value profile was an
average of all gray value profiles obtained from the considered 100 or 60 lines, as shown in
Figure 7b. One limitation of this method is that the measurement will focus on the center
of the sample. This means that if the sample is not homogeneous then the results will be
different for different angles. This has been discussed in more detail in Section 4.2, and
further refinements to the method are being made for future publications.
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The natural log of the average gray value profile for each radiograph was subtracted
from the natural log of the average gray value profile of the reference radiograph to find
the attenuation (∆µ). Equation (1) shows the attenuation (∆µ) was calculated according to
the Beer–Lambert law for different depths [39,40].

(∆µ)x = ln(Iref)x − ln(It)x (1)

where (Iref)x is the transmitted X-ray intensity (gray value) at each depth (x) in the radio-
graph captured before applying the tracer, and (It)x is the transmitted X-ray intensity at the
same depth after the sample has been ponded with iodide. To convert the calculated atten-
uations to concentration, calibration curves were applied. More detail on the calibration
curves is provided in Appendix D.

Next, the concentration profiles were fitted by Fick’s second law of diffusion, as
expressed in Equation (2). By fitting a curve on each concentration profile, the apparent
diffusion coefficient (Dac) and surface concentration (Cs) can be found for each sample. The
Dac obtained combines the impact of fluid transport mechanisms of diffusion, absorption,
convection, and chemical binding in one term.

C(x,t) = Cs

(
1− erf

(
x

2
√

Dact

))
C(x,0) = 0 x > 0, C(0,t) = Cs t ≥ 0 (2)

where x is the distance from the sample surface, t denotes time, Dac is the apparent diffusion
coefficient, Cs is surface iodide concentration, C(x,t) represents iodide concentration at the
depth of x from the surface after time t, and the erf is the error function.

3.6. Analysis of Variance (ANOVA)

For the paste samples, three different w/cm ratios of 0.35, 0.40, and 0.45 were made.
For each w/cm, 27 paste samples were prepared, as shown in Table 1. An analysis of
variance (ANOVA) was completed to determine if the experiment results for the different
w/cm ratios were statistically different. The w/cm ratio is considered an independent
variable with three levels of 0.35, 0.40, and 0.45, and 27 replicates for each level of w/cm.
The Dac is considered the dependent variable because it changes with a change in w/cm. To
run the ANOVA, the null hypothesis was determined as “there is not a significant difference
between the mean of Dc for each w/cm ratio”. By accepting a 5% significance level, if
p < 0.05, the null hypothesis will be rejected.

4. Results and Discussions
4.1. Part I: Comparing CHIP to TXM

As it was mentioned earlier in Section 1, several studies have used X-ray imaging
techniques to simplify the ASTM C 1556 test. It has been shown in Appendix A that XRF
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gives comparable results to the classic ponding test (ASTM C 1556), and TXM closely
matches XRF. Therefore, one may conclude that TXM and the ponding test are comparable.
Therefore, the goal of this section is to compare the results of CHIP with TXM. If CHIP and
TXM are comparable, then it can be concluded that CHIP and the classic ponding test give
comparable results.

Figure 8 shows the concentration profiles of three paste samples with different w/cm
ratios after 14 d of ponding for both CHIP and TXM. The TXM results are shown with a
solid line, and the CHIP results are shown with a dashed line. Figure 8 shows the results are
very comparable between TXM and CHIP for different w/cm ratios. The average difference
in the Dac is 2.74%, and the maximum difference is 8.6%.
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The concentration profiles shown in Figure 8 show an initial rise in chloride concentra-
tion to a maximum point (Cmax) within the first layers below the surface (∆x), followed by
a gradual decrease in chloride concentration at the lower depths. This phenomenon, which
is often referred to in the literature as the “maximum phenomenon”, can be attributed to
several reasons [27,41–46]: first, chlorides can be leaching from the cement paste; second,
chlorides can move into the outer layer of concrete by convection and not necessarily by
diffusion; third, there is variability in microstructure in surface compared to the deeper
depths; forth, maximum concentration (Cmax) has time-variant characteristics that increase
non-linearly with the exposure duration, while the exposure duration has minimal im-
pacts on ∆x. In addition, the concentration of the exposure environment is found to be a
significant factor influencing both Cmax and ∆x [41].

The 12 concrete samples were tested with both CHIP and TXM, and Figure 9 shows
the concentration profiles of the two samples in both methods. The other results can be
found in Appendix E. The higher amount of variability in the concrete samples may be
caused by minor differences in the sample loading in the two X-ray machines that could
magnify any anomalies in the sample caused by aggregates. Additionally, the diffusion
coefficient calculation assumes that the concentration profile has a certain shape. If the
results do not meet this shape, then small changes can cause the curve fit to be unstable
and produce different results. This is being addressed further for future publications.
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Figure 9. Comparison of TXM and CHIP concentration profiles for two different concrete samples.

To compare the diffusion coefficients obtained by both CHIP and TXM techniques,
the results from twenty-four paste samples and twelve concrete samples are presented in
Figure 10. The average percent difference of the measured Dac between the two measure-
ment methods is 1.02%, with a maximum difference of 16.9%. The 95% prediction intervals
are shown with a blue dashed line in Figure 10. A 95% prediction interval is an estimate of
the range where a future observation will fall with a 95% probability. For these data, all of
the observations are within the 95% prediction interval. Linear regression was plotted with
these data observations in Figure 10. The slope of the linear regression line is 0.986, which
is close to the ideal slope of 1.00, and the R2 value is 0.99. This shows that linear regression
is appropriate for the data. This means that the results of CHIP and TXM are comparable.
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4.2. Repeatability of the CHIP Procedure for Concrete

Since concrete is a non-homogenous material and the sample size is limited, it is
important to understand the variability of the measurements obtained by CHIP. Two
approaches were considered to evaluate the variation of CHIP. The same concrete core
was repeatedly scanned to evaluate the reproducibility of CHIP, and then the cores were
investigated from different angles.

To evaluate the precision of the CHIP, a concrete sample was loaded, scanned, and
removed from the machine. This was repeated three times for each sample. The results are



CivilEng 2023, 4 234

shown in Figure 11, and the results of all 12 concrete samples are summarized in Table 5.
The results of every single measurement are reported in Appendix F. Results in Figure 11
and Table 5 show the strong repeatability of the experiment by a single user with a standard
deviation of 3.07 × 10−13 m2/s and a coefficient of variation (COV) of 1.78%. This shows
that CHIP can be used to produce highly reproducible measurements of ion penetration for
repeat measurements on the same sample at the same orientation.
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Table 5. The diffusion coefficient of 12 concrete samples tested three times from the same side
(Dac × 10−12 m2/s).

Sample 1 2 3 4 5 6 7 8 9 10 11 12

Average 10.56 9.42 20.17 27.38 19.45 8.85 30.53 18.55 19.82 16.70 12.58 13.18

Std. 0.17 0.19 0.31 0.23 0.41 0.03 0.67 0.25 0.33 0.46 0.31 0.33

COV (%) 1.61 2.06 1.53 0.83 2.10 0.34 2.18 1.35 1.67 2.77 2.45 2.50

Average of COV 1.78%

Next, three cores were taken from the same concrete sample, and all three cores
were scanned from a single direction. This approach examines the variation of repeat
measurements from the same larger sample. The results of this evaluation are shown
in Figure 12. The standard deviation and coefficient of variation (COV) were equal to
3.498 × 10−12 m2/s and 24.2%, respectively. The higher variability of the concrete samples
compared to the paste samples is likely due to the more inhomogeneous nature of the
concrete samples. The COV of 24.2% in CHIP is higher than the COV of 14.2% for the
single-laboratory repeatability of ASTM C 1556.

This higher level of variability for CHIP could be caused because the analysis uses a
region of 0.88 mm to minimize any cupping artifacts. Since concrete is a composite material,
considering only a narrow strip in the center of each radiograph during data analysis may
be impacted by variations in the aggregate found in the concrete samples. This means that
different samples will have a different distribution of paste and aggregates in the central
region of each radiograph at each angle. This will have an impact on the results. For this
reason, the authors suggest taking radiographs at different angles of a concrete sample,
then calculating the Dac attributed to each angle and reporting the average Dac for each
concrete sample. Another solution can be using cubic-cut samples instead of cored samples
to eliminate cupping artifacts and then consider a larger area for data analysis.
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Figure 12. Variability of three concrete observations in the CHIP method.

The discussion above brings up a concern about the importance of scan direction in
CHIP. To determine the impact of the direction of scanning on diffusion results for concrete
samples, each sample was scanned from the angles of 0◦, 60◦, and 120◦. The results of one
sample are shown in Figure 13, and the results of all tested samples are reported in Table 6.
More details are reported in Appendix G. The reader must remember that only the center
of 0.88 mm of each radiograph was analyzed. This means that these samples will have a
different distribution of paste and aggregates in the central region of each radiograph at
each angle. This will have an impact on the results. While the concentration profiles in
Figure 13 showed similar trends, the COV is 22.3%. As shown in Table 6 the average value
of COV for all 12 concrete samples is equal to 23.43%. This is similar to the COV found in
Figure 12 for three different samples from the same concrete cylinder. This means that the
variability from three different angles on the same sample is similar to the variability from
three different samples from the same mix.
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Table 6. Diffusion coefficient of 12 concrete samples (Dac × 10−12 m2/s).

Sample 1 2 3 4 5 6 7 8 9 10 11 12

Average 15.69 17.38 22.17 34.69 8.45 23.02 61.61 22.52 19.53 19.39 44.33 15.64

Std. 2.07 5.27 3.90 14.32 1.89 10.55 10.23 4.32 4.36 5.40 6.46 1.58

COV (%) 13.22 30.34 17.59 41.27 22.33 45.83 16.61 19.19 22.33 27.83 14.58 10.08

Average of COV 23.43%

One way to overcome this variability is to take radiographs from an even larger
number of angles and use the average concentration to calculate the Dac. Each of these
concentration profiles gives a Dac, and this could help determine how homogeneous the
sample is from different angles. Larger samples could also be investigated so that more
material can be investigated. Additionally, a wider investigation window could be used by
accounting for the cupping artifacts in the scan. These are all areas of future work.

4.3. COV and ANOVA Analysis of the CHIP Samples at Different w/cm Ratios

The coefficient of variance (COV) of the 27 paste samples per w/cm of 0.35, 0.40,
and 0.45 was calculated as 11.3%. 12.1%, and 16.8%, respectively. The average standard
deviation (Std.) and COV for the Dac values calculated for all 81 paste samples (27 samples
per each w/cm) tested with CHIP were equal to 1.38 × 10−12 m2/s and 13.4%, respectively.
The 95% confidence interval of COV for the paste samples in CHIP showed a lower limit
of 7.46% and an upper limit of 19.34%, which shows that all three COV values of the
paste samples are not significantly different for the different w/cm ratios. This means that
the variation of the measurements for the paste samples does not change significantly at
different w/cm ratios.

Another way to determine if the different w/cm ratios are statistically significant, the
ANOVA analysis, is shown in Table 7. By accepting a 5% significance level, p < 0.05 rejects
the null hypothesis. When p < 0.05, it shows that there is a significant difference between
the Dac of three groups with different w/cm ratios. In other words, CHIP can show that
the Dac of the paste samples changes by changing the w/cm between 0.35, 0.40, and 0.45. It
is worth noting that the Dac values for the tested w/cm are significantly different.

Table 7. ANOVA analysis.

Sum of Squares df Mean Square F Sig. p < 0.05

Between groups 33.11 2 16.55 8.93 0.000
Within groups 131.61 79 1.85 YES

Total 164.72 81

5. Practical Implications

The CHIP technique is a useful, repeatable, and non-destructive technique to deter-
mine the Dac for the samples investigated. The results can also be obtained within 14 d
instead of the 35 d required with ASTM C1556, and the test requires minimal sample
preparation and user time. CHIP provides the Dac, which is a direct measurement of a
key durability property of a concrete mixture. The Dac could also be measured on samples
from either the laboratory or taken from the field. In addition, to all of these benefits, the
test method can be completed with dental equipment that is widely available. Because the
equipment is so widely available, this makes this technique promising. This could create a
new opportunity to measure the in-place properties of concrete infrastructure promptly and
help guide construction practices to ensure that durable concrete is produced. This could
help ensure the long-term durability of the concrete infrastructure and reduce repairs.

CHIP can also be used to investigate the performance of service structures and deter-
mine the efficiency of surface coatings [47]. CHIP can also be used to study ion transport
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in complex geometries such as cracked concrete or concrete being deteriorated by other
durability mechanisms. Finally, the results obtained from these measurements can be used
to predict the service life of a structure to effectively plan for maintenance and repair cycles.

6. CHIP Limitations

While CHIP shows significant promise, the technique has limitations. For example,
the method cannot detect materials with low electron density like water. Additionally, the
scans must be well aligned to make sure that the changes in the sample can be determined
over time. The biggest limitation of the method is that it requires calibration curves to
be used. These calibration curves are somewhat sensitive to the materials being used.
Currently, the variation of the test method is high as discussed in Section 4.2; however,
there is current research being completed to address this.

7. Conclusions

For this investigation, a novel test method to determine the apparent diffusion co-
efficient of ion penetration into concrete materials was developed called checking ion
penetration (CHIP). The following results can be concluded from this work:

1. CHIP can determine the apparent diffusion coefficient by measuring the ion penetra-
tion through both paste and concrete by using an iodide ponding solution.

2. When comparing CHIP and TXM, the average difference between the apparent diffu-
sion coefficients (Dac) for paste and concrete is 1.02%.

3. Using CHIP, the average standard deviation (Std.) and coefficient of variance (COV)
for the Dac values calculated for all paste samples are equal to 1.38 × 10−12 m2/s and
13.4%, respectively, while the Std. and COV values for concrete samples are equal
to 3.498 × 10−12 m2/s and 24.2%, respectively. The higher variability values of the
concrete samples compared to the paste samples is likely due to the inhomogeneity
nature of the concrete samples.

4. CHIP is highly repeatable by a single user with an Std. of 3.07 × 10−13 m2/s and COV
equal to 1.78%.

These results show that CHIP is a promising test method to rapidly evaluate the
ion penetration of cementitious materials. Since CHIP uses widely available dental X-ray
equipment then it may serve as a valuable tool in many countries to evaluate the durability
of concrete infrastructure.
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Appendix A. Validation of TXM Technique

The first concern about the reliability of the developed technique is to what extent
iodide can represent chloride. Khanzadeh et al. [27] compared the concentration profile and
diffusion coefficients of the paste sample with w/cm of 0.4 after 28 d ponding with 0.6 M
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KI and 0.6 M NaCl solutions. They used the micro-X-ray fluorescence (µXRF) technique
for their observations. µXRF is a non-destructive method that uses direct X-ray excitation
to induce characteristic X-ray fluorescence emission from the sample to collect spatially
resolved maps of chemical concentrations.

As shown in Figure A1, for approximately the first 30% of the penetration depth, iodide
concentration was higher, but about 70% of both profiles match. Iodide showed a 24%
higher diffusion coefficient compared to chloride. Overall, iodide serves as a satisfactory
tracer to represent the diffusion and penetration of chloride in a cementitious system.
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Khanzadeh et al. [27] compared findings between TXM and µXRF. They tested paste
samples with different w/cm ratios of 0.35, 0.4, and 0.45 with both TXM and µXRF, as
shown in Figure A2. Results showed that the diffusion coefficient of TXM on average is
8% higher than µXRF. Khanzadeh et al. by statistical analysis proved that TXM and µXRF
provide statistically comparable results.
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Khanzadeh et al. [17] examined the validity of µXRF by comparing µXRF to a very well-
known grinding technique described in ASTM C1556 [11]. They made concrete samples
and after curing them, ponded the samples with 165 g/L aqueous sodium chloride solution
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for either 45, 90, or 135 d at 23 ◦C. When the solution was removed, the samples were
powdered at 1–5, 5–10, 10–15, and 15–20 mm depths parallel to the exposed surface. After
the powder was collected, the remaining sample was split and the exposed cross-section
was polished to prepare the samples for µXRF imaging. Figure A3 compares the individual
measurements from the profile grinding to the average µXRF values over the same depths.
The slope of the linear trend line is 0.948, which is close to the ideal value of 1, with the
µXRF data being slightly lower on average than the data from the profile grinding.

To recapitulate, it has been shown that µXRF gives comparable results to profile
grinding, which is a direct observation and accepted testing method of obtaining chloride
concentration profile at each depth of a cementitious system. Furthermore, it has been
shown that iodide can be an acceptable representative of chloride. Therefore, it has been
shown that iodide concentration profiles obtained by both TXM and µXRF are comparable,
and since µXRF has been validated by profile grinding, then TXM can be considered a
reliable technique. This study tried to validate the reliability of CHIP by comparing the
results to TXM as an already established and reliable technique.
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Appendix B. Mix Designs of Concrete Samples Cored from Bridge Decks

Table A1. Mix design of field concrete samples.

Sample

Coarse Aggregate Fine Aggregate Cement
Air

Content %

Fly Ash
Water

(Kg/m3)

Water Reducer (ASTM
C-494 Type A/D)

Air-Entrainer
(ASTM C-260) w/b

Ratio
Name Specific

Gravity Kg/m3 Specific
Gravity Kg/m3 Kg/m3 Type Specific

Gravity Kg/m3 Type Specific
Gravity Kg/m3 Specific

Gravity Kg/m3

1 #67 2.69 1097.6 2.62 730.9 334.6 6 NONE 148.3 A35 1.01 0.89 1.00 0.177 0.44

2 #67 2.69 1067.9 2.62 709.0 362.5 6 NONE 158.4 A36 1.01 1.9 1.00 0.059 0.44

3 #67 2.69 1073.8 2.62 717.9 290.1 6 C 2.65 72.4 148.3 A38 1.01 1.42 1.00 0.119 0.41

4
Not Provided

5

6 #67 2.67 1072.0 2.62 714.3 290.1 6 C 2.65 72.4 148.3 A38 1.01 1.42 1.00 0.119 0.41

7 #57 2.65 1020.4 2.63 777.2 334.6 6.5% ±
1.5% NONE 148.3 A36 Not Provided 0.44

8 #67 2.69 1097.6 2.62 730.9 334.6 6 NONE 148.3 A35 1.01 0.89 1.00 0.177 0.44

9 #67 2.67 1067.9 2.62 709.0 362.5 6 NONE 158.4 A36 1.01 1.9 1.00 0.059 0.44

10 Not Provided
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Appendix C. Image Processing on Raw Images Obtained from CHIP

To be able to compare the images from the two methods, the CHIP images had to be
transformed to match the gray value range of the TXM method. To do this, a software
programming code [37] was prepared to import each image, process the image, and write
the output image in BMP format. Equation (A1) was used in the programming code to
normalize the gray values in the raw image of CHIP and transform the gray values range
of CHIP to the gray values range of TXM.

GV =
GVd −Min
Max−Min

(A1)

where GVi is the gray value of the processed image, GVd is the gray value of each pixel in
the raw CHIP radiograph (TIFF format), and Max and Min are the maximum and minimum
gray values in the captured radiographs, respectively. In this study, the Max and Min in the
TIFF images were equal to 4500 and 75, respectively. The reason for having Max and Min
values different from the ultimate Max and Min values (6500 and 0) is that in the captured
radiographs there was not any pure black or pure white.

Appendix D. Calibration Curve

Calibration curves help to convert attenuation values (∆µ) to concentration values.
To develop the calibration curves for both TXM and CHIP methods, standard samples
with known iodide concentrations were made by adding different iodide concentrations to
the mixtures during mixing. Then these samples were scanned and analyzed as stated in
Sections 3.4 and 3.5. After scanning the standard samples, the attenuation related to each
concentration was extracted. Ultimately, a polynomial curve of order 2 was fitted on the
obtained spots to obtain an equation that converts the attenuation to the concentration.
Figures A4 and A5 show the calibration curves obtained by the two methods for paste and
mortar, respectively. The mortar calibration curve was used to return the concentration
values in concrete samples.
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Appendix E. Comparison of TXM and CHIP Concentration Profiles for All Other 10
Concrete Samples
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Figure A6. Comparison of TXM and CHIP concentration profiles for all other 10 concrete samples. 
The numbers next to each graph, show the sample name.  

Appendix F. Diffusion Coefficient of 12 Concrete Samples Tested Three Times from 
the Same Side 

Table A2. Diffusion coefficient of 12 concrete samples tested three times from the same side (Dac × 
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Repetition Sample 1 Sample 2 Sample 3 Sample 4 Sample 
5 

Sample 
6 

Sample 
7 

Sample 
8 

Sample 
9 

Sample 
10 

Sample 
11 

Sample 
12 
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Rep 2 10.73 9.21 20.01 27.22 18.98 8.82 30.92 18.40 20.15 17.09 12.56 13.55 
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Appendix F. Diffusion Coefficient of 12 Concrete Samples Tested Three Times from
the Same Side

Table A2. Diffusion coefficient of 12 concrete samples tested three times from the same side
(Dac × 10−12 m2/s).

Repetition Sample
1

Sample
2

Sample
3

Sample
4

Sample
5

Sample
6

Sample
7

Sample
8

Sample
9

Sample
10

Sample
11

Sample
12

Rep 1 10.39 9.48 20.51 27.64 19.68 8.88 29.77 18.40 19.81 16.83 12.28 13.10

Rep 2 10.73 9.21 20.01 27.22 18.98 8.82 30.92 18.40 20.15 17.09 12.56 13.55

Rep 3 10.57 9.58 19.90 27.28 19.68 8.83 30.92 18.83 19.49 16.20 12.90 12.91

Average 10.56 9.42 20.17 27.38 19.45 8.85 30.53 18.55 19.82 16.70 12.58 13.18

Std. 0.17 0.19 0.31 0.23 0.41 0.03 0.67 0.25 0.33 0.46 0.31 0.33

COV (%) 1.61 2.06 1.53 0.83 2.10 0.34 2.18 1.35 1.67 2.77 2.45 2.50

Average of
COV 1.78%
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Appendix G. Diffusion Coefficient of 12 Concrete Samples Tested from Three Angles

Table A3. Diffusion coefficient of 12 concrete samples tested from three angles (Dac × 10−12 m2/s).

Angle Sample
1

Sample
2

Sample
3

Sample
4

Sample
5

Sample
6

Sample
7

Sample
8

Sample
9

Sample
10

Sample
11

Sample
12

Angle 0 13.56 21.98 19.76 32.64 6.47 34.57 54.69 17.75 24.48 25.01 48.42 17.42

Angle 60 17.70 18.54 26.67 49.92 10.22 20.58 56.77 23.66 17.85 14.25 47.69 15.05

Angle 120 15.79 11.62 20.09 21.51 8.66 13.90 73.36 26.17 16.26 18.91 36.88 14.43

Average 15.69 17.38 22.17 34.69 8.45 23.02 61.61 22.52 19.53 19.39 44.33 15.64

Std. 2.07 5.27 3.90 14.32 1.89 10.55 10.23 4.32 4.36 5.40 6.46 1.58

COV (%) 13.22 30.34 17.59 41.27 22.33 45.83 16.61 19.19 22.33 27.83 14.58 10.08

Average of COV 23.43%
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