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Abstract: In developing countries, ultra-high-performance concrete (UHPC) has not garnered suffi-
cient attention, and its potential industrial applications remain largely unexplored and underdevel-
oped. The purpose of this paper is to assess the risk associated with integrating UHPC technology
into the construction industry, focusing on economic, technical, and environmental facets, as high-
lighted by global research endeavors in this domain. In this study, a risk model is validated by
analyzing diverse UHPC mix proportions from various studies and assessing the associated risk
indices concerning constituent materials. The findings demonstrate that incorporating UHPC as a
more robust alternative to earlier generations is plausible when considering multiple perspectives
within the concrete industry. The preeminence of compressive strength and the significance of service
life as a pivotal cost factor during the maintenance period, coupled with comprehensive risk indices,
underscore the excellence of UHPC. Comparing UHPC with high-performance concrete (HPC) and
normal concrete (NC), it becomes evident that UHPC exerts a notably lower adverse impact on the
ecosystem. Additionally, UHPC proves to be a more economically viable option, warranting the
replacement of existing technologies.

Keywords: ultra-high-performance concrete; risk assessment; fault tree analysis; semi-quantitative
risk evaluation; durability

1. Introduction

In a world characterized by rapid technological advancements and the constant emer-
gence of integrated techniques aimed at enhancing and optimizing quality, it is undeniable
that newly emerging methods, due to their swift introduction into the industry and the
high demand for cost-effective, efficient, and expedited construction processes, might
occasionally evade the scrutiny of supervisors, designers, and even seasoned professionals
in the field [1–12]. Hence, effective management of the risks associated with the introduc-
tion of such techniques and innovations, particularly in the realm of materials, becomes
imperative [13,14].

Numerous research endeavors have focused on construction risk management, some
of which are specifically concentrated on the concrete industry. Al-Bahar et al. [15], pio-
neers of systematic risk analysis for construction projects, introduced a risk model named
the Construction Risk Management System (CRMS) in 1990 to provide a methodical ap-
proach for risk analysis in construction projects. Research studies have also honed in on
specific risk management aspects extending beyond national boundaries. For instance,
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Wang et al. [16] devised a hierarchical level framework to classify project risks, considering
factors such as country of origin, verified market, and risk types, especially relevant for
developing countries adopting technologies from industrialized nations. Such complexities
earn construction projects the label of “high risk business”, as noted by Zhi [17], largely
attributed to the lack of site information that amplifies risk factors and compromises ac-
curate project prediction. Akintoye et al. [18] outlined three fundamental tools for risk
assessment: intuition, judgment, and experience, underscoring that insufficient knowledge
and lingering doubts can render risk analyses inadequate and uncertain.

In recent times, mathematically based computer-aided techniques such as fuzzy logic
have been employed for a more systematic analysis of construction risks [19,20]. These
methods aid project managers in categorizing and estimating the risks associated with
complex projects, thereby guiding corrective actions. Furthermore, significant efforts have
been directed toward establishing a framework for life cycle assessment (LCA) of concrete
production and its environmental impact on ecosystems [14,21,22].

Undoubtedly, ultra-high-performance concrete (UHPC), pioneered by Larrard and
Sedran [23] and practically optimized in the 1990s, represents a cornerstone of modern
construction and a catalyst for fundamental shifts in conventional structural design. While
extensive research has been undertaken in this realm [23–25], the prominence of UHPC’s
role has become more apparent. Although its use, which is renowned for its exceptional
mechanical strength, is still evolving, experimental tests have substantiated its capabilities,
leading to the construction of real structures using UHPC [26,27]. This study pertains to
a specific facet of UHPC research: examining its ductility. Given its high strength and
inherent brittleness, investigating UHPC’s ductility stands as a crucial research domain in
modern concrete technologies [28,29]. Technically, UHPC is defined as concrete possessing
compressive strengths exceeding 110 MPa, exceptional resistance to impact and dynamic
loads, and the requisite ductility to avert sudden rupture.

In response to the surging demand for high-strength concrete and its applications
in contemporary structures, the lack of comprehensive research on UHPC is evident. As
a modern material offering remarkable advantages, UHPC has the potential to instigate
profound changes in the concrete industry of any developing nation. However, UHPC
is not without its drawbacks, notably its high brittleness. Several studies have explored
methods, including the use of steel fibers, to enhance the plasticity and ductility of UHPC,
yet a comprehensive investigation into the effects of employing UHPC in concrete-related
structures remains an open question [30]. Moreover, the potential negative environmental
impacts and practical risks of UHPC have yet to be definitively clarified. Thus, this paper
aims to evaluate the risks associated with introducing UHPC into related industries after
providing a brief historical overview and a comparative assessment of its properties in
relation to high-performance concrete (HPC) and normal concrete (NC).

The versatile applications of UHPC, ranging from structural mainframes to building
facades, position it as a viable option, particularly in scenarios where durability is a key
consideration [31]. Given the prevalent exposure to corrosive environments in certain
regions, structures in such areas necessitate durable materials that resist corrosion. High-
strength concrete (HSC) stands as a promising candidate, not only due to the robust
resistance of its reinforcement against corrosion but also its cost-effectiveness and relatively
lower maintenance costs throughout the building’s service life [32].

Various design and analysis programs can be employed to optimize a structure’s
service life based on mixture, mechanical properties, and durability [33–36]. Nevertheless,
UHPC still requires a more solid industrial foundation to compete effectively. It is clear
that a significant level of compressive strength is essential to effectively withstand rebar
corrosion. Furthermore, when the concrete strength decreases, there arises a necessity to
increase the cover thickness. This adjustment guarantees the attainment of a specified
service life but also results in the consumption of more materials, consequently driving up
construction costs.
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This cover thickness is limited by instructions such as ACI 440 [37]. However, in
the case of UHPC, thickness can be decreased substantially due to fine-grained sand as
aggregate in this concrete, so the crack widths which in case of tensile stresses originating
from sources such as shrinkage will occur with high possibility, may appear on the surface
up to 2 mm, and the corrosion will initiate in a much shorter time period leading to a
substantial decrease in the service life of the structure [38]. Based on the origin of the cracks,
structural cracks due to loading of the structure are almost inevitable and can be protected
by measures such as coatings and active filler agents [39]. On similar challenges such as
shrinkage, the behavior and preventive measures could be applied for all strength classes
of concretes including UHPCs [40]. Recent advancements in the cement composite industry
have led to the development of UHPC, enabling the creation of highly durable structures
with minimal cover thickness and element dimensions (within design limitations) [41].

2. Ultra-High-Performance Concrete
2.1. Background

Over the past two decades, significant endeavors have been dedicated to addressing
the brittleness and fragile nature of cement composites, leading to the emergence of a
specialized field known as high-performance fiber-reinforced concrete, with Japanese
researchers often hailed as pioneers in this domain [41–43]. Several noteworthy studies
have delved into this type of composite, including the work of Kunieda et al. in 2006 [44].

The origins of the terms “high-performance” and “ultra-high-performance concrete”
trace back to the 1960s when steel fiber was first employed to manage cracking. Early
researchers, such as Romaldi and Batson in 1963 [45], delved into the fracture mechan-
ics of steel fiber-reinforced concrete. The 1990s witnessed a shift toward the production
of high ductile fiber-reinforced concrete. In 1992 [46] and 1993 [47], Li et al. conducted
a comprehensive study on the behavior of strain-hardening fiber-reinforced composites
and initiated investigations into the effects of fibers on materials post-cracking. Notably,
Habel et al. [48] conducted comparative impact and static loading tests on UHPC, eval-
uating quasi-static and dynamic loading on UHPC plates. Yeng et al. [28] explored the
influence of aggregate types and curing regimes on UHPC properties, examining three
aggregate varieties and two curing temperatures (20 ◦C and 90 ◦C). While the study of creep
and shrinkage in UHPC is still in its infancy, Garas et al.’s article [49] serves as a primary
reference in this area. Their findings indicated that incorporating 2% short steel fibers can
reduce creep by up to 40%, while thermal curing at 90 ◦C for two days leads to a 70% reduc-
tion in creep. Another significant avenue of UHPC research is the exploration of flexural
behavior in specimens subjected to varying loading rates. Pyo et al. [50] investigated the
flexural behavior of UHPC containing different amounts and shapes of fibers under various
loading rates.

In a review study, Yang et al. [51] discussed the effects of different fibers on the me-
chanical properties of UHPC. They reported that fibers play an important role in improving
tensile strength, compressive strength, and MOE. The combined use of steel fibers leads to
a decrease in the flowability of UHPC, which can result in a non-uniform distribution of
fibers and an increase in porosity, and as a result, the service life of UHPC decreases. They
emphasized that polymer fibers used in UHPC increase permeability and decrease pore
pressure at high temperatures. In addition, hybrid fibers can significantly bring reinforce-
ment effects to UHPC. Sherzer et al. [52] presented a multiscale analysis method to model
concrete structures. They emphasized that the modeling of concrete behavior is considered
a serious challenge due to the need to bridge between the cement scale and the concrete
scale. In another study, Sherzer et al. [53] investigated fracturing through aggregates by the
Lattice Discrete Particle Model (LDPM) for high-strength concrete (HSC). They compared
the results of their method with real crack scans and succeeded in obtaining matching
fracturing patterns. Additionally, a good match was obtained between the modeling results
and the experimental results of the three-point bending strength of HSC.
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2.2. Definition and Properties

Drawing from the research conducted by the Portland Cement Society, ultra-high-
performance concrete (UHPC), also known as reactive powder concrete, is a material
renowned for its impressive combination of high strength and ductility. Typically com-
posed of Portland cement, silica fume, quartz powder, fine silica sand, superplasticizer,
water, and steel or organic fibers, UHPC has achieved remarkable compressive strength of
approximately 200 MPa and flexural strength of around 48 MPa.

The constituents are typically grouped into three pre-mixed categories: powder (in-
cluding cement, silica fume, quartz powder, and sand), superplasticizer, and fibers. Ductile
behavior takes precedence in the formulation of ultra-high performance concrete (UHPC),
empowering the material to endure deformations, flexural stresses, and tensile loads
even in the presence of initial crack formation. The elimination of traditional bar rein-
forcement has greatly simplified the construction process, allowing for diverse shaping
possibilities [54–56].

Various international organizations and societies are actively engaged in the develop-
ment of codes and standards for UHPC. In Asia, the Japan Society of Civil Engineers (JSCE)
has undertaken substantial investigations and presented recommendations for the design
and construction of high-performance fiber-reinforced cement composites (HPFRCC), cate-
gorizing UHPC (or UHPFRC as a fiber-reinforced class) within this enhanced mechanical
material framework [57]. The French Association of Civil Engineering (AFGC) has similarly
formulated recommendations for structural design using UHPFRC [58]. In the United
States, the American Concrete Institute (ACI) has released its inaugural code for the struc-
tural application of UHPC [59]. Furthermore, the first ASTM standard for UHPC was
introduced in 2017 [60].

2.3. Introduction to Industry

Owing to its unique mechanical and physical attributes, ultra-high-performance con-
crete (UHPC) holds tremendous potential for widespread utilization in contemporary
structures. Nevertheless, the realization of this potential on a large scale has been some-
what limited, with only a handful of structures worldwide having been constructed at
true scales. Notably, substantial efforts have been undertaken in the United States across
academic and industrial spheres to harness the capabilities of UHPC in both industrial and
civil projects.

An instrumental initiative in this realm is the formation of a group known as “Working
UHPC”. This group is focused on the development of comprehensive instructions that
encompass every stage of UHPC production, from casting to testing and terminology. To
visually represent the initial connection between the conceptual and practical aspects of
UHPC, a flowchart could be devised, illustrating scientific methods for enhancing quality
and implementing systematic enhancements (Figure 1).

The incorporation of UHPC as a sophisticated material, often in conjunction with
steel casings such as steel tubes, whether additionally reinforced or confined by external
steel walls, has the potential to revolutionize the design of next-generation
skyscrapers [61–63]. Notably, endeavors have already been initiated to explore struc-
tural possibilities for high-rise buildings [64,65]. However, certain challenges persist, many
of which have been investigated across diverse research fields. Among these, a particu-
larly significant challenge lies in comprehending the seismic behavior of UHPC elements,
whether used individually, as strengthening components, or in conjunction with other
materials. This challenge stems from the inherently brittle nature of UHPC [66–68].
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2.4. Technical Problems

1. High Cost and Economic Justification Gap: The production cost of UHPC is notably
higher, amounting to a minimum of 6.6 times that of ordinary concrete [69,70] More-
over, limited manufacturers, such as Lafarge, offer comprehensive industrial support
for the requisite raw materials [70–73]. Nonetheless, intricate applications such as
concrete-filled steel tubes (CFST) for columns and steel–concrete–steel sandwich
composites are garnering attention [72,73].

2. Compatibility of Indigenous Materials: UHPC necessitates specific materials in its
mixture, which may not always be locally available. The intricate task of gauging
and optimizing material quantities further complicates the attainment of the desired
concrete formulation at every project site.

3. Sensitivity to In Situ Casting Conditions: The imperative for exceptionally high
strength (exceeding 120 MPa) renders UHPC exceedingly susceptible to environmental
and placement conditions. Mixing, curing, relative humidity, thermal conditions, and
setting time collectively impact the mechanical attributes of UHPC.

4. Technical Complexities in Connections: The realm of connections and bonds involving
UHPC layers/elements and other structural materials remains largely uncharted. The
bond between UHPC and the hardened layer of structural concrete, whether in early
stages or from existing structures, has been a subject of research for an extended
period [74,75].

5. Absence of Standard Specifications: While numerous tests devised for conventional
concrete by ASTM are applied to UHPC, a consensus is yet to be reached regarding
grading and mix proportions. Moreover, in dynamic loading scenarios, this type of
concrete exhibits behavior that is relatively unexplored.

6. Demand for UHPC Production Facilities and Skilled Workforce: Given the substantial
cost of UHPC and the limited operational capacity, establishing production facilities
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lacks economic viability. Additionally, a trained workforce is essential for the proper
casting and placement of UHPC components.

3. Multi-Criteria Risk Assessment

There exist heavily structured and mathematically modeled tools to assess the sustain-
ability of structures based on statistical data. However, a deficiency remains in anticipating
the future uncertainties associated with complex projects and emerging concrete technolo-
gies, particularly in the swiftly evolving landscape of civil engineering [74,76]. Establishing
a suitable framework is essential to prevent unilateral decision-making that could yield erro-
neous or misleading outcomes [77]. To attain the study’s objectives and enable the practical
application of results within the industry, the consideration of environmental performance
as a paramount evaluation factor should be undertaken in a holistic manner [78].

Leveraging risk management techniques, considering a multitude of diverse param-
eters, serves as a familiar research strategy within the industry [79]. Evaluating the me-
chanical and durability attributes of distinct concrete generations can pave the way for the
prudent and assured integration of emerging technologies, such as UHPC, into the realm
of construction. Constructing a hypothetical framework to assess genuine risk measures
can yield a systematic and robust evaluation of both technical and economic facets of
projects, while also illuminating the potential risks associated with the structures’ service
life [80–82].

Among the methods of risk evaluation, the semi-quantitative approach stands out,
providing a categorization for both the probability of occurrence and the impact of risks.
When the practical application of a quantitative method is hampered by operational com-
plexities and a scarcity of trained labor resources, the semi-quantitative method emerges as
a promising alternative for evaluating risks in civil projects. This approach involves five
steps to classify the likelihood of occurrence and to examine the effects of risks, as presented
in Table 1. The table features qualitative indices in conjunction with corresponding numeri-
cal values. The incidence probability and risk impact are determined and interpreted using
Equation (1):

R.I = P + C− (P× C), (1)

Here, R.I represents the risk index, while P and C denote the incidence probability and
the risk effects, respectively [80]. Employing a fault tree analysis (FTA) (Figure 2) can aid
in categorizing and addressing primary issues, fostering a better comprehension of prob-
lems. These problems are classified into three primary categories and nine subcategories,
which may vary based on the evaluation’s type and sensitivity, and the results of local
resource experiments.

Table 1. Probabilities, effects, and qualitative risk index.

Effects

Negligible Low Moderate High Critical

0.1 0.3 0.5 0.7 0.9

Incidence
probability

Certain 0.9 Moderate Moderate High High High

Probable 0.7 Low Moderate Moderate High High

Possible 0.5 Low Moderate Moderate Moderate High

Improbable 0.3 Low Low Moderate Moderate High

Rare 0.1 Low Low Low Moderate Moderate
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Assigning numerical values to the effects and incidence probabilities and then inter-
linking them through a relationship matrix can establish a sophisticated rating system
that serves as a quantifying tool (Table 1). By leveraging statistical data derived from
questionnaires completed by experts, a weighting procedure is formulated, transforming
the fault tree analysis (FTA) into meaningful numerical representations (Table 2).

3.1. Risk Evaluation Based on Mix Proportions

In this section, an informed assessment of UHPC mix proportions and the interre-
lationships among materials has been conducted to evaluate risks. To achieve this, the
risk evaluation of these mix proportions incorporates the economic implications of using
specific materials, taking into account their costs and complexities. The following types of
risks have been considered for these proportions:

1. Economic Risk: This pertains to the potential undesirable escalation of costs and
the risk associated with selecting a more economically efficient option that may
compromise technical quality.

2. Technical Risk: This encompasses complexities and factors beyond control, such
as unknown chemical parameters in superplasticizers, where an increase in these
parameters can raise the risk level.
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3. Environmental Risk: This is determined based on the constituents and the environ-
mental impact emitted by the manufacturing industry, which can either be negative
or positive (e.g., pollution reduction).

Table 2. Evaluation of risks involved in using UHPC.

Risk

Incidence Probability Effects Risk Evaluation

Qualitative
Index Probability Qualitative

Index Effect Qualitative
Index Risk Index

Improper quality of raw materials

Manufacturing process Improbable 0.35 Low 0.4 Low 0.61

Manufacturing cost Rare 0.15 Negligible 0.2 Low 0.32

Material degradation Improbable 0.35 Moderate 0.6 Moderate 0.74

Equipment technical problems

Equipment mismatch Certain 0.85 Moderate 0.45 High 0.92

Improper services Rare 0.2 Moderate 0.45 Low 0.56

Imperfect design Improbable 0.35 High 0.75 Moderate 0.84

Human error

Lack of skill Rare 0.2 High 0.65 Moderate 0.72

Lack of training Probable 0.8 High 0.65 High 0.93

High labor pressure Rare 0.15 Moderate 0.45 Low 0.53

3.2. Weighing and Synchronizing

Based on the significant risk parameters, it becomes necessary to establish a criterion
for comparing various types of risks associated with each constituent material. Utilizing
available information from manufacturers and employing a valuation scale facilitates
these comparisons. To achieve this, fundamental valuation and risk parameters were
assigned to each constituent material. Subsequently, by applying the designated measure
for each material, the overall risk index (ORI) for each mix proportion was computed.
There are many studies evaluating the embodied CO2 (eCO2) in the scale of kg CO2 per
kg of the material and cement is one of the most polluting materials which as a product
made of clinker in cement factories requires a lot of fuel to be made and releases CO2 as a
byproduct [83]. Considering this greenhouse gas alone as an environmental factor which
is mentioned separately in the last column of Table 3 has some flaws and omits so many
influential parameters which make it unreliable as an environmental pollution factor [84,85].
The data presented in Table 3 were compiled based on definitions of different risk types
and through collaboration with 42 experts specializing in concrete technology. The average
evaluations for each material within these three categories carry a similar weighting, akin
to the dominance analysis employed for formulating UHPC mixtures in a broader life
cycle assessment (LCA) perspective [86]. Experts were chosen based on their expertise
spanning three key domains: academia specializing in concrete technology, adeptness
in construction management for projects centered around concrete, and proficiency as
concrete technicians in ready-mixed concrete facilities. All selected experts boasted an
extensive professional track record exceeding 15 years. Their assessments, based on the
qualitative indices from Tables 1 and 2, underwent analysis using fundamental statistical
techniques such as mean calculations, and the resultant averages were consolidated in
Table 3. The approach considered in this table provides better insight of the risk parameters
especially in the environmental section. At the first glance, cement as a main environmental
risk has a close relationship with eCO2 which shows the impact of the greenhouse gas on
the opinion of experts. Otherwise, some materials such as aggregate, water, and silica fume
are so underrated partly because of neglecting some purification, packaging, and transport
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operations which may vary a lot between countries and projects. On the other hand,
materials such as superplasticizer and steel fiber are overrated potentially because their
pivotal role in the overall performance and optimization of UHPC mix is not considered
thoroughly. Some studies considered the role of blended cements as environmentally
positive materials and their eCO2 is reported to be lower than cements [87]. There is a solid
debate on this matter; however, in the opinion of the authors of this paper, when silica
fume alone can cut the CO2 footprint of the cement consumption in concrete mix designs
up to 20% (based on Tables 3 and 4), blended cements are so underrated.

Table 3. Risk information of UHPC constituent materials.

N.O. Material Economic Risk Technical Risk Environmental Risk eCO2/Ref.

1 Cement 0.2 0.3 0.85 0.83 [88]

2 Aggregate 0.1 0.1 0.15 0.01 [78]

3 Water 0.05 0.05 0.05 0.001 [89]

4 Silica Fume 0.5 0.2 0.05 0.016 [90]

5 Superplasticizer 0.85 0.9 0.45 0.72 [91]

6 Steel Fiber 0.75 0.25 0.65 1.497 [92]

For a more accurate investigation on the effects of constituent materials on the risk of
making different strength classes of concretes, 12 mix proportion designs were selected from
different studies. These proportions are given in Table 4, and the details of these studies
are in Table A1. Three different types of concrete, three different compressive strength
levels, various silica fume replacements for cement in different percentages, and distinct
ratios for water/cementitious and superplasticizer/cementitious materials were chosen.
Thus, a wide range of technical and economic options inspected. Obtaining a mix design
with technical or economic optimization is a complicated task to fulfill which leads to
encountering a wide variety of choices. By the addition of risk parameters to the process of
choosing optimum mix design, other effective parameters such as environmental pollution
and operational complexities can be expressed in the language of mathematics. There
are multiple mechanical properties for evaluation of concretes and their behavior based
on loading parameters, geometries of specimens, and reinforcement and data extraction
techniques which change significantly based on the class of concrete and its constituent
materials [93]. Despite the existence of some case studies on the mechanical behavior of
eco-efficient UHPCs, expanding studies such as those on the post-crack of these materials
is challenging [94]. Therefore, investigation of all effective parameters in a risk assessment
study such as the present paper is not feasible. So, a universal mechanical characteristic
such as compressive strength is considered for risk assessment. Drawing from the research
background, when engaging in higher-level risk assessment techniques involving a greater
number of parameters, two specific formulas have been identified and can be employed
as follows:

O.R.I. = 1− ((1− P)× (1−Q)× (1− R)), (2)

O.R.I. = P×Q× R, (3)

With reference to Table 3, P, Q, and R are Economic Risk, Technical Risk, and Environ-
mental Risk, respectively.
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Table 4. Mix designs for three strength classes of concretes.

Mix Cementitious Materials
(CM) (Kg/m3)

Ratios (/CM) Fiber Content
(Kg/m3)

f′c (MPa) Ref.
Silica Fume Water Superplasticizer

N1 413 0 0.46 0 0 35.9 [95]

N2 413 0 0.46 0 59 46.9 [96]

N3 440 0 0.45 0.0125 0 39 [97]

N4 440 0.1 0.45 0.021 0 41.8 [56]

H1 413 0.1 0.35 0.04 29.5 75.2 [96]

H2 500 0.15 0.35 0.0267 0 70 [98]

H3 500 0.1 0.3 0.0018 0 107.9 [99]

H4 520 0.15 0.26 0.035 0 95.7 [100]

U1 600 0.2 0.25 0.025 0 130 [101]

U2 853 0.15 0.2 0.0352 155 166.1 [102]

U3 1187 0.2 0.15 0.014 146 198.5 [103]

U4 1125 0.2 0.16 0.032 157 140 [104]

4. Discussion

A comparison of the results obtained from the aforementioned formulas leads to the
same conclusion as depicted in Table 5. As shown in Figure 3, the patterns in both charts
exhibit similarities, but the sensitivity in ORI3 is notably heightened. In both charts, U4
exhibits the highest level of risk, attributed to its higher cement content. However, basing
judgments solely on this parameter is premature. Therefore, it becomes essential to com-
paratively assess two deterministic properties of concrete: the 28-day compressive strength,
representative of mechanical properties, and the service life, indicative of durability, in
relation to both types of ORI.

Table 5. Risk index calculations for different mixture proportions.

Mix
Weight Ratios of Constituent Materials Overall Risk Index

(2)
Overall Risk Index

(3)Cement Silica Fume Water S.P Aggregate Steel Fiber

N1 0.172 0.000 0.079 0.000 0.749 0.000 0.402 0.0091

N2 0.168 0.000 0.077 0.000 0.731 0.024 0.415 0.0118

N3 0.185 0.000 0.083 0.002 0.730 0.000 0.411 0.0105

N4 0.169 0.017 0.084 0.004 0.727 0.000 0.407 0.0103

H1 0.152 0.015 0.059 0.006 0.756 0.012 0.410 0.0118

H2 0.181 0.027 0.073 0.005 0.713 0.000 0.421 0.0116

H3 0.184 0.018 0.061 0.000 0.736 0.000 0.419 0.0100

H4 0.184 0.028 0.055 0.007 0.726 0.000 0.427 0.0123

U1 0.205 0.041 0.061 0.006 0.687 0.000 0.442 0.0130

U2 0.288 0.043 0.066 0.011 0.531 0.060 0.533 0.0263

U3 0.381 0.076 0.069 0.006 0.412 0.056 0.593 0.0289

U4 0.365 0.073 0.070 0.013 0.418 0.061 0.590 0.0312
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As illustrated in Figure 4, two variations of compressive strength values per unit risk 

(f′c/ORIX) establish the concept of technical value in light of the risk associated with a 
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Figure 3. Overall risk index measures for different mix designs (a) index 2 and (b) index 3.

As illustrated in Figure 4, two variations of compressive strength values per unit risk
(f′c/ORIX) establish the concept of technical value in light of the risk associated with a
specific material. This definition aligns with the concept of compressive strength per unit
cost, encompassing a broad spectrum of risks, among which economic risk constitutes an
integral facet of the comprehensive risk framework [105].
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Figure 4. Compressive strength value of a unit risk for (a) ORI2 and (b) ORI3. Figure 4. Compressive strength value of a unit risk for (a) ORI2 and (b) ORI3.

Through two distinct analyses, divergent outcomes can be discerned. Remarkably, in
correlation with ORI2, U3 exhibits the highest value—a finding that contradicts the results of
risk assessment. This suggests that the inherent characteristics of the concrete can mitigate
the impact of risk parameters by altering the design, reducing costs, and minimizing
material consumption, ultimately resulting in diminished environmental risk across the
project. However, ORI3 displays a propensity towards the HPC category, signifying the
pivotal role of cement content, as evidenced by the lower content in U2.

In terms of the cost/return ratio, considering the various aspects discussed for defining
risk parameters, a potential reduction of at least 57.5% is achievable when upgrading from
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conventional concrete technology to UHPC, and a reduction of 16.7% can be attained when
transitioning to HPC technology with enhanced strength. This signifies that, particularly
for medium to large projects, adopting UHPC technology can indeed rationalize the higher
material costs associated with it [106].

In this study, the Life-365 software provided by the National Ready Mixed Concrete
Association (NRMCA) served as the foundation for predicting the service life of both
normal and high-performance concretes. However, to estimate the initial corrosion of
reinforcing steel in UHPC, extrapolation of the data was carried out, resulting in the
calculation of four UHPC mix designs for service life. It is worth noting that this estimation
is theoretical, and the actual values, considering the extremely high measures obtained from
durability experiments, may be adjusted from a more comprehensive standpoint [107,108].
For the sake of methodological simplicity, this study utilized a straightforward structural
element—a 1D slab—as shown in Figure 5. However, the assumed cover thickness for
UHPC is over-designed and lower amounts may be acceptable [91] but in order to control
this parameter and avoid the consequent deep impacts of this parameter, the same measure
is applied for UHPC as well [38,40].
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Figure 5. A typical cross-section of a 1D slab by life-365.

As a noteworthy outcome evident from Figure 6, the UHPC Series exhibit an expo-
nentially extended service life, positioning them as ideal contenders for obviating repair
expenses for a span exceeding two centuries. The difference between normal and high-
performance concretes is not exponential compared to the UHPC group and the maximum
difference reaches up to 57 years which mainly depends on the pozzolan used in the for-
mula of HPCs. Reaching extremely high service lives in structures made of UHPC owing
to their exquisitely low penetration rate is quite different between UHPC mix designs
and compared to HPCs varies from 32 to 263 years. This simulated assessment aligns
with experimental findings derived from a range of studies focused on UHPC [109]. A
number of studies are focused on the matter of cracks in UHPC and similar modern cement
composites [110,111]. Cracks can severely impact the service life of reinforced concrete
structures due to open pathways in the cover directly toward reinforcement [112]. How-
ever, considering the implications due to the roots of crack formations, and the impact
of cracks based on the class of concrete, numerous parameters may be involved in the
estimations for risk assessment analysis. Therefore, all concrete elements simulated in the
software are considered intact. Various tests and experiments are employed to ascertain
the durability of concretes such as UHPC. Among these, some of the most crucial ones
include assessments of electrical resistivity, chemical resistance, freeze-thaw durability,
and abrasion resistance [109,113]. A simplistic approach to avoid the complex challenges
of making a risk assessment framework which is implied in Figure 6 may be the use of
software which considers a simple and universal test such as chloride infusion data bases
that covers the durability estimation and consequent service life of reinforced concrete
elements. Using these assumptions and omitting the effect of multiple characteristics also
helps the analysis to predict the service life with minimum complexities with acceptable
error margins.
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Figure 6. Comparison between NC, HPC, and UHPC service life in the chosen element model.

Reiterating the validation of the findings in Figure 6, Figure 7 further accentuates
that the primary contenders are situated within the U Series. Notably, U1 emerges as the
consistent preference in both ORI evaluations. Meanwhile, U2 experiences a significant
decline, which can be attributed directly to its comparatively lower Service Life (SL) when
compared to the other UHPC mixtures. In the case of U1 due to the difference of constituent
materials, risk parameters are more influential, so these models can be crucial decision-
making tools for civil engineering projects.
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5. Conclusions

Ultra-high-performance concrete (UHPC) stands as a sophisticated and contemporary
alternative within the realm of today’s concrete industry. Assessing the risks associated
with adopting this technology and its integration into major industries becomes a crucial
prerequisite for civil projects. Given its innovative nature and the uncharted industrial
dimensions it presents, conducting a comprehensive technical and economic evaluation
of UHPC poses considerable challenges. Nonetheless, risk management surfaces as a
pragmatic and powerful tool that empowers project managers to assess feasibility and
compare UHPC with conventional concretes. This is achieved by drawing on national
studies and utilizing indigenous technological insights.

The array of literature surveyed within this article underscores that the assignment
of numerical risk parameters to constituent materials, coupled with the exploration of a
diverse spectrum of indigenous mix designs, lays the groundwork for selecting proportions
with diminished risk values. Furthermore, optimizing mix designs predicated on risk
parameters and accounting for factors such as environmental impact extends a panoramic
perspective on UHPC, significantly facilitating the optimization of expansive civil projects.

The findings of this study underscore that factoring in the core concrete characteristics
essential for structural design, to evaluate comprehensive risk factors, rationalizes the
normalization of disparate parameters into a unified formula. A comparative analysis of
the Compressive Strength per unit risk index across three distinct concrete generations
illustrates that UHPC stands as a formidable competitor to high-performance concrete
(HPC), exhibiting a superiority of 42% according to ORI2 and a marginal inferiority of 11%
as per ORI3. Furthermore, UHPC outperforms normal concrete by a noteworthy margin
of at least 77% (ORI3), gauged against the averaged outcomes of the four mixes for each
class. In terms of the Service Life per unit risk index, the comparative investigation unveils
UHPC’s resounding dominance, showcasing an impressive minimum advantage of 146%
(ORI3) over HPC and a staggering 1552% (ORI3) superiority when contrasted with normal
concrete. Evidently, the UHPC series boasts discernible advantages, positioning them as
formidable contenders poised to supersede preceding generations.
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Appendix A

Table A1. Appendix for Table 4.

No.
Samples Diameter of Samples Age

(Days)

Additives
(Substitute Part of

Cement)

Fiber Length
(mm) Curing Method References

18 100 × 200 mm 28 Silica fume 50, 30 and 60 - [95]

10 100 × 200 mm 28–91 Silica fume - Dry air curing
Water curing [97]

5 76 × 152 mm 1–5–7–14–28–
90–160–180 Silica fume 30, 20 and 13 Moist [56]

24 100 × 100 × 100 mm 7–14–28–42–90–
365–400 Silica fume - Moist

Dry [98]

48 100 × 100 × 100 mm
100 × 200 mm 3, 7, 28, 90 Metakaolin

Silica fume - Moist [99]

32 150 × 150 × 150 mm 28 Silica fume - Moist [100]

3 100 × 100 × 100 mm 28 Quartz powder
Silica fume 6 Air curing [101]

4 100 × 100 × 100 mm 28 Slag
Fly ash 15

7 days of storage under
water in a curing tank, after
which it was processed in
the air under laboratory
conditions until day 28.

[102]

3 90 × 180 mm
70 × 140 mm 28 Crushed quartz

Silica fume 13, and 3

The concrete was cured for
7 days in water at 20 ◦C

followed by heat treatment
for 4 days in water at 90 ◦C

and 2 days in dry air at
90 ◦C.

[103]

16 50 × 50 × 50 mm 7–28–56 Quartz powder
Silica fume - Moist [104]
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