
Citation: Al-Janabi, M.A.Q.;

Al-Jeznawi, D.; Bernardo, L.F.A.

Modeling Techniques, Seismic

Performance, and the Application of

Rocking Shallow Foundations: A

Review. CivilEng 2024, 5, 327–342.

https://doi.org/10.3390/

civileng5020017

Academic Editors: Angelo Luongo

and Akanshu Sharma

Received: 21 February 2024

Revised: 21 March 2024

Accepted: 28 March 2024

Published: 11 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Review

Modeling Techniques, Seismic Performance, and the Application
of Rocking Shallow Foundations: A Review
Musab Aied Qissab Al-Janabi 1, Duaa Al-Jeznawi 1 and Luís Filipe Almeida Bernardo 2,*

1 Department of Civil Engineering, College of Engineering, Al-Nahrain University, Jadriya,
Baghdad 10881, Iraq; musab.a.jindeel@nahrainuniv.edu.iq (M.A.Q.A.-J.);
duaa.a.al-jeznawi@nahrainuniv.edu.iq (D.A.-J.)

2 GeoBioTec, Department of Civil Engineering and Architecture, University of Beira Interior,
6201-001 Covilhã, Portugal

* Correspondence: lfb@ubi.pt

Abstract: The intriguing rocking behavior of foundations has attracted the attention of both researchers
and professionals, owing to its beneficial characteristics such as energy absorption and self-adjusting ca-
pability. This paper offers a thorough examination of various modeling techniques, seismic performance
evaluation methods, and the practical application of innovative rocking shallow foundations. While
conventional fixed-base designs can absorb seismic energy, they often suffer from lasting damage due to
residual deformation. In contrast, rocking foundation structures facilitate controlled rocking movements
by loosening the connection between the structure and the foundation, thereby enhancing overall
stability. Historical studies dating back to the 19th century demonstrate the effectiveness of rocking
foundations in reducing seismic impact and ductility demands, leading to cost savings. Furthermore, this
paper extends its focus to contemporary considerations, exploring modern modeling techniques, seismic
performance assessments, and practical applications for rocking shallow foundations. By highlighting
their role in improving structural resilience, this study investigates seismic hazard analysis, geological
factors, and site-specific conditions influencing foundation behavior. It covers essential aspects such
as dynamic responses and modeling methodologies, drawing insights from real-world case studies.
Through a comprehensive review of both numerical and experimental investigations, the article provides
a synthesis of current knowledge and identifies avenues for future research.

Keywords: rocking shallow foundation; seismic performance; modeling techniques; application; review

1. Introduction

The field of performance-based earthquake engineering emphasizes the importance of
understanding the nonlinear behavior of shallow foundations in both bridges and buildings
under significant seismic loads. In buildings, this approach is utilized to assess the seismic
performance of high-rise buildings, residential complexes, and commercial structures,
ensuring their resilience during significant seismic events [1]. Khalil et al. (2023) [1]
conducted research to assess the seismic vulnerability of cylindrical ground-supported steel
silos designed for storing solid materials. Similarly, in bridge engineering, the nonlinear
behavior of shallow foundations is crucial for evaluating the seismic response of bridges
and enhancing their durability and safety. Over decades, researchers and engineers have
dedicated extensive efforts to model testing and analytical modeling to comprehend the
nonlinearity and uplift associated with foundations, aiming to address the complexities of
seismic responses [2]. Civil engineering structures face challenges in design due to varying
shaking intensities during ground motions. Extensive research on seismic performance
has significantly enhanced our understanding of structural behavior during earthquakes.
This improved knowledge has enabled the development of resilient structures capable
of better performance and increased safety during and after seismic events [3]. This
enhanced knowledge has, in turn, facilitated the development of resilient structures that
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can perform better and ensure greater safety during and after earthquakes. According
to Wang (2016) [4], seismic design evolution for civil engineering structures has seen
advancements in high-performance structural materials like high-strength concrete and
steel, as well as high-performance structural components such as steel-reinforced concrete
columns, concrete-filled steel tubular columns, concealed steel shear walls, and steel plate
shear walls. Progress has also been made in developing high-performance structural
systems such as the tube-in-tube system and the frame-tube bundle structure system.

Rocking shallow foundations incorporate a rocking mechanism that allows controlled
rotating around a hinge or curved interface, thereby improving seismic performance. This
design feature helps to dissipate energy, leading to reduced structural damage, lower foun-
dation stresses, and enhanced resilience during seismic events [5]. The benefits extend to
cost-effectiveness, simplified design processes, and increased adaptability to dynamic loads.
Current research on rocking shallow foundations highlights the importance of physical
model testing, which involves subjecting models to real-world conditions for observation.
Analytical modeling and simulation techniques are then employed and validated against
experimental results. The validation process ensures the accuracy and reliability of the
analytical models, allowing for the derivation of modeling recommendations that can be
effectively applied in practical engineering scenarios. This iterative process of testing,
validation, and application enhances the understanding of the performance of rocking
shallow foundations and contributes to the development of reliable modeling practices
in engineering applications. Allowing a shallow foundation to undergo rocking during a
seismic event results in permanent settlement and rotation [6]. Typically, these outcomes
prompt bridge engineers to adopt pile foundations as the standard practice for bridges
and other structures. Despite this, there are scenarios where shallow-spread foundations
may offer a cost-effective alternative [7]. This is especially applicable in situations where
bridges can be supported on stable soil. With this solution, geotechnical hazards can be
effectively mitigated, and the nonlinear load-displacement behavior of the soil presents an
opportunity for energy dissipation at the interface between the soil and the structure [8].
This recognition is not new; for instance, Housner (1963) [9] proposed that allowing a
structure, represented as a block, to rock could serve as an efficient method of energy
dissipation. The referred author provided fundamental equations that describe the loss of
kinetic energy per rocking motion as the system releases energy. Furthermore, Housner
(1963) [9] identified a scale effect, explaining why small buildings are more susceptible
to collapse in comparison to their taller counterparts. This insight reflects a longstanding
awareness within the field regarding the potential benefits of rocking as a mechanism for en-
ergy dissipation. The industry is now recognizing the potential benefits of foundations that
are allowed to rock [10,11]. Both experimental studies and simulations of such foundations
have demonstrated superior re-centering capabilities compared to traditionally designed
ductile columns [12,13]. Additionally, structures incorporating hinging and rocking sys-
tems, where hinge yielding and foundation rotation yielding are equal, exhibit identical
load-displacement and moment-rotation pushover curves. This similarity in behavior
suggests that the design approach for these systems could be similar as well [14].

Over the past few decades, a substantial amount of research has been conducted to
investigate the behavior of rocking shallow foundations, including experimental testing
and modeling approaches. Gajan and Kutter (2008) [14] conducted a study on the rocking
behavior of shallow footings using numerical simulations within the OpenSees (version
3.6.0) computational platform. They compared the numerical results with results from
centrifuge experiments, focusing on capacity, energy dissipation, and the settlement of
shallow foundations. The findings revealed that the rocking of shallow footings enhances
the seismic performance of structures. Key conclusions from the research include: (a) the
rocking mechanism does not result in significant permanent settlements; (b) the self-
centering nature of rocking foundations is associated with uplift and gap closure; and
(c) incorporating rocking footings, either independently or together with structural base
isolation and energy dissipation devices, enhances the overall structural performance
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under seismic loading conditions. Deng et al. (2011) [12] focused on enhancing the
seismic performance of bridge piers by allowing rocking at the foundation level. The
investigations conducted by Hakhamaneshi (2014) [15] and the collaborative research by
Hakhamaneshi and Kutter (2016) [16] were focused on evaluating rocking foundations
with different shapes and embedment depths. Their findings indicated that narrower
rectangular and I-shaped footings exhibited larger settlements in the rocking foundation
system. Liu et al. (2013) [17] and Liu (2014) [18] explored the performance of low-rise
frames, highlighting the beneficial aspects of balancing foundation rocking and structural
inelasticity. Supporting the idea of controlled sharing of ductility demand between the
superstructure and the foundation, Pecker et al. (2014) [19] provided an overview of
experimental activities for seismic evaluation of nonlinear foundations and theoretical
advancements using foundation macro-element models in a displacement-based design
framework. Figini and Paolucci (2017) [20] investigated the coupled nonlinear response of
rocking foundations and structures, considering three base conditions: fixed, elastic, and
nonlinear. They observed the positive impacts of the nonlinear foundation, observing its
substantial contribution to the overall energy dissipation. Gajan and Kayser (2019) [21]
focused on quantifying the effects of soil uncertainties on the performance of rocking
foundations. Additionally, Soundararajan and Gajan (2020) [22], along with Gajan et al.
(2021) [23], conducted an analysis and summary of results from nine experimental series.
Their aim was to investigate the performance of rocking foundations and explore potential
correlations between performance, capacity, and seismic demand parameters.

The conventional method for designing earthquake-resistant structures involves al-
lowing controlled yielding in flexible structural elements to absorb seismic energy [24].
Simultaneously, it requires foundations to possess sufficient strength to establish a stable
and immovable base, as illustrated in Figure 1 (adapted from [24]). In the case of tall or
slender structures, especially those susceptible to rocking on an unstable foundation, there
is a risk of substantial soil yielding [25]. Introducing base isolation, also referred to as
rocking isolation, helps mitigate peak shear forces and bending moments in the structural
elements. However, it is important to acknowledge that this strategy may result in a notable
settlement or residual tilt [26]. This could potentially cause irreversible damage to the entire
soil-structure interaction system, even if the strains in structural components can be fully
recovered (see Figure 1). Anastasopoulos et al. (2013) [27] proposed a technique to enhance
the resilience of a rocking isolation soil-structure interaction (SSI) system by introducing
self-centering rocking shallow foundations. This involves designing foundations in a way
that allows them to undergo rocking motions, promoting base uplifting while limiting
the plastic soil region. By doing so, an SSI system can achieve effective self-centering
through gravitational restoring forces, thereby minimizing residual foundation deforma-
tion, as shown in Figure 1. Consequently, the utilization of self-centering rocking shallow
foundations holds significant potential for contributing to the resilience-oriented design
of earthquake-resistant structures. The self-centering characteristics of a rocking shallow
isolation system are widely acknowledged to be closely linked to the static factor of safety
(Fsv) against foundation bearing-capacity failure under vertical loading [28]. In general,
systems with light loads (i.e., Fsv ≥ 10 for sand and Fsv ≥ 5 for clay) exhibit notably superior
self-centering abilities compared to heavily loaded systems [29]. Deng et al. (2011) [12]
introduced the concept of a “recentering ratio” Rd to quantify the self-centering capability
of rocking shallow foundations. This ratio is determined using residual rotations and the
corresponding peak rotations observed on the foundation moment–rotation hysteresis
loops. Additionally, Deng et al. (2011) [12] provided an empirical expression to estimate Rd
as a function of Fsv, relying on experimental data obtained from sand. Sharma and Deng
(2018) [28] carried out field snap-back experiments involving rocking footings on clay, dis-
covering that footings on clay exhibited superior recentering capability compared to those
on sand. This finding was recently corroborated by Gajan et al. (2021) [23], who conducted
a comparative analysis of experimental results from a broader database. Additionally, it
was noted that Rd varied with the amplitudes of cyclic rotation, with a dependence on the
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shape of the footing [16]. In instances of soft soil conditions, foundation enhancement may
be necessary to improve the self-centering capability of rocking isolation systems [30].
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Figure 1. Seismic impact on a soil-bridge pier system is represented through (a) a traditional fixed-base
design, (b) foundation failure for pier protection, and (c) a self-centering rocking shallow foundation.

Figure 2 shows the summary of this review, which encompasses literature on modeling
techniques, seismic performance assessment, and the application of innovative rocking
shallow foundations. It spans historical studies to present-day insights, highlighting the
significant benefits of rocking foundations in reducing seismic impact and improving
structural resilience. The aim of this review is to acknowledge the critical role of these
foundations in mitigating seismic hazards and to consolidate existing knowledge while
identifying avenues for further research. Its novelty lies in its comprehensive coverage
of both numerical and experimental investigations, supplemented by real-world case
studies. Organized to address fundamental aspects, from dynamic responses to site-
specific conditions, this article serves as a valuable resource for advancing seismic-resistant
foundation design for both researchers and practitioners.
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2. Rocking Isolation Concept

The critical contact area ratio (Aac) is defined as the ratio between the critical contact
area (Ac) and the total footing area (A). The critical contact area (Ac) represents the minimum
area necessary to sustain the vertical load when the soil’s ultimate bearing capacity (qult) is
fully utilized.

Aac =
Ac

A
(1)

Once Aac is defined, the rocking moment capacity (Mc) for a rectangular footing, as
derived by previous researchers like Gajan and Kutter [14] and Deng et al. [12] using statics
analysis, can be expressed as:

Mc =
Q.L f

2
.
(

1 − Ac

A

)
=

Q.L f

2
.(1 − Aac) (2)

where Q represents the total vertical load acting on the soil-footing interface, including the
superstructure, overburden soil, and footing weight; and Lf denotes the in-plane length of
the footing. For a rectangular footing, the critical contact length (Lc) equals the in-plane
footing length (Lf), which is equal to Ac divided by A, where Ac represents the critical
contact area and A represents the entire footing area. Equation (2) indicates that Mc foot is
directly proportional to both Q and Lf, with a coefficient of (1 − Aac), which approaches 1
when Aac is small. Other researchers, such as Meyerhof (1965) [31], Allotey and El Naggar
(2003) [32], and Smith-Pardo et al. (2012) [33], have derived similar expressions to Equation
(2) but with Aac replaced by 1/FSv, where FSv represents the safety factor against vertical
bearing capacity failure. The difference between Aac and 1/FSv is influenced by the shape
factors and size of the critical contact area compared to those of the footing. Typically,
Aac is within a factor of two of 1/FSv, and this difference can have around a 10% effect
on the calculated moment capacity based on Equation (2) [12]. The dynamic settlement
resulting from a rocking foundation can be computed using Equation (3), which was
derived empirically from experimental data by Deng et al. [12]:

Sdyn = csett.L f .Qcum (3)

Here, csett represents the dynamic settlement coefficient, while Qcum denotes the cumu-
lative footing rotation, which is essentially the accumulation of all rotations exceeding a
certain threshold [12]. Equation (3) provides a dynamic settlement calculation that acts as
an envelope, compressing more than 68% of the observed settlement data derived from
dynamic and cyclic loading experiments on centrifuge models of rocking foundations.
Assuming that the foundation experiences two rotations equal to the design amplitude
during most seismic events (except for potentially large-magnitude, long-duration earth-
quakes), Equation (4) is utilized to establish a correlation between the design rotation and
the dynamic settlement.

Sdyn = 4. csett.L f .d (4)

where d is the maximum rotation in radians.
According to Turner (2023) [5], foundation rocking or rocking isolation mechanisms

represent a novel approach in the performance-based seismic design of soil-foundation-
structure systems. This concept arises from acknowledging the expected highly inelastic
material response under significant seismic forces and the imperative avoidance of plas-
tic hinging in the foundation. Traditional foundation designs address this challenge by
incorporating factors of safety greater than 1 to ensure elastic behavior. However, this
conservative approach results in expensive foundations and may not always guarantee
safety, especially when faced with significant effective ground acceleration (Mergos and
Kawashima 2005) [34]. Consequently, preventing plastic hinging in foundations becomes a
challenging task if soil-foundation yielding does not occur. Controlled inelastic deforma-
tions in foundations are approved by FEMA 356 [35]. One of the six degrees of freedom that
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a thin structure foundation experiences under lateral stresses is rocking motion. With forces
applied at the top of the structure and inertial forces concentrated there (including half
the mass of the column), this behavior is viewed as being identical to that of an inverted
pendulum. In a slender structure, rocking motion (as shown in Figure 3b) induces uplifting,
sinking, and sliding at the edges of the footing alternately during each cycle [36]. This
may or may not result in excessive rotation and settlement; however, it allows for energy
dissipation and prevents plastic hinging, thereby preventing failure.
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Despite these advantages, prevailing building codes prohibit the development of
“plastic hinging” in the foundation. To meet this requirement, Bao et al. (2019) [37]
suggested that factors of safety should be incorporated, aiming to prevent both uplifting
and sinking at the footing edges (refer to Figure 1). However, this approach may result
in high seismic demand. The approach to design that takes into account displacements
is referred to as performance-based design, in opposition to the traditional force-centric
strength-based design. Performance-based design allows for controlled deformations in the
foundation, as specified by FEMA 356 [35], while ensuring they remain within acceptable
limits. Considering this, and recognizing that slender structures exposed to intense seismic
shaking encounter greater overturning moments than vertical loads, investigating rotational
mode vibration becomes crucial. In Figure 3 (adapted from [38]), it is evident that in the case
of rocking isolation, the soil-foundation undergoes plastic deformation, a stage referred
to as the “recentering overturning moment”. This is in contrast with conventional design,
where columns support loads and experience plastic deformation, a scenario termed the
“destructive bending moment”.

Anastasopoulos et al. (2012) [39] conducted a study that brought to light several
crucial findings, mainly observing that commonly employed seismic design approaches
often yield excessively conservative foundation solutions. These foundations not only
prove to be cost-inefficient but also pose implementation challenges. Particularly, they
serve as channels for transmitting substantial accelerations to the superstructure. This, in
turn, generates significant inertial forces that respond as substantial overturning moments
(and shear forces) back onto the foundation, creating a negative feedback loop [40]. Con-
versely, foundations with significantly underestimated dimensions restrict the transmitted
accelerations to levels corresponding with their modest ultimate moment capacity. This
factor contributes to the creation of much safer superstructures. In earthquake engineering
terms, the plastic hinging shifts from the columns to the foundation-soil system, preventing
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potentially hazardous structural damage [41]. Turner (2023) [5] conducted a study that re-
vealed how, in the case of tall and slender structures primarily exhibiting rocking behavior
in seismic response, inadequate design of footings tends to result in pronounced uplifting
and activation of bearing capacity failure mechanisms. It is interesting to note that, at least
for a restricted number of cycles in the majority of occurrences, the statically computed
ultimate overturning moment capacity seems to hold up throughout cyclic loading with-
out degrading. This emphasizes how such a method has inherent geotechnical reliability.
Moreover, the static factor of safety (Fs) against vertical bearing-capacity failure is a crucial
component in controlling the balance between the degree of uplifting and the level of
yielding [42]. Additionally, the authors of [42] claimed that a designer has the choice to,
for example, alter the subsurface to enhance Fs and encourage rising over soil inelasticity.
Surprisingly, because of the shallow dynamic “pressure bulb” connected to a rocking base,
such intervention can be quite small in vertical extenta design. The primary practical goal
of classical geotechnical engineering is to avoid bearing capacity failure. However, seismic
“loading” differs significantly; it involves imposed displacement rather than a uniform
load. Sliding mechanisms occur beneath the footing only briefly and irregularly, potentially
resulting in, at worst, increased settlement [3].

3. Modeling of Rocking Foundations

A foundation placed on a soil relatively exhibits six degrees of freedom in a rigid
configuration, including translational movements (vertical, longitudinal, and lateral) and
rotational motions (yawing, pitching, and rocking), as shown in Figure 4 (adapted from [43]).
Conversely, a flexible foundation is characterized by an infinite number of degrees of
freedom. Nonetheless, by putting certain restrictions in place, it is frequently possible to
reduce a multi-degree of freedom (MDF) system to a single-degree of freedom (SDOF)
system. This simplification helps to achieve practical and appropriate results [24].
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In earthquake engineering, the use of single-degree of freedom oscillators (SDOFO)
has been prevalent to simplify the analysis of intricate structural systems [44]. According
to Srbulov (2008) [45], a SDOFO on a rigid base is described as one of the easiest ways
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of modeling the vibration of a structure. Structures commonly modeled using SDOFO
include single-story building frames, bridges with hinged columns, and multi-story build-
ings responding to rigid base conditions. For these complex structures to be accurately
represented as SDOFO, as outlined by Srbulov (2008) [45], several key assumptions must be
met. Firstly, the structure should manifest only one vibration mode. Secondly, the influence
of soil-foundation interaction is considered negligible and is excluded from the model.
Additionally, the horizontal and vertical ground motions resulting from earthquakes are
treated as independent factors. Lastly, the model assumes that only a lumped mass is
capable of oscillating in a single mode. These assumptions are significant for the effective
application of the SDOFO model to such structures.

As noted by Bhandari and Sengupta (2014) [46], the machine-foundation-system (MFS)
uses idealizations and simplifications of physical systems to study their dynamic behavior
under varying loads. One popular simplification is the application of the SDOF technique.
They reported that dynamic loads affecting MFS encompass a range of factors, includ-
ing: (a) unbalanced rotating and reciprocating components generating both transient and
steady-state dynamic loads; (b) impact loads; (c) the surrounding vibration environment;
(d) seismic forces; (e) wind-induced forces; (f) periodic and aperiodic forces; and moments
arising from activities such as blasting, mining, drilling, piling operations, and sonic booms;
and (g) moving loads. These considerations enable a comprehensive assessment of the MFS
response to diverse dynamic loading scenarios. Gazetas and Stokoe (1992) [47] classified
experimental studies on the dynamic response of foundations into three categories. Firstly,
they considered measurements of the response of actual foundations subjected to dynamic
loading, documented as case histories. Secondly, they investigated the small- and large-
scale field experiments conducted under controlled conditions at selected sites, allowing
for a closer examination of the dynamic behavior of foundations in outdoor environments.
Lastly, the third category involves small and very small-scale laboratory experiments,
typically performed on soil placed in a strongbox, where the footing undergoes either
steady-state or transient vibrations. Together, these categories provide a comprehensive
approach to investigating the dynamic response of foundations under various conditions.
This specifically applies when the footing is subjected to transient vibrations. Figure 4
illustrates the schematic diagram, depicting the cyclic operation and the forces involved in
the SDOFO model.

The variables in Figure 4 are defined as follows: “m” identifies the SDOFO’s equivalent
mass; “H” indicates the equivalent SDOF model’s effective height; “B” indicates the square
footing’s width; “θ” indicates the angle at which the foundation rotates; “P” indicates
the actuator’s total weight; “F” indicates the lateral force; and “X” indicates the dynamic
target’s centroid’s horizontal distance from the static target.

Resonance amplification, also known as the resonance effect, is a phenomenon in
structural engineering that happens when the inherent vibration frequency of a structure
coincides with the frequency of incoming seismic waves, especially when rocking motion
is caused by seismic activity [48]. Higher seismic forces are applied to the structure as
a result of this resonance, which causes a noticeable increase in the amplitude of the
structure’s motion.

4. Numerical Studies and Computer Vision

Housner (1963) [9] initially explored the phenomenon of a rigid body undergoing
rocking motions in response to lateral ground movements at the base. The discovery
of structures being able to rock on their footing pad emerged following the survival of
numerous slender structures during the 1960 Chile earthquake. The analysis of the rocking
motion of these structures treated them as inverted pendulums, yielding a closed-form
solution. The assumptions underlying the analyses were: (i) the rocking body and its
base are treated as rigid; (ii) neglect of sliding and uplift; and (iii) a description of the
energy dissipation resulting from rocking through an energy reduction factor. In Housner’s
analysis from 1963 [9], the rocking block (Figure 5, adapted from [9]) was examined under
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free excitation. The study involved calculating the time and energy consumption of the
rocking rigid body subjected to a constant, horizontal acceleration as well as under the
influence of a single sine wave and overturning force during a horizontal earthquake
excitation. The findings indicated that larger-sized superstructures result in a more stable
rocking structure compared to smaller-sized ones, which was attributed to the scale effect.
Moreover, the stability of tall, slender blocks under earthquake action was observed to be
superior under constant horizontal force. Nevertheless, the uplift phenomenon cannot be
disregarded. Consequently, to account for the impact of uplift on the rocking response,
other researchers made substantial efforts.
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Figure 5. A rigid body exhibiting a rocking motion.

Particle image velocimetry was used by Moradi et al. (2023) [49] to investigate the
deformation mechanisms beneath shaking foundations. They found that during loading
cycles, foundations with larger FSv have less contact area with the earth, which causes
visible rise on the unloaded side (heel side). In contrast, foundations with lower FSv
experience severe wedge deformation and settlement, as well as the establishment of a
greater soil contact area. As a result, as shown in Figure 6, the footing experiences negligible
uplift on the unloaded side of the foundation and settles into the earth (sinking mechanism).
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Figure 6. The mechanism of soil particle displacement for foundations with large (a) and small
(b) vertical factors of safety throughout the loading quarter cycles [49].

Psycharis and Jennings (1983) [50] explored the dynamic behavior of a rocking, rigid
block allowed to uplift. This investigation involved an elastic foundation with damping,
considering two cases: the Winkler model, commonly employed in soil mechanics, and the
simplified two-spring foundation model, where the structure is supported by two springs
and dashpots symmetrically positioned under the base. The findings of this research
indicated that uplift results in a more compliant vibrating system, and the apparent rocking
period increases with the uplift magnitude. Beck and Skinner (1973) [51] initiated the
first analytical investigation into a rocking pier incorporating energy-dissipating devices
as a seismic-resistant structural system for bridges. This innovative approach reduces
the strength and ductility requirements of the pier and minimizes the top displacement
caused by rocking. The successful application of this system is exemplified in the design
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and construction of the South Rangitikei Railway Bridge in New Zealand, completed in
1981 [46]. Kawashima and Hosoiri (2003) [52] conducted a study on the inelastic rocking
response of large, rigid foundations. Their findings revealed that rigid foundations do
not undergo overturning, even when exposed to ground motions with acceleration peaks
significantly exceeding those observed in conventional static analyses.

5. Analysis of the Key Parameters Affecting the Seismic Response of Rocking
Shallow Foundations

The thorough analysis of key parameters influencing the seismic response of rocking
shallow foundations includes a complex investigation carried out by Beck and Skinner
(1973) [51]. The authors emphasize that a key aspect of this analysis involves understanding
the underlying soil properties, such as stiffness, damping, and shear strength, which greatly
influence the interaction between the foundation and the soil. Additionally, the geometry of
the foundation, including its dimensions, shape, and the position of the rocking axis, is crucial
in determining its capacity to rock and absorb seismic energy effectively. As a result, structural
properties like material type, flexibility, and damping characteristics play significant roles in
the absorption and redistribution of energy. Furthermore, the seismic input, characterized by
ground motion parameters, introduces external forces that must be thoroughly comprehended
for accurate predictions [44]. Khamesi and Hosseini [53] conducted a numerical investigation
into the factors influencing the rocking response of shallow foundations in single degree of
freedom (SDOF) structures. Their study focused on examining the impact of static safety
factors related to soil bearing capacity failure, ground motion characteristics, and the depth at
which the foundation is embedded on the overall behavior of the system. The results they
obtained highlighted significant changes in the system’s response during seismic events due
to variations in these parameters; refer to Figures 7–9.
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varying static safety factors [53].

The dynamic rocking mechanism, considering hinge points, rotational resistance,
and energy dissipation, is dominant [54,55]. Beyond linear assumptions, the analysis
investigates nonlinear effects, including material yielding and soil-structure interaction.
Dynamic soil-structure interaction further analyzes how the foundation rocking motion
influences the surrounding soil. Using sophisticated numerical modeling methods, such
as finite element analysis, enables a detailed simulation that integrates these intricate
parameters, resulting in a more precise representation of the seismic response. Luitel and
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Guan (2021) [42] stated that the general approach not only enhances the understanding
of rocking shallow foundations but also enables the optimization of design parameters,
contributing to the development of more resilient structures in seismic-prone regions.
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6. Case Studies and Applications

The successful outcomes of both numerical simulations and practical experiments
assessing the viability of rocking foundations have prompted their integration into the
design and retrofitting of numerous structures. Scholars such as Priestley et al. in 1978 [55]
and 1996 [56], Pollino and Bruneau (2007) [57], and Astaneh-Asl (1996) [58] have supported
the utilization of rocking foundations in the design and retrofitting of bridges. An illus-
trative example is the construction of the Rion Antirion Bridge in Greece [59], where the
foundations of the structure, specifically the reinforced soil (clay-steel composite) and the
pylon bases, are intentionally not rigidly connected. Figure 10 shows the main bridge
concept and the construction of pylon bases. The construction of the pylon bases near
Antirion was carried out in two phases. Initially, the footings were cast on a dry deck
measuring 230 m in length and 100 m in width (refer to Figure 10b). Subsequently, the
conical shafts were completed in a wet dock with adequate water depth. This design allows
the pylon bases to experience uplift or slide in relation to the reinforced soil. The outcome
is that the forces and overturning moments applied to the soil consistently remain within
the bounding surface during analysis, confirming the highly favorable behavior of a fully
suspended deck in isolation.

The retrofitting of various bridges, including iconic structures like the Golden Gate
Bridge in San Francisco, California [60], the Carquinez Bridge in Vallejo, California [61]
(Jones et al. 1997), and the Lions Gate Bridge in Vancouver, British Columbia [62], has
incorporated the rocking foundation concept.

Wang et al. (2013) [54] conducted a study on the San Francisco Bay Area Rapid
Transit (BART) system, which has served as a vital transportation link for the Bay Area
since its inception in 1972, catering to over 360,000 passengers daily. They conducted
seismic assessment and retrofitting for a total of 11 aerial stations as part of the program.
These stations are situated along the “A-line”, “C-line”, and “R-line” of the BART system.
Given the heightened earthquake risk in the San Francisco Bay Area and the critical role
of the BART system in the region, significant public attention has been drawn to the
BART earthquake safety program since its inception. The seismic retrofit design of BART’s
elevated stations was executed in a cost-effective manner, with a focus on upgrading the
stations to meet safety performance goals.

Noteworthy projects, like the seismic retrofit of the Golden Gate Bridge and the im-
plementation of rocking shallow foundations in the Rion Antirion Bridge, highlight the
effectiveness of innovative strategies in bolstering seismic resilience. These examples under-
score the ongoing exploration and adoption of innovative solutions within the engineering
community to enhance infrastructure resilience in the face of seismic challenges.

While rocking shallow foundations offer advantages in seismic resilience and energy
dissipation, they come with several limitations that must be carefully considered. Con-
struction costs can be higher due to the need for specialized engineering and materials,
including features like bearings and articulation points [18]. Site suitability is critical, as
unsuitable soil conditions or geological factors can hinder foundation performance [63].
Regular maintenance and inspection are necessary to ensure ongoing effectiveness, and the
design complexity of these foundations may require specialized expertise. Kelly (2009) [64]
stated that the applicability of rocking shallow foundations may be limited by factors such
as structure height, load distribution, and local building codes. Concerns about uplift risk
during seismic events, durability in harsh environments, and long-term performance also
need to be addressed. To overcome these limitations, thorough site assessments, collabora-
tion with experts, adherence to standards, and careful planning are essential to ensuring the
successful implementation of rocking shallow foundations while mitigating potential risks.

It is also worth noting that rocking systems have been employed in various structures
beyond bridge foundations, as exemplified before, including pallet racking structures, with
promising results [65]. This broader application highlights the versatility and potential
effectiveness of rocking mechanisms in mitigating seismic impacts across different types
of structures.
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Figure 10. (a) The bridge concept and (b) the construction of pylon bases [59]. 
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Figure 10. (a) The bridge concept and (b) the construction of pylon bases [59].

7. Conclusions and Future Research Needs

Based on advanced numerical and experimental investigations, it is evident that
rocking structures and foundations play a significant role in enhancing their seismic perfor-
mance. The non-linear behavior of soil and its ability to dissipate energy through hysteresis
form the basis of rocking foundations. These foundations outperform conventional fixed
base alternatives by efficiently dissipating seismic energy, providing a cost-effective solu-
tion for base isolation. Notably, rocking foundations exhibit effectiveness in both shallow
and deep pile foundations, contributing to the seismic resilience of buildings and bridges.
An essential aspect of comprehending the rocking foundation phenomenon lies in under-
standing the dynamic interaction between soil and structure, emphasizing the significance
of this study in advancing seismic engineering knowledge.

Further research is needed to understand and enhance the acceptance of rocking
foundations as an alternative to traditional designs in engineering. Key areas for expansion
include conducting regression analysis of nondimensional parameters, which can lead to
more precise design equations. Exploring complex soil models and introducing sliding into
the model are also crucial for better understanding the system’s behavior.
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While research supports the benefits of rocking foundations for seismic energy dissi-
pation, current design codes, particularly in the U.S., prohibit their use in bridge design
due to concerns about permanent settlements and rotation. To promote the adoption of
rocking foundations, there is a need for comprehensive design methods that address over-
all and local deformation, deformation limits, foundation rotation limits, and additional
damping ratios.
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