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Abstract: This paper introduces a novel approach to leveraging features learned from both supervised
and self-supervised paradigms, to improve image classification tasks, specifically for vehicle classifica-
tion. Two state-of-the-art self-supervised learning methods, DINO and data2vec, were evaluated and
compared for their representation learning of vehicle images. The former contrasts local and global
views while the latter uses masked prediction on multiple layered representations. In the latter case,
supervised learning is employed to finetune a pretrained YOLOR object detector for detecting vehicle
wheels, from which definitive wheel positional features are retrieved. The representations learned
from these self-supervised learning methods were combined with the wheel positional features for
the vehicle classification task. Particularly, a random wheel masking strategy was utilized to finetune
the previously learned representations in harmony with the wheel positional features during the
training of the classifier. Our experiments show that the data2vec-distilled representations, which
are consistent with our wheel masking strategy, outperformed the DINO counterpart, resulting in a
celebrated Top-1 classification accuracy of 97.2% for classifying the 13 vehicle classes defined by the
Federal Highway Administration.

Keywords: vehicle classification; vision transformer; self-supervised learning; supervised learning;
object detection

1. Introduction

Vehicle classification is crucial information for highway infrastructure planning and
design. In practice, a large quantity of sensors has been installed in state highway networks
to collect vehicle information, such as weight, speed, class, and count of vehicles [1].
Many studies have been conducted to classify vehicle types based on sensor data. For
example, Wu et al. (2019) used roadside LiDAR data for vehicle classification [2]. The study
evaluated traditional machine learning methods (e.g., naive Bayes, k-nearest neighbors
(KNN), random forest (RF), and support vector machine) for classifying eight vehicle
categories and resulted in a best accuracy of 91.98%. In another study, Sarikan et al. (2017)
employed KNN and decision trees for automated vehicle classification, where the inputs
were extracted features from vehicle images. The method could distinguish all sedans and
motorcycles in the test dataset [3]. Recent developments in vision-based deep learning,
inspired by AlexNet [4], have made image-based vehicle classification a popular approach
and continue to elevate the image classification benchmark. Zhou et al. (2016) demonstrated
a 99.5% accuracy in distinguishing cars and vans and a 97.36% accuracy in distinguishing
among sedans, vans, and taxis [5]. Similarly, Han et al. used YOLOv2 to extract vehicle
images from videos and applied an autoencoder-based layer-wise unsupervised pretraining
to a convolutional neural network (CNN) for classifying motorcycles, transporter vehicles,
passenger vehicles, and others [6]. ResNet-based vehicle classification and localization
methods were developed using real traffic surveillance recordings, containing 11 vehicle
categories, and it obtained a 97.95% classification accuracy and 79.24% mean average
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precision (mAP) for the vehicle localization task [7]. To ensure the robustness of the
models against weather and illumination variation, Butt et al. expanded a large dataset
with six common vehicle classes considering adverse illuminous conditions and used it
to finetune several pretrained CNN models (AlexNet, GoogleNet, Inception-v3, VGG,
and ResNet) [8]. Among those, the finetuned ResNet was able to achieve 99.68% test
accuracy. Regardless of the recent success in image-based vehicle classification, most of the
models have been developed based on common vehicle categories that are not consistent
with the vehicle classes established for engineering practice, such as the Federal Highway
Administration (FHWA) vehicle classification, which defined 13 vehicle classes [9] with
key axle information, as summarized in Table 1. The vehicle class details with illustrative
pictures can be found in [10].

Table 1. This is a table. FHWA vehicle classification definitions.

Vehicle
Class Class Includes Number of

Axles
Vehicle
Class Class Includes Number of

Axles

1 Motorcycles 2 8 Four or fewer axle
single-trailer trucks 3 or 4

2 All cars
Cars with one- and two- axle trailers 2,3, or 4 9 Five-axle single-trailer

trucks 5

3
Pick-ups and vans

Pick-ups and vans with one- and two-
axle trailers

2, 3, or 4 10 Six or more axle
single-trailer trucks 6 or more

4 Buses 2 or 3 11 Five or fewer axle
multi-trailer trucks 4 or 5

5 Two-Axle, six-Tire, single-unit trucks 2 12 Six-axle multi-trailer
trucks 6

6 Three-axle single-unit trucks 3 13 Seven or more axle
multi-trailer trucks 7 or more

7 Four or more axle single-unit trucks 4 or more

Nonetheless, several vehicle classification studies have been conducted with respect to
FHWA vehicle classes by focusing on truck classes. Given the detailed axle-based classifica-
tion rules established by the FHWA, many researchers have used them explicitly for truck
classification [11]. In statewide practice, weigh-in-motion (WIM) systems and advanced
inductive loop detectors are typically utilized to collect data for truck classification based
on the FHWA definition, from which high correct classification rates have been reported
for both single-unit trucks and multi-unit trucks [12]. As mentioned previously, besides
the traditional sensing technologies, vision-based models have recently been applied in
truck classification. Similarly to [5], YOLO was adopted for truck detection. Then, CNNs
were used to extract features of the truck components, such as truck size, trailers, and
wheels, followed by decision trees to classify the trucks into three groups [13]. This work
was continued by further introducing three discriminating features (shape, texture, and
semantic information) to better identify the trailer types [14].

As noted in [14], some of the classes in the FHWA scheme only have subtle differences,
and deep learning models have potential overfitting issues with their imbalanced datasets.
It remains a challenge for vision-based models to successfully classify all 13 FHWA vehicle
classes. The objective of this study is to leverage general representations distilled from
the state-of-the-art self-supervised methods (DINO [15] and data2vec [16]) as well as
specific wheel positional features extracted by YOLOR [17] to improve vehicle classification.
Our results show that vehicle representations are the primary features for classifying
different vehicle types while wheel positions are complementary features to help better
distinguish similar vehicle classes, such as classes 8 and 9, where the only salient feature
difference between them is the number of axles. To reinforce this feature complementarity,
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the general vehicle representations from self-supervised methods were further finetuned
in a subsequent supervised classification task together with a random wheel masking
strategy, which is compatible with the contextualized latent representations distilled by
the data2vec method [16]. As a result, our method significantly improves the classification
performance and achieved a Top-1 accuracy of 97.2% for classifying the 13 FHWA vehicle
classes. This paper is organized into five sections. Section 2 describes the dataset, followed
by our proposed method in Section 3, experiments in Section 4, and finally conclusions and
discussions in Section 5.

2. Data Description

The dataset contains 7898 vehicle images collected from two sources: the Georgia
Department of Transportation (GDOT) WIM sites and the ImageNet [18] opensource dataset.
The GDOT data were collected by the cameras installed at selected WIM stations. A total
of 6571 vehicles images was collected from the GDOT WIM sites, consisting mainly of the
common classes, such as class 2 and class 9. The number of images across the 13 vehicle
classes was not well balanced. Rare classes in the GDOT image dataset, such as classes 1, 4,
7, 10, and 13, contained a small number of images. In compensating for these low-frequency
classes, an additional 1327 vehicle images were extracted from the ImageNet. Figure 1
summarizes the distribution of vehicle images across the 13 FHWA vehicle classes from
both sources, the WIM sites and ImageNet. Exemplar images from each data source are
shown in Figure 2.
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Figure 1. Distribution of image data among 13 FHWA classes from WIM sites and ImageNet.

Given the varying scale of vehicles relative to the image frame, the vehicles were
cropped from the original images to remove the irrelevant background information. All
models were trained based on the cropped vehicle images.

It should be noted that the number of vehicle axles is considered an important feature
in FHWA vehicle class definition. For instance, class 8, class 9, and class 10 are both one-
trailer trucks. The only difference among these classes is the number of axles (represented
by the number of wheels in vehicle images). In addition, the relative locations of wheels
are also different across vehicle categories. To extract these particular wheel positional
features, a wheel detector was trained to locate all wheels in an image, as shown in Figure 3.
With the locations of wheels being identified, the relative positions of all wheels were
computed by dividing the wheel spacings (Di) by the maximum distance (i.e., distance
between the center of the leftmost wheel and the center of the rightmost wheel) as depicted
in Figure 4. This normalization process exists to remove the effect of different camera angles
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and unifying wheel positional information from different vehicle sizes and scales. The
resulting normalized wheel positional features were a vector of the relative wheel positions,
which were used to complement the features extracted by the vision transformer models
for the downstream classification task.
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3. Method

Artificial intelligence, especially deep learning, has grown dramatically over the past
decade, fulfilling many real-world necessities. Many creative and influential models have
been introduced especially in the cognitive computing, computer vision (CV), and natural
language processing (NLP) areas. Some models have accomplished multidisciplinary
success. One typical example is the transformer [19], which was first developed for NLP
and has been successfully applied to vision tasks. The original transformer consists of
multiple layers of encoder/decoder blocks, each of which has a combination of three key
modules: a self-attention module, feedforward network modules, and layer normalization.
Given its increasing popularity, the self-attention mechanism and adapted ViT architectures
have been widely adopted across different fields (e.g., [20,21]). In this study, we leveraged
the pretrained ViT encoders with the state-of-the-art self-supervised learning methods (i.e.,
DINO and data2vec) and complemented the ViT representations with wheel positional
features retrieved from a finetuned object detection model (i.e., YOLOR). The two sets of
features (i.e., ViT representations and wheel positional features) were harmonized by a
wheel masking strategy during the classifier training. Our proposed method has shown
dramatically improved classification performance when data2vec is used as the pretraining
method and the ViT encoder is finetuned during the subsequent classifier training stage.

3.1. Vision Transformer

The transformer’s architecture has recently been adapted to successfully handle vision
tasks [22]. The ViT model has been demonstrated to achieve comparable or better image
classification results than traditional CNNs [23–25]. Specifically, ViT leverages embeddings
from the transformer encoder for image classification. As depicted in Figure 4, the input
image is first divided into small image patches. Each patch is flattened and linearly
projected to a latent vector dimension, which is then kept constant throughout all layers.
The latent vector is learnable and referred to as patch embedding. A positional embedding
is added to the patch embedding process to retain the spatial relationship among the image
patches. The positional embedding process is illustrated using 2 × 2 patches in Figure 4. In
practice, usually 7 × 7 or more patches are used. A class token is added and serves as a
learnable embedding to the sequence of embedded patches. The learned representations
from the encoder are passed to a multi-layer perception (MLP) for image classification. ViT
has surpassed many popular CNN-based vision models, such as Resnet152 [22].

3.2. Self-Supervised Pretraining

To leverage the large number of unlabeled images (e.g., ImageNet [18]), self-supervised
learning is adopted for pretraining a ViT encoder (base network). Two state-of-the-art
methods: (1) self-distillation with no label (DINO) [15] and (2) data2vec [16] were evaluated
in this setting. Figure 5 illustrates the structure of DINO, where input images are randomly
cropped to form different views (global and local views) and fed to a teacher ViT and a
student ViT, respectively. Therefore, only global view images are passed to the teacher
ViT while both global and local view images are passed to the student ViT. In this way,
the student model is able to extract multi-scale features. With the encodings from both
ViTs, a “softmax” function is applied to produce two probability distributions, p1 and
p2. A cross-entropy loss is then computed between p1 and p2. During the training, the
parameters of the student ViT are updated by a stochastic gradient descent, while the
parameters of the teacher ViT are updated from the exponential weighted average of the
student ViT’s parameters.



Eng 2023, 4 449

Eng 2023, 4, FOR PEER REVIEW 6 
 

 

3.2. Self-Supervised Pretraining 

To leverage the large number of unlabeled images (e.g., ImageNet [18]), self-super-

vised learning is adopted for pretraining a ViT encoder (base network). Two state-of-the-

art methods: (1) self-distillation with no label (DINO) [15] and (2) data2vec [16] were eval-

uated in this setting. Figure 5 illustrates the structure of DINO, where input images are 

randomly cropped to form different views (global and local views) and fed to a teacher 

ViT and a student ViT, respectively. Therefore, only global view images are passed to the 

teacher ViT while both global and local view images are passed to the student ViT. In this 

way, the student model is able to extract multi-scale features. With the encodings from 

both ViTs, a “softmax” function is applied to produce two probability distributions, p1 

and p2. A cross-entropy loss is then computed between p1 and p2. During the training, 

the parameters of the student ViT are updated by a stochastic gradient descent, while the 

parameters of the teacher ViT are updated from the exponential weighted average of the 

student ViT’s parameters. 

 

Figure 5. Illustration of DINO. 

The data2vec was recently proposed by Baevski et al. [16], which represents a general 

self-supervised learning framework for speech, NLP, and computer vision tasks. The 

structure of data2vec is illustrated in Figure 6. Similar to DINO, data2vec also employs a 

teacher–student paradigm. The teacher generates representations from the original input 

image, while the student generates representations from the masked image. Different 

from DINO, data2vec predicts the masked latent representation and regressed multiple 

neural network layer representations instead of just the top layer. Instead of the cross-

entropy loss in DINO, a smooth L1 loss is used in data2vec. 

 

Figure 6. Illustration of data2vec. 

Image

Augmented
Image #1

Augmented
Image #2

Exponential 
Moving 
Average

Centering Softmax

Softmax p1

Loss = −p2 log p1

p2

SG

Student

Teacher

Figure 5. Illustration of DINO.

The data2vec was recently proposed by Baevski et al. [16], which represents a general
self-supervised learning framework for speech, NLP, and computer vision tasks. The
structure of data2vec is illustrated in Figure 6. Similar to DINO, data2vec also employs a
teacher–student paradigm. The teacher generates representations from the original input
image, while the student generates representations from the masked image. Different from
DINO, data2vec predicts the masked latent representation and regressed multiple neural
network layer representations instead of just the top layer. Instead of the cross-entropy loss
in DINO, a smooth L1 loss is used in data2vec.
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3.3. Wheel Detection

As discussed previously, the relative wheel positions are critical features according to
the FHWA vehicle classifications. Therefore, being able to detect all wheels in vehicle images
provides more definitive features for vehicle classification. To leverage the existing object
detection models, three real-time object detection architectures, i.e., Faster R-CNN [26],
YOLOv4 [27], and YOLOR [17], were evaluated as potential wheel detectors.

Based on our experiments, both YOLOv4 and YOLOR achieved a mAP of 99.9%,
slightly outperforming the Faster R-CNN model (mAPs = 99.0%). In light of the faster
inference speed, YOLOR was chosen as the wheel detector in our study for extracting
wheel positional features. In our experimental setting, the YOLOR model played dual roles:
(1) detecting vehicles (with bounding boxes) so that they could be cropped out for further
processing (as mentioned previously, all the models were trained and tested on cropped
images rather than the original images) and (2) extracting wheel positional features, which
were combined with the ViT features for the vehicle classification task. The fusion of
these two sets of features was achieved by the end-to-end training of a composite model
architecture as discussed in the following section.
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3.4. Composite Model Architecture

A composite model architecture is proposed to improve vehicle classification by
harnessing the features extracted from both ViT and wheel detection models, as shown
in Figure 7. The input image is fed to YOLOR for vehicle and wheel detection. Then, the
vehicle image is cropped based on the vehicle bounding boxes output from the YOLOR
and resized to 224 × 224, which is the input size for the ViT encoder. Features extracted
from the ViT encoder and the wheel positional features are concatenated and fed to a
multi-layer perceptron (MLP) to classify the 13 FHWA vehicle classes. The wheel locations
detected by YOLOR provide wheel positional features that are complementary to those
features extracted by the ViT encoder since the former provides localized details on axle
configuration while the latter emphasizes vehicle features at a coarser and larger scale
(i.e., not necessarily attending to the wheel position details). To further reinforce this
complementarity, one wheel was randomly masked when finetuning the ViT encoder. The
vanilla ViT and pretrained ViTs by DINO and data2vec were all evaluated in this composite
architecture setting. The experimental results are presented in the Experiments section.
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site architecture setting. The experimental results are presented in the Experiments sec-

tion.  

 

Figure 7. Structure of the composite model architecture.

4. Experiments
4.1. Effects of Self-Supervised Pretraining

The ViT model was trained with Adam [28] and a batch size of 64. The learning rate
was initially set to 6 × 10−5. For model development and evaluation, the dataset was split
with 80% being relegated to training and 20% to testing. All cropped images were resized
to 224 × 224 pixels and evenly divided into 14 × 14 patches. Two self-supervised methods,
DINO and data2vec, were evaluated as a pretraining stage for the supervised classification
task. An ImageNet-pretrained ViT with DINO and data2vec was utilized in this study. Our
model training was conducted under two settings: (1) freezing the ViT backbone and only
training the MLP classifier and (2) finetuning the ViT backbone while training the MLP
classifier. For comparison purposes, the original ViT model was also trained end-to-end in
a supervised fashion. The results are summarized in Table 2.
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Table 2. Comparison of classification performance by different ViT training settings.

Network Top-1 Acc.
(%)

Weighted Avg.
Precision (%)

Weighted Avg.
Recall (%)

ViT 90.7 90.7 90.7
ViT + DINO (freeze-encoder) 94.6 94.6 94.6
ViT + DINO 95.6 95.7 95.6
ViT + data2vec (freeze-encoder) 93.5 93.5 93.5
ViT + data2vec 95.0 95.0 95.0

As shown in Table 2, the Top-1 accuracy, weighted average precision, and weighted
average recall from the pretrained ViT models are significantly higher than those from the
supervised ViT model regardless of whether the ViT backbone was frozen or not during
the classifier training. There was a clear performance boost when the ViT encoder was
finetuned during the classifier training. For the finetuned models, the ViT + DINO network
performed slightly better than the ViT + data2vec.

For a detailed performance comparison across vehicle classes, the classification reports
of the ViT, ViT + DINO, and ViT + data2vec are presented in Table 3. Overall, ViT performed
well in the common classes (classes 2, 3, 6, and 9). However, for minority classes (classes
1, 4, 5, 7, 8, 10, 11, 12, and 13), pretrained ViTs reported much better precision, recall, and
F1-scores.

Table 3. Comparison of classification reports of the ViT model with and without self-supervised
pretraining.

ViT without Pretraining ViT Pretrained with DINO ViT Pretrained with data2vec

Precision
(%)

Recall
(%)

F1-Score
(%)

Precision
(%)

Recall
(%)

F1-Score
(%)

Precision
(%)

Recall
(%)

F1-Score
(%)

Class 1 88.0 55.0 67.7 100.0 100.0 100.0 100.0 100.0 100.0
Class 2 96.6 98.6 97.6 98.4 99.1 98.7 98.2 99.8 99.0
Class 3 93.5 89.4 91.4 97.5 95.7 96.6 99.4 95.0 97.1
Class 4 73.5 86.2 79.4 100.0 93.1 96.4 96.4 93.1 94.7
Class 5 90.0 62.1 73.5 88.5 79.3 83.6 88.5 79.3 83.6
Class 6 90.3 96.1 93.1 87.2 96.8 91.7 88.2 96.1 92.0
Class 7 66.2 74.1 69.9 95.8 79.3 86.8 84.9 77.6 81.1
Class 8 57.1 50.0 53.3 78.6 68.8 73.3 90.0 56.3 69.2
Class 9 96.2 98.2 97.2 96.8 98.4 97.6 97.0 98.4 97.7

Class 10 64.4 60.4 62.4 90.0 75.0 81.8 81.4 72.9 76.9
Class 11 78.9 82.0 80.4 97.8 90.0 93.8 94.0 94.0 94.0
Class 12 88.2 62.5 73.2 92.3 100.0 96.0 95.7 91.7 93.6
Class 13 68.6 68.6 68.6 90.6 94.1 92.3 80.4 80.4 80.4

Accuracy (%) 90.7 95.6 95.0

4.2. Performance of Composite Models

As mentioned previously, the number of axles is a key factor in the FHWA vehicle
classification rules. Therefore, we generated the wheel positional features from the wheel
locations detected by YOLOR and fed these features to the classifier together with the ViT
encodings. To assess the benefits of adding the wheel positional features, we evaluated
two model scenarios: (1) ViT models, which did not include wheel positional features, and
(2) composite models, which included the ViT models as well as the wheel positional
features from YOLOR. Table 4 shows the results of the ViT models (upper part) and
composite models (bottom part).
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Table 4. Comparison of the supervised ViT model and the composite models under different
training schemes.

Network Top-1 Acc.
(%)

Weighted Avg.
Precision (%)

Weighted Avg.
Recall (%)

ViT 90.7 90.7 90.7
ViT + DINO (freeze-encoder) 94.6 94.6 94.6
ViT + DINO 95.6 95.7 95.6
ViT + data2vec (freeze-encoder) 93.5 93.5 93.5
ViT + data2vec 95.0 95.0 95.0
ViT + YOLOR 91.4 91.6 91.4
ViT + DINO (freeze-encoder) + YOLOR 95.4 95.5 95.4
ViT + DINO + YOLOR 96.0 96.0 96.0
ViT + data2vec (freeze-encoder) + YOLOR 95.0 95.0 95.0
ViT + data2vec + YOLOR 95.3 95.2 95.3

The composite models, which fused the ViT encodings and wheel positional features,
improved the classification accuracy by 0.3–1.5%. This confirms that specific wheel posi-
tional features are important for the vehicle classification task. The DINO-pretrained ViT
models were slightly better than their data2vec counterparts. The best composite model
was “ViT + DINO + YOLOR”, which achieved an overall accuracy of 96%. The detailed
performance metrics (precision, recall, and F1-score) across classes are included in Table 5
for both scenarios: with and without the wheel features.

Table 5. Comparison of classification reports of the pretrained model (ViT + DINO) with and without
wheel features.

DINO (Pretrained), without Wheel Features DINO (Pretrained) + YOLOR, with Wheel Features

Precision (%) Recall (%) F1-Score (%) Precision (%) Recall (%) F1-Score (%)

Class 1 100.0 100.0 100.0 100.0 100.0 100.0
Class 2 99.1 99.5 99.3 99.1 99.5 99.3
Class 3 98.7 97.5 98.1 98.7 97.5 98.1
Class 4 100.0 93.1 96.4 100.0 86.2 92.6
Class 5 88.5 79.3 83.6 80.7 86.2 83.3
Class 6 90.5 98.7 94.4 92.2 98.7 95.3
Class 7 91.4 91.4 91.4 92.7 87.9 90.3
Class 8 70.6 75.0 72.7 92.9 81.3 86.7
Class 9 98.2 98.0 98.1 97.6 98.6 98.1

Class 10 88.6 81.3 84.8 88.9 83.3 86.0
Class 11 86.2 100.0 92.6 88.9 96.0 92.3
Class 12 100.0 87.5 93.3 95.8 95.8 95.8
Class 13 95.1 76.5 84.8 100.0 80.4 89.1

Accuracy (%) 96.3 96.6

The benefit of adding wheel features resulted in an obvious improvement in the
F1-scores for classes 8 and 10. As indicated in Table 1, classes 8, 9, and 10 are all one-
trailer trucks with minor differences (number of axles) and immensely imbalanced data
distributions (with 82 images in class 8 but 2436 images in class 9). The model could have
easily been confused among these classes. Adding the wheel positional features helped to
better classify them, as well as classes 11, 12, and 13, which are all multi-trailer classes.

4.3. Random Wheel Masking Strategy

To regularize the learning process of the composite model, one of the YOLOR-detected
wheels was randomly selected for masking when training the ViT. This could allow the
learned ViT representations to adapt to the wheel noises being injected. The experiment
results are summarized in Table 6.
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Table 6. Comparison of model performance with and without random wheel masking.

Network
Without Wheel Masking Randomly Masking One Wheel

Top-1 Acc. (%) WAP * (%) WAR * (%) Top-1 Acc. (%) WAP (%) WAR (%)

ViT + YOLOR 91.4 91.6 91.4 91.7 91.6 91.7
ViT + DINO (freeze-encoder) +
YOLOR 95.4 95.5 95.4 96.0 96.0 96.0

ViT + DINO + YOLOR 96.3 96.3 96.3 96.7 96.8 96.7
ViT + data2vec
(freeze-encoder) +YOLOR 95.0 95.0 95.0 96.5 96.6 96.5

ViT + data2vec + YOLOR 95.3 95.2 95.3 97.2 97.2 97.2

* WAP, WAR: abbreviations for weighted average precision and weighted average recall, respectively.

As shown in Table 6, all models had improved performance when one wheel was
randomly masked during the training of the classifier. Without wheel masking, the best
composite model was DINO + ViT + YOLOR, which achieved an accuracy of 96.3%. After
applying one wheel masking, its accuracy was raised up to 96.7%. In contrast, the “ViT
+ data2vec + YOLOR” model benefited tremendously from the random wheel masking.
Its accuracy was boosted by 1.9% to 97.2%, surpassing the DINO + ViT + YOLOR. Table 7
shows the detailed classification results of the ViT + data2vec + YOLOR for both the with
and without wheel masking settings.

Table 7. Comparison of classification reports of the composite model (ViT + data2vec + YOLOR) with
and without wheel masking.

ViT + Data2vec + YOLOR, without Wheel Masking ViT + Data2vec + YOLOR, with Wheel Masking

Precision (%) Recall (%) F1-Score (%) Precision (%) Recall (%) F1-Score (%)

Class 1 100.0 100.0 100.0 100.0 100.0 100.0
Class 2 98.2 99.8 99.0 99.3 99.8 99.5
Class 3 99.4 95.0 97.1 99.4 98.1 98.8
Class 4 93.3 96.6 94.9 96.6 96.6 96.6
Class 5 88.5 79.3 83.6 92.6 86.2 89.3
Class 6 88.6 95.5 91.9 93.2 97.4 95.3
Class 7 84.9 77.6 81.1 94.2 84.5 89.1
Class 8 100.0 62.5 76.9 100.0 81.3 89.7
Class 9 97.2 98.6 97.9 97.0 99.4 98.2

Class 10 81.8 75.0 78.3 97.6 83.3 89.9
Class 11 94.0 94.0 94.0 94.2 98.0 96.1
Class 12 95.8 95.8 95.8 88.5 95.8 92.0
Class 13 83.7 80.4 82.0 97.8 88.2 92.8

Accuracy (%) 95.3 97.2

As indicated in Table 7, randomly masking one wheel increased the precision of classes
4, 5, 6, 7, 10, and 13 considerably. The F1-scores of most classes also improved, especially
for the minority truck classes (5, 6, 7, 8, 10, and 13).

5. Conclusions and Discussions

The two self-supervised learning methods (DINO and data2vec) showed their supe-
riority over the supervised ViT. The classification accuracies were further boosted after
applying DINO or data2vec for pretraining. Finetuning the pretrained ViT encoders dur-
ing the classifier training helped with the classification task. By adding additional wheel
positional features, the models performed better than standalone ViTs. Additionally, the
adoption of the random wheel masking strategy while finetuning the ViT encoder fur-
ther improved the performance of the models, resulting in accuracies of 96.7 and 97.2%,
respectively, for the DINO- and data2vec-pretrained models.
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An important aspect to acknowledge is that classic supervised learning is largely
constrained by limited annotated datasets. In contrast, self-supervised learning can take
advantage of massive amounts of unlabeled data for representation learning and has be-
come increasingly popular. Using self-supervised methods as a pretraining stage has been
demonstrated to significantly improve the performance of vehicle classification. Between
the two popular self-supervised learning methods, DINO and data2vec, there is an inter-
esting finding: the DINO-pretrained ViT performed better than the data2vec-pretrained
one, even with ViT finetuning and the addition of wheel positional features. However, by
randomly masking a wheel during training, the data2vec-pretrained ViT outperformed
the DINO-pretrained ViT. An arguable ratiocination is that during the pretraining stage,
data2vec trains the ViT to predict the contextualized representations of masked image
patches, which is consistent with our wheel masking strategy. This allows the data2vec-
pretrained ViT to easily generalize over the masked wheel features, while for DINO, the ViT
encoder learns from the cropped parts of input images and does not capture the contextual
information, unlike with data2vec.

Although the ViT + data2vec + YOLOR model, coupled with the proposed strategy of
random wheel masking, demonstrated an excellent performance in classifying 13 FHWA
vehicle classes, there is still plenty of room for future improvement. Dataset imbalance
issues can be further mitigated by acquiring more images of minority class vehicles. YOLOR
was adopted as a wheel detector to extract wheel positional features, which increases the
computational footprint since the two standalone models (ViT and YOLOR) are executed in
parallel. A unified model architecture could be investigated to reduce computational costs
for practical real-time applications. The work presented in this paper implicitly assumes
that the full bodies of all vehicles are visible in the images while this may not be true
in real-world settings, where vehicle occlusion and superimposition often occur during
heavy traffic conditions, causing only parts of vehicles to be visible. This issue could be
mitigated by purposely training the models to recognize vehicle classes with partially
blocked images. In fact, the data2vec method learns general representations by predicting
contextualized latent representations of a masked view of the input in a self-distillation
setting. Thus, data2vec-distilled representations are robust in cases of partial blocking of
vehicles in images. Other mitigation methods may consider leveraging multiple views
from different cameras or even multimodal sensory inputs. For example, using thermal
cameras and LiDAR could help to improve model performance under low light conditions
(e.g., at night).
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