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Abstract: The objective of this study was to investigate the feasibility of using Cloud Point Extraction
(CPE) to isolate natural antioxidants (polyphenols) from apricot cannery waste (ACW). Four different
food-grade surfactants (Genapol X-080, PEG 8000, Tween 80, and Lecithin) were tested at varying
concentrations to evaluate the effectiveness of the technique. It was observed that low concentrations
of surfactants in one-step CPE resulted in less than 65% polyphenol recovery, which necessitated
further extraction steps. However, high concentrations of surfactants were found to significantly
improve polyphenol extraction from ACW for all surfactants tested. Among the four surfactants,
PEG 8000 was found to be the most effective in most circumstances; specifically, adding only 2%
of the surfactant per step in a two-step CPE was enough to effectively extract polyphenols with
recovery rates better than 99%. When 10% w/v of PEG 8000 was used, recoveries greater than 92%
were obtained. Since PEG 8000 is a reagent with low toxicity and the CPE method is simple, rapid,
cheap, sensitive, and selective, the extracted organic compounds from ACW can be used as natural
antioxidants in food technology. This has important implications for the development of natural and
sustainable food additives.
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1. Introduction

Free radical chemistry has been a subject that has attracted a lot of attention recently
owing to the potential negative impact of reactive oxygen species (ROS) on both food
systems and human health. Antioxidants are crucial in reducing oxidative processes
and mitigating the consequences of ROS [1]. In food and pharmaceutical processing and
storage, lipid peroxidation is a major cause of product degradation, but antioxidants can
scavenge free radicals and extend shelf life by slowing this process [2]. In the human body,
antioxidants are also beneficial, as they can help slow the progression of many chronic
illnesses [3]. As a safer alternative to synthetic antioxidant compounds such as butylated
hydroxytoluene (BHT) and butylated hydroxyanisole (BHA), natural antioxidants have
gained increasing attention [4]. There has been an extensive awareness in studying natural
additives, particularly fruit and vegetable residues, which are abundant in beneficial
chemicals. The valorization of these byproducts can not only provide a sustainable solution
to waste management but also produce natural antioxidants that may be included into
food technology to improve the health and well-being of consumers [5].

Apricot (Prunus armeniaca L.) is a highly sought-after fruit in the market due to its vi-
brant color, unique flavor, and impressive nutritional profile. This fruit is rich in carotenoids,
which are responsible for its distinctive yellow and orange peel color, making it visually
appealing to consumers [6]. While the apricot originated in China, it found its way to
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Europe through Armenia, leading to its scientific name [7]. Additionally, apricots are an
abundant source of phenolic compounds, which are mainly found in the fruit’s skin and
pulp [8]. Rutin, catechin, epicatechin, and chlorogenic acid are among the dominant pheno-
lic substances present in apricot cultivars, and their levels vary among different varieties [9].
Polyphenols derived from fruit waste are widely used as natural additives to food and
preservatives due to their unique biological properties [10]. While solid/liquid (S/L) ex-
traction is commonly used in the industry to recover polyphenols, this method has several
drawbacks, including the extensive use of organic solvents, high manufacturing costs, and
time-consuming processes [11,12]. Similarly, other methods such as microwave-assisted
extraction, membrane processes, or supercritical fluid extraction are not suitable for bulk
operations due to their high energy needs or expensive equipment [13,14]. Furthermore,
conventional solvents are unable to extract both polar and non-polar bioactive compounds
at the same time, making it challenging to extract all chemical constituents of the plant.
Therefore, a major demand arises for a low-priced, high-throughput method to analyze
apricot-derived bioactive compounds.

Novel liquid–liquid extraction (LLE) methods, such as two-phase (or multi-phase)
separation, are gaining popularity for the extraction and concentration of active chemicals
from natural materials. Aqueous two-phase extraction, dispersive liquid–liquid extraction,
micellar extraction, and cloud-point extraction (CPE) are some of the novel approaches that
have emerged [15,16]. Among them, CPE is regarded to be both an ecologically benign and
biocompatible approach for extracting and concentrating active chemicals from plant-based
resources, with possible applications in the food and pharmaceutical industries. Nonethe-
less, several drawbacks include the formation of emulsions, the requirement of hazardous
organic solvents, and hence the production of vast amounts of pollutants make liquid–
liquid extraction techniques laborious, costly, and ecologically unfriendly. In addition,
aqueous two-phase extraction uses are restricted to laboratory environments and remain
in pilot-size operations, as seen by the abundance of the literature reviews [17,18]. On the
other hand, CPE is a simple and inexpensive technique for extracting bioactive chemicals
from liquid matrices that employ surfactants [19]. It also gives the opportunity to use
food-grade surfactants so that food industries can directly insert the extracted compounds
into their products [20]. Above a certain micellar concentration, these molecules can form
spontaneous aggregates (micelles) in aqueous solutions [21]. These formed structures can
bind with either hydrophobic or hydrophilic compounds via dipole–dipole interactions and
hydrogen bonding to be deployed for separation [22]. The micellar system characteristics
and CPE factors that influence the extraction of high nutritional value compounds were
investigated by Carabias-Martinez et al. [23]. The essential characteristics of a sample han-
dled by CPE are the pH level and ionic strength, along with its temperature and the amount
of surfactant used [24]. Most ionic surfactants are non-volatile and considered to be either
relatively non-toxic or harmless chemicals, with the least toxicological or dermatological
concerns [25]. Several surfactants, including Triton X-114, Triton X-100, and Brij 30, have
been successfully employed to isolate bioactive plant components [26]. Several surfactants
that might be employed in the CPE approach are found in nature. Lecithin is a natural
surfactant that is widely used in the food sector. It is an inexpensive and low-toxicity
compound [27]. El-Abbassi et al. [28] established an efficient and quick CPE process for
extracting polyphenols from olive mill effluent utilizing Triton X-100 as the solvent for the
extraction process. After one step of CPE, the recovery was 66.5%.

To the best of our knowledge, there is a scarcity of studies concerning the extraction
of polyphenols from apricot cannery waste using CPE. To address the current gap in
knowledge, this study aims to explore the potential of CPE using low biological hazard sur-
factants for polyphenol extraction from apricot cannery waste. This study investigated the
efficiency of different food-grade surfactants, including Genapol X-080, PEG 8000, Tween
80, and natural surfactant Lecithin, at varying concentrations for polyphenol extraction
from apricot waste. The effectiveness of CPE extraction cycles, as well as the antiradical
activity of the extracted polyphenols, were evaluated for each surfactant. By conducting
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these experiments, the study sought to identify the optimal surfactant concentration for
the efficient extraction of polyphenols from apricot waste using CPE and to determine the
most effective surfactant for this purpose.

2. Materials and Methods
2.1. Chemicals, Reagents, and Materials

Methanol, 1,1-diphenyl-2-picrylhydrazyl (DPPH), and Genapol X-080 were all ob-
tained from Sigma-Aldrich (Steinheim, Germany). Gallic acid, anhydrous sodium carbon-
ate, and Folin–Ciocalteu reagent were purchased from Penta (Prague, Czech Republic).
PEG 8000 was obtained from Alfa Aesar (Karlsruhe, Germany). Citric acid anhydrous was
purchased from Merck (Darmstadt, Germany). Tween 80 was purchased from Panreac
(Barcelona, Spain). Sodium chloride and soya lecithin (>97%) were purchased from Carlo
Erba (Milano, Italy). To produce the deionized water used in the experiments, a deionizing
column was employed.

Apricot (Prunus armeniaca ‘Bebeco’ variety) cannery wastewater (ACW) was obtained
from the stream resulting from the peeling step (for the reason of being the main contributor
to the total waste stream) from ELBAK S.A. (Falani, Larissa, Greece).

2.2. CPE Procedure

The CPE method was carried out with slight modification from Chatzilazarou et al. [29].
Selection of the experimental parameters (i.e., pH, temperature, etc.) was carried out based
on preliminary experiments. A Remi Neya 16R (Remi Elektrotechnik Ltd., Palghar, India)
was used to centrifuge 70 g ACW for 20 min at 4500 rpm, so as to remove the solids. Prior
to CPE, solid-free ACW samples were adjusted to a pH value of 3.5 with 2 N citric acid [30].
To accelerate the phase separation process by increasing the bulk density of the aqueous
phase, 3% w/v sodium chloride was added to the sample. Sodium chloride also decreases
the cloud point temperature [31]. The concentration of surfactants tested were 2, 5, and
10% w/w. A magnetic stirrer Heidolph MR Hei-Standard was used to equilibrate the
temperature and stir the samples during CPE. The samples were stirred at 800 rpm and
equilibrated at 65 ◦C for 20 min. After centrifuging the mixture for 5 min at 3500 rpm
at 30 ◦C (first extraction stage), the phases were separated by decanting. The surfactant-
rich phase had high viscosity. The volumes of both surfactant and aqueous phases were
measured after centrifugation. The unextracted polyphenols in the aqueous phase were
then decanted and either extracted once (second CPE step) or twice using the same method
(third CPE step). Since each CPE experiment was repeated three times under identical
conditions, the recovery findings represent the means of three extraction trials.

2.3. Polyphenol Recovery by CPE

The % polyphenol recovery was measured using a polyphenol mass balance. The
surfactant recovery was estimated in accordance with previous descriptions [29,32].

Recovery (%) =
Cs·Vs
Co·Vo

× 100 = Co·Vo − Cw·Vw
Co·Vo

× 100 (1)

where Co is the concentration of polyphenols in the initial sample volume Vo (10 mL),
Cw is the concentration of polyphenols in the water phase volume Vw, and Cs is the
concentration of polyphenols in the surfactant phase volume Vs.

2.4. Total Polyphenol Content

Total polyphenols were measured photometrically using a modified Folin–Ciocalteu
method by Katsoyannos et al. [33]. An amount of 100 µL of the sample was mixed with
100 µL of the Folin–Ciocalteu reagent, and after 2 min, 800 µL (5% w/v) of sodium carbonate
solution was added. Finally, a Shimadzu spectrophotometer (UV-1700, Shimadzu Europa
GmbH, Duisburg, Germany) was utilized to measure the absorbance of the solution at
750 nm after 20 min incubating at 40 ◦C in the absence of light.
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2.5. Determination of Antioxidant Activity

The DPPH technique established by Tsaknis and Lalas [34] was employed to calcu-
late the antioxidant activity of both extracted polyphenols in the surfactant phase and
polyphenols that remained in the sample after CPE treatment. Briefly, 4 mL of sample was
combined with 1 mL of 0.1 mM DPPH solution in methanol. The mixture was thoroughly
mixed and allowed to remain in the dark for 30 min at room temperature. The absorbance
was determined at 517 nm. The following equation was used to calculate the % scavenging:

% Scavenging = Acontrol −
Asample

Acontrol
× 100 (2)

where Acontrol and Asample represent the corresponding absorbances.

2.6. Statistical Analysis

All analyses were carried out in triplicate. The results were reported as the standard
deviation of the three replicate mean values. After assessing the data with the Kolmogorov–
Smirnov test, statistically significant differences were investigated using the Kruskal–Wallis
test. Statistically significant differences were assessed for p < 0.05.

3. Results and Discussion

The objective of this work was to evaluate the potential of using CPE with low bio-
logical hazard surfactants to extract polyphenols from ACW. Four different food-grade
surfactants (Genapol X-080, PEG 8000, Tween 80, and Lecithin) were tested, and the recov-
ery of polyphenol extraction was measured. Considering the findings from other studies
(vide infra), we opted to increase polyphenol extraction. To ensure consistency, the CPE
method was conducted at 65 ◦C, with a sodium chloride concentration of 3% w/v, and
at a pH level of 3.5. Previous research by Kiai et al. [35] suggested that the optimum
temperature for CPE is between 50 and 70 ◦C when using surfactants such as Genapol
X-080, Tween 80, and Triton-X. Additionally, Shi et al. [36] suggested that concentrations
below 20% w/v of sodium chloride would not result in effective phase separation. How-
ever, in our case, a much lower sodium chloride concentration (3% w/v) proved to be
adequate for the completion of separation, possibly due to the different material used
(apricot peeling waste in our case) and procedure. Furthermore, the optimum pH level was
set to 3.5 because polyphenols are protonated at low pH values, and thus, they interact
extensively with micellar clusters of non-ionic surfactants, making them quite soluble in the
micelle [28]. In contrast, polyphenols are deprotonated at high pH values, which reduces
their solubility in hydrophobic micelles [37]. The recovery of polyphenols was tested in
three different concentrations (2, 5, and 10% w/w) and with three extraction steps. Accord-
ing to Santana et al. [30], higher polyphenol extraction yields require high concentrations of
surfactants. In the first step of extraction, each surfactant at a 10% concentration had a sta-
tistically significant (p < 0.05) higher extraction recovery than any other concentration used.
However, this pattern did not apply to the other extraction cycles. Therefore, it is important
to compare the extraction yields in different steps between the surfactants. Finally, the
method employed herein was a modified (based on preliminary experiments) version of
the method discussed by Chatzilazarou et al. [29], who investigated the usage of surfactant
Genapol X-080 in order to isolate lycopene and total carotenoids from red-fleshed orange.
Authors used a 0.5–15% v/v concentration of surfactant. The optimum CPE conditions
were 30 min extraction at 55 ◦C, 35% sodium chloride, and pH level at 2.53. The recorded
recoveries in carotenoids and lycopene were both slightly above 90% after three CPE steps.

3.1. Effect of Surfactant Concentration via CPE with Genapol X-080

Genapol X-080 belongs to the class of alkylpolyethylene glycol ethers, and is a non-
ionic surfactant. The chemical structure of Genapol X-080 consists of a hydrophilic polyethy-
lene glycol (PEG) chain attached to a lipophilic alkyl chain. It is commonly used in various
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sectors, including the food, cosmetic, and pharmaceutical industries, as an emulsifier,
solubilizer, and wetting agent [38]. Figure 1 depicts the results of Genapol X-080, which
demonstrate a clear association between the amount of surfactant employed and the recov-
ery of polyphenols. It was observed that the use of higher concentrations of Genapol X-080
led to higher polyphenol recoveries, as expected. However, the recovery rate remained
below 60% in samples with low surfactant content, indicating the importance of additional
CPE steps.
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Figure 1. Percentage of polyphenol recovery with Genapol X-080 in different concentrations and
extraction steps; standard deviation is shown with error bars; different letters (i.e., a–k) indicate
samples that differ significantly (statistical difference for p < 0.05) using Student’s t-test.

The first step of extraction using 2, 5, and 10% w/v Genapol X-080 resulted in extrac-
tion yields of 44, 56, and 62%, respectively. Statistically significant (p < 0.05) differences
were found in every extraction step. The most efficient way to recover 82% of the total
polyphenols was by using 2% Genapol X-080 thrice, whereas the most cost-effective ap-
proach was to use 5% Genapol X-080 twice, resulting in 92% polyphenol recovery. Our
findings are similar to Kiai et al. [35], who investigated the extraction of table olive pro-
cessing wastewater polyphenols with the use of the surfactant Genapol X-080 and CPE.
At 70 ◦C equilibrium time and 4.0 pH level for 30 min CPE, they reached an approximate
60% recovery while using a 10% concentration of the surfactant. These results highlight
the importance of carefully selecting the concentration of the surfactant and the extraction
steps needed to optimize the recovery of polyphenols.

3.2. Effect of Surfactant Concentration via CPE with PEG 8000

PEG 8000 is a polyether, water-soluble, waxy solid that is commonly used as a thicken-
ing agent, lubricant, solvent, and surfactant in a wide range of usages, including pharma-
ceuticals, cosmetics, and food products. PEG 8000 has low toxicity and is considered safe
for human use [39]. The results of polyphenols extracted via CPE from ACW samples using
three different concentrations of PEG 8000 are presented in Figure 2. As seen in the figure,
the recovery of polyphenols is highly dependent on the concentration of the surfactant
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used. Specifically, increasing the concentration of PEG 8000 led to a higher recovery of
polyphenols. However, when using low concentrations of PEG 8000, the recovery rate
remained below 60%, indicating the importance of additional CPE steps. The extraction
yields of 2, 5, and 10% w/v PEG 8000 in the first step of extraction were 55, 70, and 92%,
respectively. Statistically significant differences (p < 0.05) were noted in most cases. It
is worth noting that the second step of extraction using 2% PEG 8000 provided a high
recovery rate of 44%. Interestingly, the recovery of polyphenols in the first two steps of
extraction using 2 and 10% PEG 8000 was almost the same (~99%). Thus, a satisfactory
recovery rate of polyphenols could be obtained by conducting a two-step extraction by
using 2% of the surfactant in each step, which was as effective as the extraction using 10%
PEG 8000. Our results are consistent with those of Chatzilazarou et al. [32], who also used
the CPE method at 65 ◦C and obtained a recovery rate of 55.2% using 5% w/v PEG 8000 for
one step of extraction from wine sludge. These findings suggest that using 2% PEG 8000 in
ACW can be a cost-effective method for extracting a significant number of polyphenols.
A wide variety of food industries could use the CPE technique because it is compatible
with most food matrices. For instance, an apricot cannery industry could use this method
with PEG 8000 in a two-step extraction with 2% w/v surfactant in each step. It would need
around 20 Kg of PEG 8000 for each CPE step with 2% w/v concentration. Given that PEG
8000 costs around EUR 100/Kg, it would cost approximately EUR 4000 for a two-step CPE
per ton of ACW. Other methodology reported by De Marco et al. [40] requires LLE with
mixing the same volumes of olive mill wastewater with solvents such as hexane or ethyl
acetate. Despite the encouraging results, it has a considerably higher cost and it could not
be used directly in food.
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differ significantly (statistical difference for p < 0.05) using Student’s t-test.

3.3. Effect of Surfactant Concentration via CPE with Tween 80

Tween 80, frequently referred as Polysorbate 80, acts as a non-ionic surfactant of
the polysorbate family. It is a water-soluble liquid that is widely utilized as a stabilizer,
an emulsifier, and solubilizer in various sectors, including food, pharmaceuticals, and
personal care. It stems from natural sources such as sorbitol, ethylene oxide, and oleic
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acid. Tween 80 is known for its ability to increase both the bioavailability and the solubility
of insoluble medicines, as well as for its emulsifying properties in food products. It is
generally regarded as safe by regulatory agencies such as the FDA and has a wide range
of applications due to its versatile properties [41]. Figure 3 shows the findings of the
polyphenol CPE in ACW samples using three distinct concentrations of Tween 80. The
results revealed that polyphenol recovery was related to the concentration of Tween 80
utilized. Statistically significant differences (p < 0.05) were recorded among the various
tested concentration for the two first steps of the extraction. The first extraction step yielded
66, 75, and 88% of polyphenols with 2, 5, and 10% w/v Tween 80, respectively. Among the 5
and 10% w/v Tween 80 concentrations, the first two extraction steps yielded high recovery
rates of approximately 97 and 100%, respectively. An economically feasible method for
extracting polyphenols from ACW is to use 5% Tween 80 twice. Stamatopoulos et al. [42]
conducted a study on the isolation and CPE of polyphenols from olive leaf extract with
some modifications. They employed 35% w/v sodium sulfate as salt, pH 2.6, and 4% w/v
Tween 80, achieving excellent extraction yields in a single extraction step (>90%).
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3.4. Effect of the Surfactant Concentration via CPE with Lecithin

Lecithins are naturally extracted amphiphilic molecules composed of phosphatidyl-
choline (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidic
acid (PA). They are often used as common emulsifiers in the food industry and have no
maximum level restrictions. Lecithins are quite a preferable alternative to synthetic compo-
nents, which is attributed to both regulatory demands and also to the health benefits of
phospholipids [43]. The results of polyphenol CPE in ACW samples using three different
concentrations of lecithin are illustrated in Figure 4. The recoveries of polyphenols with 2,
5, and 10% w/v lecithin were relatively low, at 40, 56, and 73%, respectively. Statistically
significant differences (p < 0.05) were recorded in most cases. Although the extraction
yield in each step was not as high as with other surfactants, lecithin is a cheap, natural,
edible, and non-toxic surfactant compared to other options [27]. Our results were similar
to those of Alibade et al. [44], who investigated the usage of lecithin in the CPE technique
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for extracting antioxidant compounds from winery sludges. They conducted experiments
to optimize the CPE parameters and found that after three steps of extraction with 5%
w/v lecithin, the recovery ranged from approximately 65 to 87%. Additionally, Karadag
et al. [45] used lecithin to extract polyphenols from olive mill effluent and achieved a yield
of approximately 50% by employing 12.5% w/v lecithin.
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3.5. Antioxidant Activity of the Recovered Polyphenols

Compound extraction from a sample might be desirable provided that the isolated
compounds preserve their characteristics. Consequently, it was essential to determine if
the extracted polyphenols maintain their antioxidant activity or if it was impacted by CPE
extraction. Total polyphenol content (TPC) was measured as mg of gallic acid equivalents
per liter (mg GAE/L) using the Folin–Ciocalteu technique, and the DPPH test was used
to evaluate the antiradical activity. No statistically significant differences (p > 0.05) were
observed in both tests for the polyphenols prior to and after the CPE step. We identified 2%
PEG 8000 as the most efficient and cost-effective surfactant to examine polyphenol recovery
and scavenging activity. As such, a two-step CPE was applied, and Table 1 illustrates
the results of these two methods. TPC of initial ACW was measured at 55.2 mg GAE/L
and 54.6 mg GAE/L after the CPE method, where high recovery yields were achieved.
Our findings are similar to Hong et al. [46], who measured 0.65 mg GAE/g from apricot
waste but defined as waste whole fruit samples that are typically discarded by the clients
owing to their poor quality. As for the DPPH test, the percentage of scavenging activity
of the initial ACW was fairly low. However, the CPE method caused the percentage of
scavenging activity to be close to the initial ACW sample. Due to the scarcity of other
studies on recovering polyphenols in ACW via CPE, we could only compare our results
with Cheaib et al. [47], who investigated the isolations of polyphenols from apricot pomace
waste via solid–liquid extraction. While exploring the optimal conditions for solid–liquid
extraction (temperature, extraction solvent), they achieved an approximate 4% scavenging
activity in 90 min extraction with water as the solvent at 25 ◦C.
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Table 1. Total polyphenolic content (TPC) and antioxidant activity in ACW.

Phase TPC (mg GAE/L) Percentage of Scavenging

Initial ACW sample 55.2 ± 1.7 a,* 6.3 ± 0.5 a

CPE extract from ACW 54.6 ± 1.5 a 5.9 ± 0.3 a

* Data represent mean values ± standard deviation of three replicates; no statistically significant differences
(p > 0.05) were found between the samples (e.g., a).

4. Conclusions

The feasibility of using the CPE procedure to separate natural antioxidants (polyphe-
nols) from ACW was studied. The efficiency of the method was tested using a range of
food-grade surfactants at various concentrations. Owing to its efficiency, minimum cost
and duration, and the utilization of harmless extraction solvent, the CPE method is an
appealing alternative to the liquid–liquid or liquid–solid solvent extraction of polyphenols.
Further CPE steps might be employed to improve the acquired polyphenol recoveries.
However, the optimization of CPE conditions (equilibration time, salt addition, pH value)
may result in an even simpler polyphenol isolation technique, even avoiding the need for
the second extraction step. PEG 8000 was found to be the most cost-effective surfactant
to attain a high polyphenol yield. Just 2% w/v PEG 8000 when added twice in a two-step
extraction was enough to acquire ~99% recovery. The natural surfactant lecithin did not
provide statistically significant differences in polyphenol recovery when compared to the
other surfactants. Furthermore, many low-toxicity and specifically greener surfactants
should be investigated to see whether they are more effective than the previous examples.
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