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Abstract: Various techniques have been employed to detect damage in civil engineering structures.
Apart from the model-based approach, which demands the frequent updating of its corresponding
finite element method (FEM)-built model, data-driven methods have gained prominence. Envi-
ronmental and operational effects significantly affect damage detection due to the presence of
damage-related trends in their analyses. Time-domain approaches such as autoregression and metrics
such as the Mahalanobis squared distance have been utilized to mitigate these effects. In the realm of
machine learning (ML) models, their effectiveness relies heavily on the type and quality of the ex-
tracted features, making this aspect a focal point of attention. The objective of this work is therefore to
deploy and observe potential feature extraction approaches used as input in training fully data-driven
damage detection machine learning models. The most damage-sensitive segment (MDSS) feature
extraction technique, which potentially treats signals under multiple conditions, is also proposed
and deployed. It identifies potential segments for each feature coefficient under a defined criterion.
Therefore, 680 signals, each consisting of 8192 data points, are recorded using accelerometer sensors
at the Los Alamos National Laboratory in the USA. The data are obtained from a three-story 3D
building frame and are utilized in this research for a mainly data-driven damage detection task.
Three approaches are implemented to replace four missing signals with the generated ones. In this
paper, multiple fast Fourier and wavelet-transformed features are employed to evaluate their per-
formance. Most importantly, a power spectral density (PSD)-based feature extraction approach that
considers the maximum variability criterion to identify the most sensitive segments is developed and
implemented. The performance of the MDSS selection technique, proposed in this work, surpasses
that of all 18 trained neural networks (NN) and recurrent neural network (RNN) models, achieving
more than 80% prediction accuracy on an unseen prediction dataset. It also significantly reduces
the feature dimension. Furthermore, a sensitivity analysis is conducted on signal segmentation,
overlapping, the treatment of a training dataset imbalance, and principal component analysis (PCA)
implementation across various combinations of features. Binary and multiclass classification models
are employed to primarily detect and additionally locate and identify the severity class of the damage.
The collaborative approach of feature extraction and machine learning models effectively addresses
the impact of environmental and operational effects (EOFs), suppressing their influences on the
damage detection process.

Keywords: data-driven; damage detection; most damage-sensitive segment (MDSS); machine learn-
ing; binary classification; multiclass classification

1. Introduction and State of the Art

Model-based damage identification approaches, which rely on finite element method-
built models, are particularly popular, especially when it comes to damage localization
and quantification [1,2]. With these approaches, simulated models are excited like their
corresponding experimental structures and the real structure itself. The output is then
observed and compared to the collected experimental results. The disparity in the responses

Eng 2024, 5, 629–656. https://doi.org/10.3390/eng5020036 https://www.mdpi.com/journal/eng

https://doi.org/10.3390/eng5020036
https://doi.org/10.3390/eng5020036
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/eng
https://www.mdpi.com
https://orcid.org/0000-0001-5336-9539
https://orcid.org/0000-0002-1251-7301
https://orcid.org/0000-0003-0545-7213
https://doi.org/10.3390/eng5020036
https://www.mdpi.com/journal/eng
https://www.mdpi.com/article/10.3390/eng5020036?type=check_update&version=1


Eng 2024, 5 630

is minimized by formulating an inverse problem, followed by the updating of the identified
potential parameters that encapsulate the information change [3–7]. In this regard, natural
frequency and modal parameters are the most commonly extracted features to indicate
damage [8,9]. The primary challenge associated with this approach is the difficulty in ob-
taining a reliable simulated model that accurately matches the corresponding experimental
model [10].

A comparable approach, fundamentally dependent on statistical analysis and pattern
recognition, is the data-driven method. In contrast to the model-based approach, there
is no need for a real- structure-representing simulated model. Instead, datasets collected
from the target structure using sensors are processed to identify trends, recognize patterns,
and observe statistical measurements [11–15]. These extracted features will be used to
train machine learning models and make acceptable predictions. Models trained with a
data-driven approach, however, usually demand larger datasets [16–18]. The larger the
dataset, with due consideration given to its quality, the better the model will be.

Damage identification encompasses damage detection, localization, type, severity, and
remaining lifetime prediction [1,19]. The first four steps constitute the diagnosis category.
The fifth step, which usually is a prognosis, requires historical data and experience from
similar structures and thus is not a simple task.

In a machine learning-based structural health monitoring (SHM) damage identification
process, there are several essential steps, from data collection to damage prediction. The
key intermediate steps include dataset preprocessing, feature extraction, dimensionality
reduction, and model training [20,21].

Ref. [22] employed data-driven one-dimensional convolutional neural network (CNN)
and recurrent neural network (RNN) models to directly learn from time series signals. These
signals, typically collected for vibration-based damage identification purposes, inherently
possess sequence dependencies. They implemented an attention layer to compute attention
weights for each input. A framework for damage identification was developed using a
support vector machine (SVM) in [23]. They applied the wavelet transform, Hilbert–Huang
transform, and Teager–Huang transform to diagnose a cable-stayed bridge, accounting
for environmental variability. A data-driven damage localization approach [24] and the
probabilistic quantification and assessment of prediction errors in damage detection [25]
are some of the achievements made in data-driven structural damage identification.

Ref. [26] applied time-domain machine learning techniques to deal with environmental
and operational effects (EOFs). They also extended their efforts to deal with autoregressive-
based extrapolation approaches. This dataset is used in our current study.

Environmental effects, such as temperature variations, and operational effects, like
traffic loading, have been identified as significant factors that greatly impact the damage
identification process [16,27]. While not being direct indicators of damage, these effects
exhibit trends similar to those caused by damage. They influence characteristics such as
the mass and stiffness of structural members, consequently altering the natural frequencies.
This phenomenon makes the activity of damage detection even more challenging.

Regression models [28], blind source separation techniques [29], the Mahalanobis
squared distance [30,31], principal component analysis (PCA), and factor analysis have
been implemented to treat environmental and operational effects [32]. Extensive works on
damage identification, modeling approaches, and EOF treatment may be found in [33–39].

The features used to train machine learning models might be mined from different
domains. Though time-domain [40] approaches like autoregression (AR), autoregression
moving average (ARMA), and autoregression moving average with exogenous inputs
(ARMAX) are preferred for their simplicity, for complex tasks, however, frequency-domain
approaches such as the fast Fourier transform (FFT) [41] and time-and-frequency-domain
approaches like the wavelet transform (WT) [23,42] are popular. As feature extraction and
selection approaches have a crucial role in machine learning models, such areas of study
constantly draw the attention of researchers.
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The primary objective of this paper is to investigate the impact of various FFT- and
WT-based features on machine learning models, such as neural networks (NNs) and re-
current neural networks (RNNs). Additionally, the paper proposes a comparable feature
extraction/selection technique that can mitigate the influence of EOFs with reduced com-
putational effort. The study extends its focus to include damage localization and severity
assessment.

In this research, supervised machine learning models are trained using multiple
features extracted from the acceleration signals of a three-story frame modeled in the
Los Alamos laboratory, while considering the presence of EOFs. The effects of EOFs on
this dataset were previously examined and successfully addressed using a time-domain
approach involving autoregression and a statistical tool, the Mahalanobis distance [26]. In
our study, however, FFT and WT coefficients are used separately to train both NN and
RNN models. Additionally, different WT coefficients and their combinations are tested to
produce better-quality models.

A sensitivity analysis of signal segmentation, the overlapping length, training dataset
imbalance treatment, and PCA usage for both dimension reduction and EOF treatment
is also conducted on different combinations of features. Subsequently, leveraging the
maximum change detection concept, a feature extraction/selection approach is developed
and implemented. This method identifies the most damage-sensitive segment (MDSS)
from each signal based on the maximum difference criterion of each selected feature
variable, returning the associated coefficients as learning features. The results of this
approach demonstrate improvements compared to the direct use of FFT and multiple
WT-based features.

The remainder of this work is structured as follows. Initially, the damage detection
process is elucidated, detailing the methods implemented in the study. Subsequently, the
dataset utilized, acquired from four sensors, is outlined. Various approaches to replacing
missing signals are considered, and the optimal method is selected. In the subsequent
feature extraction section, coefficients from FFT and WT are extracted, with different
sensitivity analyses conducted. The MDSS selection approach is introduced and discussed.

Following this, both binary and multiclass classification supervised machine learning
models are trained, and their performance is evaluated. The damage detection, localization,
and severity assessment are then examined. Severity labels are assigned based on insights
derived from statistical computations of the FFT coefficients. The effects of oversampling
and undersampling are also observed and discussed. Python 3.8.17 and Tensorflow 2.13.0
together with all machine learning libraries are used on Jupyter Notebook 7.0.8 for the
training of the models and all related tasks. The desktop computer runs on the 64-bit
Windows 10 operating system, with a 12th Gen Core i7 processor, with 3.63 TB storage and
32 GB RAM.

2. Damage Detection, Research Design, and Dataset Description
2.1. Damage Detection Process

The damage detection process primarily comprises two phases: the model creation
phase and the prediction phase. In the model creation phase, data preparation—in this
paper, involving the replacement of missing data and data normalization—is a crucial step.
Subsequently, features are extracted to facilitate the training of the machine learning models.
In this regard, potential features that can capture the trends and recognize the patterns,
such as the FFT and WT coefficients, are used [43]. To address the high dimensionality
of these coefficients and enhance the training speed while reducing the computational
demands, an unsupervised PCA method is implemented [44]. Before training the model,
the dataset used is balanced for the assigned labels. In this work, for binary classification,
for example, the number of signals for the damaged and undamaged states of the given
structure is balanced. For this purpose, both manual and SMOTE approaches are used [45].
Then, the NN and RNN models are trained and tested [34,37].
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In the prediction phase, the damage detection approach classifies structural conditions
as damaged and undamaged. The damage identification process, however, includes
damage localization, identifying the location of the potential damage, the damage severity,
and the extent of the damage. The flow chart in Figure 1 illustrates mainly the damage
detection process with the methods implemented in this study. The MDSS, however, does
not require dimensionality reduction methods such as PCA as it has less dimensionality,
which corresponds to the types of coefficients extracted from the PSD plot (only twenty
coefficients).
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Figure 1. Damage detection process.

2.2. Research Design

Structures in the real world are exposed to multiple variabilities. Vibration-based
sensors are preferred for their potential to capture the global response of a given structure
are therefore expected to return signals capturing these variabilities. Accordingly, the
dataset used in this work consists of signals representing four conditions: healthy, with
EOFs, damaged, and damaged with EOFs.

To detect damage from the given conditions and thereby treat EOFs, multiple features
ranging from the time to the time–frequency domains are extracted. The four condition
signals are studied using coherence and PSD plots to capture meaningful patterns. Based
on the observations from the PSD plots of the sample signals from all four conditions, the
MDSS technique is developed and implemented. This technique searches for the most
sensitive segment from each signal for a specified feature coefficient.

Figure 2 shows the research approach followed in this paper. In both cases, the
approach is data-driven damage detection using ML models. In the left-hand approach,
features are extracted based on time-domain, frequency-domain, and time–frequency
domain coefficients. In the right-hand approach, however, sample signals from four
different conditions are first studied with coherence and PSD plots regarding whether they
contain underlying patterns that differentiate them from each other. Based on the observed
potential, the MDSS technique is devised to extract better-quality coefficients from each of
the most damage-sensitive segments in the frequency domain. Details are included in the
respective sections.

2.3. Dataset Description

The dataset is taken from the Los Alamos National Laboratory, USA [46]. A test on a
three-story building structure was conducted to detect nonlinear effects. Out of 24 states of
the test, only 17 states were considered as complete and made available online.

The 17 states represent four different conditions or exposures of the building structure.
These include undamaged, with EOFs, damaged, and with EOFs and damage combined.
Signals from the undamaged state serve as a baseline for further processing. Signals
collected under the influence of EOFs are simulated with a column stiffness reduction for
environmental effects and a floor weight increment for operational effects, respectively.

Damage is introduced through an impact load applied with a bumper to a hanging
column, thereby affecting the entire structure. The magnitude of the damage is determined
by the gap size between the bumper and the hanging column. A larger gap size corresponds
to a higher damage level. The gap sizes used in the conducted experiment are 0.05 mm,
0.1 mm, 0.13 mm, 0.15 mm, and 0.2 mm. Nonlinearity to the extent of resulting damage is
induced by a bumper.

Each state consists of ten test trials. Each test trial has four acceleration sensor records,
one on each floor. The sampling frequency and frequency resolution are 322.58 Hz and
0.039 Hz, respectively. There are thus 8192 data points in every signal. Details of the model
and collected dataset can be found in [26].
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Figure 2. Research design.

Table 1 shows the four condition categories and the number of states in each category,
with a single state containing ten files of signals from four sensors. The dataset’s signals
are arranged in rows, while their data points are in columns. This forms a table with a size
of 676 by 8192. This is due to one missed file (signal records from four sensors) from the
undamaged condition of the dataset.

Table 1. Dataset summary.

Condition Undamaged With EOFs Damaged EOFs and Damaged

State No. 13 1, 2, 17–19, 22–24 8–12 14–16
No. of States 1 8 5 3
No. of Signals 36 (4 missing) 320 200 120

2.4. Dataset Normalization

Dataset normalization is used to bring all the signals to the same scale and thereby
avoid discrepancies, reduce noise, and reduce the computational load. Outliers can also be
identified using a z-score.

z-score =
X − µ

σ
(1)

The z-score in Equation (1) is computed for every data point of a given signal. X
is each data point of a signal, µ is the population mean of the same signal, and σ is its
standard deviation.

After replacing the missing signals, as described in the subsection below, the moments
of distribution of the time series signals from all four conditions are computed and observed
both before and after normalization; see Table 2. The data normalization with the z-score
considerably changes the mean and standard deviation of the distribution.

While it is a factual observation that the distribution moments of all three conditions
deviate from that of the baseline, drawing a comprehensive and meaningful trend in the
variability of these metrics based on their respective categories poses a challenge. For
instance, considering the standard deviation, all three conditions exhibit values larger
than that of the ‘undamaged’ condition, which is 0.175. Among them, the ‘with EOFs’
condition has the highest standard deviation at 0.516, followed by ‘damaged’ with a slightly
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Each state consists of ten test trials. Each test trial has four acceleration sensor records,
one on each floor. The sampling frequency and frequency resolution are 322.58 Hz and
0.039 Hz, respectively. There are thus 8192 data points in every signal. Details of the model
and collected dataset can be found in [26].

Table 1 shows the four condition categories and the number of states in each category,
with a single state containing ten files of signals from four sensors. The dataset’s signals
are arranged in rows, while their data points are in columns. This forms a table with a size
of 676 by 8192. This is due to one missed file (signal records from four sensors) from the
undamaged condition of the dataset.

Table 1. Dataset summary.

Condition Undamaged With EOFs Damaged EOFs and Damaged

State No. 13 1, 2, 17–19, 22–24 8–12 14–16
No. of States 1 8 5 3
No. of Signals 36 (4 missing) 320 200 120

2.4. Dataset Normalization

Dataset normalization is used to bring all the signals to the same scale and thereby
avoid discrepancies, reduce noise, and reduce the computational load. Outliers can also be
identified using a z-score.

z − score =
X − µ

σ
(1)

The z-score in Equation (1) is computed for every data point of a given signal. X is
each data point of a signal, µ is the population mean of the same signal, and σ is its standard
deviation.

After replacing the missing signals, as described in the subsection below, the moments
of distribution of the time series signals from all four conditions are computed and observed
both before and after normalization; see Table 2. The data normalization with the z-score
considerably changes the mean and standard deviation of the distribution.



Eng 2024, 5 634

Table 2. Distribution moments of representative signals in time domain.

Condition
Undamaged with EOFs Damaged EOFs and Damaged

Signal no. 78 8 36 106
Normalize No Yes No Yes No Yes No Yes
Mean 5 × 10−6 6 × 10−6 −4.4 × 10−5 −1.52 × 10−4 3 × 10−6 3.08 × 10−4 −4.9 × 10−5 1.23 × 10−4

Std 0.175 0.374 0.516 1.102 0.501 1.072 0.444 0.948
Kurtosis −0.154 −0.145 −0.134 −0.15 −0.102 −0.091 −0.114 −0.12

While it is a factual observation that the distribution moments of all three conditions
deviate from that of the baseline, drawing a comprehensive and meaningful trend in the
variability of these metrics based on their respective categories poses a challenge. For
instance, considering the standard deviation, all three conditions exhibit values larger
than that of the ‘undamaged’ condition, which is 0.175. Among them, the ‘with EOFs’
condition has the highest standard deviation at 0.516, followed by ‘damaged’ with a slightly
smaller value of 0.501. However, the fourth condition has a standard deviation of 0.444,
which is smaller than that of the ’damaged’ condition. This variation can be attributed to
various signals within each condition, each influenced to a different extent for reasons not
immediately apparent.

In the frequency domain, the power spectral density (PSD) is plotted and values for the
peak amplitude (PA), associated peak frequency (PF), crest factor (CF), skewness (Sk) and
kurtosis (Ku) for the above signals are computed; see Table 3. In this context, the coefficients
demonstrate sensitivity to changes in the condition from a healthy state. Moreover, both
the time and frequency analysis summaries of the normalized raw dataset indicate that
the values associated with EOFs closely align with those of the damaged condition, as
opposed to the undamaged baseline. This proximity presents a challenge when working
with signals under environmental and operational variability.

Table 3. PSD coefficients of representative signals in frequency domain.

Condition
Undamaged with EOFs Damaged EOFs and Damaged

Signal no. 78 8 36 106
Normalize No Yes No Yes No Yes No Yes
Peak freq. 70.919 70.919 54.42 54.42 54.932 54.932 52.923 52.923
Peak amp. 0.023 0.104 0.059 0.267 0.078 0.354 0.065 0.295
Crest factor 3.436 3.468 3.633 3.572 3.642 3.616 3.552 3.74
Skewness 0.006 0.007 −0.008 −0.01 −0.021 −0.017 0.026 0.028
Kurtosis −0.154 −0.146 −0.135 −0.151 −0.102 −0.092 −0.115 −0.121

2.5. Missing Data Handling

Out of the expected ten data files of the undamaged condition, one file, containing
four signals, is missing from the source dataset. It is specifically the 8th data file in State
No. 13. The following approach is thus implemented to generate and replace the missing
four-signal file.

Given the fact that the number of missing signals is small as compared to the whole
available dataset—only four signals missing from the expected 680 (<0.6%)—and also that
the missing signals are from the undamaged category, it seems reasonable to duplicate
one of the existing signals from the undamaged category. In this paper, however, further
steps are followed to generate better-quality signals [47]. For the sake of missing data file
generation and validation, the neighboring data file and the whole existing dataset are
used as references. Both references are from the healthy condition of the structure.

Therefore, we select the 7th data file as a neighboring one, comprising four signals,
each corresponding to one sensor. The entire set of nine existing data files includes a total
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of 36 signals from all four sensors. Subsequently, three types of signals are generated, and
the most favorable one is chosen based on the trend and amplitude relative to the reference
two. These include the synthetic signals, the mean of the existing factored signals, and the
signals predicted using RNN-based regression.

2.5.1. Synthetic Signals

The mean and standard deviation of the corresponding existing signals are used to
randomly generate four synthetic signals for each sensor.

synt[i] =

{
min(gen_synt[i], ngb[i]) ifexc_perc > perc_thr
gen_synt[i] otherwise

(2)

for

exc_perc =
|gen_synt[i]− ngb[i]|

ngb[i]
,

where synt is the synthetic signal to be used as part of the dataset, gen_synt is the generated
signal, ngb is the neighboring signal (in this case, the seventh signal), exc_perc is the excess
in percentage from the neighboring signal, perc_thr is the chosen percentage variation
threshold from the neighboring signal, and i is a reference to a data point. In this case, a
percentage threshold of value 5 is used.

Plots depicting the mean, standard deviation, minimum value, and maximum value
of the synthetic signals in comparison to the existing dataset and the neighboring signals
illustrate significant variations in both trends and values. To address this issue, a condition
is imposed to restrict the range of generated values, ensuring that the upper bound does
not surpass the corresponding values in the neighboring signals; see Equation (2).

In general, the FFT plot of the synthetic signals, based on the reference signals, is
deemed acceptable. However, while the peaks of the synthetic signals align with those
of the reference signals, the overall trend or shape does not exhibit the best match. No-
tably, frequencies near the peak amplitude in the reference signals are primarily decaying,
whereas, in the synthetic signals, they remain almost constant. This discrepancy has the
potential to impact the extraction of coefficients other than the peak amplitude and peak
frequency during machine learning.

2.5.2. Factored Signals

The subsequent signals generated are derived directly by factoring the mean of the
existing signals and, of course, align well with the reference signals. These signals can be
effectively utilized instead of the missing signals.

Every data point of the mean existing signals is multiplied with randomly generated
factors between 0.7 and 1.1. The range takes into account the amplitudes of the FFT plot for
the mean existing signals. The factored signals are in the same range as that of the reference
mean existing signals. As displayed in Figure 3, it would be advantageous if the amplitudes
of the non-peak signals were larger than the mean signals. This adjustment would allow
for the incorporation of individual signal characteristics more effectively, resembling those
observed in the corresponding reference signals.

2.5.3. RNN-Regressed Signals

Finally, missing signals are generated by training an RNN model for a regression
task. RNNs excel at capturing sequential trends within data points by utilizing both the
current input and the information from previous outputs to make predictions [48]. This
may further contribute to introducing meaningful variability to each data point. This
variability enables each data point to have its own distinct identity while still aligning with
the reference signals. It is important to note that these data points are not directly derived
through factorization from the corresponding data points in the reference signals, as is the
case with the factored signals.
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Figure 3 shows plots of both the reference and generated signals. As can be observed,
the synthetic signals are shifted more to the negative values.
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Figure 3. Mean plots of reference signals and generated signals.Figure 3. Mean plots of reference signals and generated signals.

The final set of signals is generated by initially substituting the values of the mean
existing signals in place of the missing signals. Subsequently, the entire dataset, encom-
passing both the existing signals and the replaced missing signals, is employed as both the
training and target dataset. Once the RNN model is trained, predictions are generated for
the missing signals.

The neural network architecture comprises an input layer with 8192 neurons, a hidden
layer with 10,000 neurons, and an output layer with 8192 neurons. The mean squared error
is employed as the loss function, with a batch size of 32 and 100 epochs. The inclusion of a
larger hidden layer is intended to maintain the amplitude between the mean of existing
signals and the neighboring signals. The amplitude for the mean of existing signals is less
than 250, whereas that of neighboring signals is around 500. Consequently, the generated
signal exhibits an amplitude of 227, within the stated range, and the achieved loss is 0.0556.

In this scenario, the accuracy of the model need not be excessively high for the
generation of missing signals that are not identical to the input. Typically, zeros are
assigned to missing data during the training of RNN models. However, for time series
signals with distinct characteristics, assigning values such as the mean of existing signals is
more reasonable. This approach allows the model to better capture the trends and peaks
expected in the missing signal predictions.

The FFT plots in Figure 4 show that the synthetic signals’ trends, especially for the
lower amplitudes near the peaks, are larger and not decaying, as opposed to the corre-
sponding plots of the neighboring signals and the mean existing signals. For this reason,
the approach of factoring the mean of existing signals was implemented. In terms of the
trend, these signals perfectly matched the reference ones. However, as observed from
the neighboring reference signal, the generated signals should also exhibit their trend to
some extent.

The RNN-regressed signals now possess both required qualities: their values range
between those of the individual signals (the neighboring signal in this case) and the mean
existing signals. The trend is also similar, although not an exact match to that of the
reference signals, fulfilling the necessary criteria.

In this study, therefore, the RNN-regressed signals are utilized in place of missing
signals from the healthy condition of the given experimental building structure.
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2.5.3. RNN-Regressed Signals

Finally, missing signals are generated by training an RNN model for a regression
task. RNNs excel at capturing sequential trends within data points by utilizing both the
current input and the information from previous outputs to make predictions [48]. This
may further contribute to introducing meaningful variability to each data point. This
variability enables each data point to have its own distinct identity while still aligning with
the reference signals. It is important to note that these data points are not directly derived
through factorization from the corresponding data points in the reference signals, as is the
case with the factored signals.

Figure 3 shows plots of both the reference and generated signals. As can be observed,
the synthetic signals are shifted more to the negative values.

The final set of signals is generated by initially substituting the values of the mean
existing signals in place of the missing signals. Subsequently, the entire dataset, encom-
passing both the existing signals and the replaced missing signals, is employed as both the
training and target dataset. Once the RNN model is trained, predictions are generated for
the missing signals.

The neural network architecture comprises an input layer with 8192 neurons, a hidden
layer with 10,000 neurons, and an output layer with 8192 neurons. The mean squared error
is employed as the loss function, with a batch size of 32 and 100 epochs. The inclusion of a
larger hidden layer is intended to maintain the amplitude between the mean of existing
signals and the neighboring signals. The amplitude for the mean of existing signals is less
than 250, whereas that of neighboring signals is around 500. Consequently, the generated
signal exhibits an amplitude of 227, within the stated range, and the achieved loss is 0.0556.

In this scenario, the accuracy of the model need not be excessively high for the
generation of missing signals that are not identical to the input. Typically, zeros are
assigned to missing data during the training of RNN models. However, for time series
signals with distinct characteristics, assigning values such as the mean of existing signals is
more reasonable. This approach allows the model to better capture the trends and peaks
expected in the missing signal predictions.

The FFT plots in Figure 4 show that the synthetic signals’ trends, especially for the lower
amplitudes near the peaks, are larger and not decaying, as opposed to the corresponding
plots of the neighboring signals and the mean existing signals. For this reason, the approach
of factoring the mean of existing signals was implemented. In terms of the trend, these signals
perfectly matched the reference ones. However, as observed from the neighboring reference
signal, the generated signals should also exhibit their trend to some extent.
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Figure 4. FFT plots of reference signals and generated signals.Figure 4. FFT plots of reference signals and generated signals.

3. Feature Extraction and Selection

One of the crucial steps in machine learning is feature extraction, and, of course,
feature selection. Features are the variables deemed to contain a significant amount of
information from the given dataset. With these features, models can be trained and tested
to make predictions. To effectively train models capable of capturing trends from signals of
both healthy and damaged structural conditions, feature extraction is imperative.

In this study, time-domain, frequency-domain, and time–frequency-domain coeffi-
cients are employed for feature extraction. Specifically, PSD coefficients and WT coefficients
are utilized for their effectiveness [42,49,50].

3.1. Time-Domain Signals without Feature Extraction and with PCA

After the normalization of the dataset, the time series domain is utilized without
further feature extraction. Accordingly, an NN model with an input layer consisting of
8192 neurons and a hidden layer containing 5000 neurons is trained. A learning rate of
0.002 is set, along with L1 and L2 regularizations of 0.001 and 0.0002, respectively. The
model is trained for 500 epochs, resulting in a test loss of 13.55 and test accuracy of 0.451.
The receiver operating characteristic (ROC) plot’s area under the curve (AUC) value of
0.5 indicates random prediction, further confirming the poor performance of the model.
Additionally, the large number of neurons in both the input and output layers leads to a
larger computational burden.

Following PCA preprocessing on the dataset, only the first 400 principal components
are retained, explaining 98.8% of the variance. Consequently, the input and hidden layers
of the model are significantly reduced to 400 and 250 neurons, respectively. While keep-
ing other parameters constant, such as the learning rate and regularization values, and
increasing the number of epochs to 1000, the model’s training loss decreases to 1.69 and
the test accuracy improves to 0.547. From the above model, it is evident that, despite the
improvements in the training loss and test accuracy, the AUC performance remains poor.

To further investigate, the number of PCA components is reduced to 150, and the ROC
AUC result is observed as 0.48 on an unseen prediction dataset consisting of 150 signals.
Although the input layer is then reduced to 150 and the hidden layer to 80, and the test loss
is recorded as 0.848 and test accuracy as 0.783, the AUC displayed in Figure 5 still depicts
the poor performance of the trained model. Other feature extraction approaches therefore
need to be implemented.
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The RNN-regressed signals now possess both required qualities: their values range
between those of the individual signals (the neighboring signal in this case) and the mean
existing signals. The trend is also similar, although not an exact match to that of the
reference signals, fulfilling the necessary criteria.

In this study, therefore, the RNN-regressed signals are utilized in place of missing
signals from the healthy condition of the given experimental building structure.
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both healthy and damaged structural conditions, feature extraction is imperative.

In this study, time-domain, frequency-domain, and time–frequency-domain coeffi-
cients are employed for feature extraction. Specifically, PSD coefficients and WT coefficients
are utilized for their effectiveness [42,49,50].

3.1. Time-Domain Signals without Feature Extraction and with PCA

After the normalization of the dataset, the time series domain is utilized without
further feature extraction. Accordingly, an NN model with an input layer consisting of
8192 neurons and a hidden layer containing 5000 neurons is trained. A learning rate of
0.002 is set, along with L1 and L2 regularizations of 0.001 and 0.0002, respectively. The
model is trained for 500 epochs, resulting in a test loss of 13.55 and test accuracy of 0.451.
The receiver operating characteristic (ROC) plot’s area under the curve (AUC) value of
0.5 indicates random prediction, further confirming the poor performance of the model.
Additionally, the large number of neurons in both the input and output layers leads to a
larger computational burden.

Following PCA preprocessing on the dataset, only the first 400 principal components
are retained, explaining 98.8% of the variance. Consequently, the input and hidden layers
of the model are significantly reduced to 400 and 250 neurons, respectively. While keep-
ing other parameters constant, such as the learning rate and regularization values, and
increasing the number of epochs to 1000, the model’s training loss decreases to 1.69 and
the test accuracy improves to 0.547. From the above model, it is evident that, despite the
improvements in the training loss and test accuracy, the AUC performance remains poor.

To further investigate, the number of PCA components is reduced to 150, and the ROC
AUC result is observed as 0.48 on an unseen prediction dataset consisting of 150 signals.
Although the input layer is then reduced to 150 and the hidden layer to 80, and the test loss
is recorded as 0.848 and test accuracy as 0.783, the AUC displayed in Figure 5 still depicts
the poor performance of the trained model. Other feature extraction approaches therefore
need to be implemented.

Figure 5. ROC AUC of NN model prediction for time-domain signals after PCA.Figure 5. ROC AUC of NN model prediction for time-domain signals after PCA.

3.2. Frequency-Domain Features

Time series signals are transformed into the frequency domain using the fast Fourier
transform. As vibration-based signals, like the acceleration signals used in this study,
are well elucidated in the frequency domain, leveraging these coefficients as features is
justified. PSDs are particularly valuable in illustrating the distribution of frequencies,
including the natural frequencies that convey information regarding characteristic changes
in structures—which we call damage [40,51]. Consequently, we utilize the peak amplitude,
peak frequency, crest factor, skewness, and kurtosis of each considered signal segment from
the respective PSD plots. The sensitivity analyses conducted below are therefore based on
these coefficients.

The PSD plots for the sample signals from all four conditions—undamaged (row 78),
with EOFs (row 8), damaged (row 36), and EOFs with damage (row 106), respectively—are
given in Figure 6, after the RNN-regressed signals are used to replace the missing signals
and data normalization is carried out. The PA and PF coefficients of all three states other
than the healthy condition are close to each other, with PA 0.11, 0.1, 0.2 and PF 51.61,
56.77, 55.48, respectively, whereas the undamaged condition signal has PA 0.046 and PF
72.26. Such a shift in the natural frequency of the signal in subplot B is caused by the
increase in mass on the first floor to represent operational effects, which seem even to
exceed that of the damage represented by a 10 mm bumper gap, as shown in subplot C.
The CF values for the damaged and EOFs with damage categories also are similar, at 2.99
and 2.98, respectively. All these effects show that the EOFs’ effects weigh the same or more
than that of the damaged status. All 680 such signals are thus used throughout the work
that follows.

Sensitivity analyses of the segment length and overlapping percentage, including the
effects of PCA, are covered using PSD coefficients, and then the best approach for each
sensitivity analysis is kept in the remaining part of this study.

As can be seen in Figure 7, the signals were segmented into 250 segment lengths and
50% overlapping was used with a Hamming window to plot the coherence among four
randomly chosen signals from different exposure states using Matlab R2019b. Coherence
plots for the randomly selected signals from different conditions provide insights into
the frequency ranges in which the coherence becomes considerable. As the first 20 Hz
frequency range mainly corresponds to the rigid body modes of the structure and the
excitation was random between 20 Hz and 150 Hz [26], the coherence plot is inspected only
to this band. The amplitudes for the PSD plots in Figure 6 also reflect this reality.
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3.2. Frequency-Domain Features

Time series signals are transformed into the frequency domain using the fast Fourier
transform. As vibration-based signals, like the acceleration signals used in this study, are well
elucidated in the frequency domain, leveraging these coefficients as features is justified. PSDs
are particularly valuable in illustrating the distribution of frequencies, including the natural
frequencies that convey information regarding characteristic changes in structures—which we
call damage [40,51]. Consequently, we utilize the peak amplitude, peak frequency, crest
factor, skewness, and kurtosis of each considered signal segment from the respective PSD
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56.77, 55.48, respectively, whereas the undamaged condition signal has PA 0.046 and PF
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increase in mass on the first floor to represent operational effects, which seem even to
exceed that of the damage represented by a 10 mm bumper gap, as shown in subplot C.
The CF values for the damaged and EOFs with damage categories also are similar, at 2.99
and 2.98, respectively. All these effects show that the EOFs’ effects weigh the same or more
than that of the damaged status. All 680 such signals are thus used throughout the work
that follows.
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Figure 6. PSD plot for the normalized representative signals. (a); (b), (c), (d).

Sensitivity analyses of the segment length and overlapping percentage, including the
effects of PCA, are covered using PSD coefficients, and then the best approach for each
sensitivity analysis is kept in the remaining part of this study.

As can be seen in Figure 7, the signals were segmented into 250 segment lengths and
50% overlapping was used with a Hamming window to plot the coherence among four

Figure 6. PSD plot for the normalized representative signals. (a) undamaged signal, (b) signal with
EOFs, (c) damaged signal, (d) damaged signal with EOFs.

Accordingly, high coherence between the undamaged signal (row 78) and the signal
with EOFs (row 8) is observed only at a few frequencies, at 25.8 Hz, 61.9 Hz, 71 Hz, 92.9 Hz,
143.2 Hz, and 152.3 Hz, with the highest coherence at 61.9Hz, and the magnitude is 0.96.
No considerable bandwidth with high coherence exists, which is an indication that the
EOFs have a strong influence on the row 8 signal. See the topmost plot in Figure 7.

For the next subplot, in which the undamaged signal is paired with the damaged one
(row 36), low coherence is observed in multiple bandwidths. These are between 20 and
46.4 Hz, 55.4 and 90.3 Hz, 92.9 and 104.5 Hz, 107.1 and 117.4 Hz, 120 and 125.2 Hz, 127.7
and 139.4 Hz, and finally between 141.9 and 149.7 Hz. These bands exhibit coherence as
low as zero and as high as only 0.6, not far from the moderate value considered here, which
is 0.5 coherence.

The third subplot displays relatively low coherence between the undamaged signal
and the signal exposed to both damage and EOFs (row 106). Except at four frequencies, the
whole bandwidth is covered with low coherence. Although the signals on row 36 and row
106 face the same damage level (20 mm bumper gap), the EOFs imposed on the row 106
signal indicate no significant influence and therefore return a smaller number of frequencies
with high coherence to the undamaged signal.

The remaining three subplots display the coherence among the three signals, excluding
the undamaged one. Although, because of the above observation, bandwidths with higher
coherence are expected, the reality is different. Even the frequencies that correspond to high
coherence do not match across the three subplots. Therefore, although the coherence plot
provides a very good understanding of the given dataset and the corresponding conditions,
and its candidacy as an input for feature extraction is undeniable, it remains difficult to
extract meaningful features across the whole signal based on this analysis.
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randomly chosen signals from different exposure states using Matlab R2019b. Coherence
plots for the randomly selected signals from different conditions provide insights into
the frequency ranges in which the coherence becomes considerable. As the first 20 Hz
frequency range mainly corresponds to the rigid body modes of the structure and the
excitation was random between 20 Hz and 150 Hz [26], the coherence plot is inspected only
to this band. The amplitudes for the PSD plots in Figure 6 also reflect this reality.
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Figure 7. Coherence among randomly selected signals from four different conditions.

Accordingly, high coherence between the undamaged signal (row 78) and the signal
with EOFs (row 8) is observed only at a few frequencies, at 25.8 Hz, 61.9 Hz, 71 Hz, 92.9 Hz,
143.2 Hz, and 152.3 Hz, with the highest coherence at 61.9Hz, and the magnitude is 0.96.
No considerable bandwidth with high coherence exists, which is an indication that the
EOFs have a strong influence on the row 8 signal. See the topmost plot in Figure 7.

For the next subplot, in which the undamaged signal is paired with the damaged one
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Hz, 55.4 and 90.3 Hz, 92.9 and 104.5 Hz, 107.1 and 117.4 Hz, 120 and 125.2 Hz, 127.7 and
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as zero and as high as only 0.6, not far from the moderate value considered here, which is
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the whole bandwidth is covered with low coherence. Although the signals on row 36
and row 106 face the same damage level (20 mm bumper gap), the EOFs imposed on the

Figure 7. Coherence among randomly selected signals from four different conditions.

3.3. Overlapping Percentage

Signals may be segmented for various reasons. Segmented signals offer the advantage
of easily capturing the details of a given signal, are more manageable, and can be used as a
strategy to handle non-stationary signals. In this study, even though sample time series
plots and statistical measures such as the mean and variance show no considerable changes,
and thus the signals could be considered stationary, segmentation is also implemented as a
tool to address the non-stationarity of the signals. Moreover, segmentation is employed as
a strategy to extract time-resolution-dependent information from the PSD plots, since this
FFT lacks this.

Segmentation by itself, however, introduces information leakage at the edges of
segments when one tries to restore the original signal. This shortcoming is minimized using
windowing. By implementing windowing, we aim to ensure uniformity in the starting
and ending points of signal segments when the FFT process is underway. This approach
is designed to yield a refined FFT result. As a result, the dominance of specific frequency
bands around a primary signal in comparison to other signals can be alleviated. Various
windowing techniques exist to reduce leakage effects during the segmentation process. The
Hamming window has a very good trade-off between the main lobe width and side lobe
levels. For this task, therefore, we use the Hamming window.

w(n) = 0.54 − 0.46cos(2πn)
N − 1

(3)
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where 0 ≤ n ≤ N − 1 and N is the number of data fed to the FFT. Equation (3) is the
formula for the Hamming window. It is quite close to the Hann window but has a very
good trade-off between the main and side lobe widths.

Unlike Hann, the Hamming window’s ends do not touch the zero-value mark. How-
ever, they are still quite similar to each other. To start with, a segment length of 250 data
points is chosen. The performance of three segment length overlapping percentages is
compared. They are commonly used and advised overlap percentages, 50%, 75%, and 90%.
The NN models have a learning rate of 0.002, dropout rate of 0.1, loss patience for early
stoppage of 5, and regularization factors L1 0.001, L2 0.0001. Based on the accuracy of the
trained NN model, the 75% overlap shows better performance, with 77.3% accuracy.

The neural network models were tested with both one and two hidden layers. For this
task, a single hidden layer proved to be sufficient and yielded better results compared to
the two-layer architecture. The number of neurons in a particular hidden layer is another
hyperparameter that demands careful consideration. In research, it is not set to a specific
number; its optimality depends on factors such as the complexity of the problem, the data
quality, and the number of neurons in both the input and output layers.

It might be generally said that a higher number of neurons in the hidden layer im-
proves the performance of the model. This, however, does not work indefinitely and it is
also at the cost of time and computational memory consumption [52]. In this regard, several
neurons in the hidden layer might be given between 1/2 and 2/3 of the total neurons
in both the input and output layers. In this work, for general comparison purposes, the
number of neurons in the hidden layer is taken to be half the sum of that of both the input
and output layers.

The performance of the overlapping percentage is summarized in Table 4. The pre-
diction accuracy for 75% overlapping showed slightly better performance, at 77.3%; with
PCA as a dimensionality reduction method, 50% overlapping has slightly more accuracy,
at 68.6%, followed by 65.3% for the 75% overlap. Although a 74% prediction in the 90%
overlap is not significantly lower accuracy, the high dimensionality of the features with the
increased overlap percentage strongly affects the task. In this case, 1590 features are used
for the 90% overlap, while 645 and 320 features are used for the 75% and 50% overlaps,
respectively. The performance with PCA here is lower as compared to the use of the original
features. Except for the RNN models used below, where the model training takes too much
time, PCA is not used for the neural network models.

Table 4. Overlapping length % effect on NN model performance.

Segment No. of No. of Features No PCA With PCA
Overlap % Length Segments Input Layer Hidden Layer Predicted Accuracy Predicted Accuracy

50% 250 64 320 160 0.72 0.686
75% 250 129 645 323 0.773 0.653
90% 250 318 1590 800 0.74 0.626

3.4. Segment Length

Now, the segment length of 250 data points is considered the smallest segment to
start with. The next segment length results from the doubling of the preceding one. With
this, five segments have been used to generate PSD features and train the NN models.
Following the above result, note that the 75% overlap is used. Additionally, the original
signal in its unsegmented form (with no segmentation, there is no need for windowing) is
also included.

The neural network models’ accuracy in prediction using the PSD coefficients gen-
erated from different segment lengths with Hamming windowing applied is shown in
Figure 8. A total of six NN models were trained. As the same overlapping percentage was
used across all six models, the numbers of features correspondingly decreased from the 250
segment length to the unsegmented original signal with 645, 310, 145, 65, 25, and 5 features,
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respectively. As can be seen in the same plot, the highest prediction accuracy is recorded
for the 250 segment width.
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The performance of the overlapping percentage is summarized in Table 4. The pre-
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start with. The next segment length results from the doubling of the preceding one. With
this, five segments have been used to generate PSD features and train the NN models.
Following the above result, note that the 75% overlap is used. Additionally, the original
signal in its unsegmented form (with no segmentation, there is no need for windowing) is
also included.

The neural network models’ accuracy in prediction using the PSD coefficients gen-
erated from different segment lengths with Hamming windowing applied is shown in
Figure 8. A total of six NN models were trained. As the same overlapping percentage
was used across all six models, the numbers of features correspondingly decreased from
the 250 segment length to the unsegmented original signal with 645, 310, 145, 65, 25, and
5 features, respectively. As can be seen in the same plot, the highest prediction accuracy is
recorded for the 250 segment width.
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Figure 8. Effect of segment length on accuracy of NN model prediction.

3.5. Effect of PCA

Regarding Table 4 above, the dimensionality is much reduced for the 50% overlap,
from 320 to 70 features, with 99.7% of the variance in the original features explained; for the
75% overlap, it is reduced from 645 to 130 features, with the same 99.7% variance explained;
and for the 90% overlap, it is reduced from 1590 to 150 features, with 95.5% variance
explained. The use PCA reduced the dimensions of the features to be trained and the

Figure 8. Effect of segment length on accuracy of NN model prediction.

3.5. Effect of PCA

Regarding Table 4 above, the dimensionality is much reduced for the 50% overlap,
from 320 to 70 features, with 99.7% of the variance in the original features explained; for the
75% overlap, it is reduced from 645 to 130 features, with the same 99.7% variance explained;
and for the 90% overlap, it is reduced from 1590 to 150 features, with 95.5% variance
explained. The use PCA reduced the dimensions of the features to be trained and the
corresponding prediction results were of course smaller than those of the full-scale features.
For this reason, we chose to use the original features except for the RNN models below.

Figure 9 shows the cumulative variance percentage explained with the corresponding
number of PCA coefficients. The plot is specifically for the 75% overlapping case in
association with Table 4 above. With 130 PCA-transformed features, therefore, 99.7% of the
variance in the original features is explained, thereby reducing 645 features to only 130.
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corresponding prediction results were of course smaller than those of the full-scale features.
For this reason, we chose to use the original features except for the RNN models below.

Figure 9 shows the cumulative variance percentage explained with the corresponding
number of PCA coefficients. The plot is specifically for the 75% overlapping case in
association with Table 4 above. With 130 PCA-transformed features, therefore, 99.7% of the
variance in the original features is explained, thereby reducing 645 features to only 130.

Figure 9. Variance explained % vs. number of PCA-transformed coefficients for 75% overlap.

From the above sensitivity analyses, which are based on the frequency coefficients and
neural network models, the 75% segment overlap and the 250 data point segment width
with no PCA reduction showed the best performance from their respective categories.

3.6. Wavelet Coefficients

The wavelet transform usually has an advantage over the Fourier transform in that
the former can capture coefficients using high time and frequency resolutions, while the
latter operates fully within the frequency domain. This enables WT coefficients to capture
both low-frequency content that requires a high frequency resolution and high-frequency
content that requires a high time resolution [53].

The Daubechies wavelets, belonging to the family of orthogonal wavelets, are dis-
tinguished by their maximal number of vanishing moments. These wavelets consist of
scaling functions, also known as father wavelets, employed to represent the coarsest level of
approximation in multi-resolution analysis. They yield approximation coefficients (CA) cap-
turing low-frequency content. Additionally, there are shifting functions, or mother wavelets,
which provide detail coefficients (CD), representing high-frequency content. In this feature
extraction task, the db4 (which has four wavelet and scaling coefficients) wavelets are
specifically chosen. The wavelet is applied to all available signals with varying scaling.

The mean and variance of each coefficient category are taken into account as extracted
features. Given the observable differences among the data points of the coefficients, a sec-
ond round of data normalization is implemented. A comparison is then conducted among
multiple NN models using the aforementioned coefficients with various combinations.

CA and CD coefficients were used both separately and together while training the
dataset. The power and energy of the coefficients were also computed to enhance the
model’s quality. Figure 10 shows the mean and variance of the sample signals from
damaged conditions. Such coefficients are extracted to train damage-detecting models.

Other than the CA and CD coefficients, the energy coefficient, which is the square
of the sum of the CA and CD coefficients, and the power coefficient, which is the energy
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3.6. Wavelet Coefficients

The wavelet transform usually has an advantage over the Fourier transform in that
the former can capture coefficients using high time and frequency resolutions, while the
latter operates fully within the frequency domain. This enables WT coefficients to capture
both low-frequency content that requires a high frequency resolution and high-frequency
content that requires a high time resolution [53].

The Daubechies wavelets, belonging to the family of orthogonal wavelets, are dis-
tinguished by their maximal number of vanishing moments. These wavelets consist of
scaling functions, also known as father wavelets, employed to represent the coarsest level of
approximation in multi-resolution analysis. They yield approximation coefficients (CA) cap-
turing low-frequency content. Additionally, there are shifting functions, or mother wavelets,
which provide detail coefficients (CD), representing high-frequency content. In this feature
extraction task, the db4 (which has four wavelet and scaling coefficients) wavelets are
specifically chosen. The wavelet is applied to all available signals with varying scaling.

The mean and variance of each coefficient category are taken into account as extracted
features. Given the observable differences among the data points of the coefficients, a sec-
ond round of data normalization is implemented. A comparison is then conducted among
multiple NN models using the aforementioned coefficients with various combinations.

CA and CD coefficients were used both separately and together while training the
dataset. The power and energy of the coefficients were also computed to enhance the
model’s quality. Figure 10 shows the mean and variance of the sample signals from
damaged conditions. Such coefficients are extracted to train damage-detecting models.
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quotient for the product of several features, and the sampling rate are also used. With these
coefficients, there is a significant reduction in the feature dimension.

Figure 10. CA and CD for damaged signal 36.

The separate coefficients of the CA and CD categories each have 516 features, with
both categories containing 1032 features. In the last three model categories containing
power and energy, each has only two features. Seven neural network models trained with
combinations of wavelet coefficients have relatively closer performance, as can be seen in
Figure 11. The power and energy coefficients derived from the detailed coefficients scored
76%, closely followed by the model trained with the normalized CA and CD coefficients,
with 74.6% prediction accuracy. A model with power and energy coefficients derived from
both CA and CD also scored 73% accuracy. In this regard, it may be possible to use any
of the top-performing coefficients or their combinations. The prediction accuracy for all
models in this subsection and in the entire work is that obtained on unseen datasets.
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3.7. Most Damage-Sensitive Segment (MDSS) Extraction Approach

The nature of the signals was studied at the segment level to determine whether there
were noticeable patterns among the signals of different categories. From a 250 window
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Other than the CA and CD coefficients, the energy coefficient, which is the square
of the sum of the CA and CD coefficients, and the power coefficient, which is the energy
quotient for the product of several features, and the sampling rate are also used. With these
coefficients, there is a significant reduction in the feature dimension.

The separate coefficients of the CA and CD categories each have 516 features, with
both categories containing 1032 features. In the last three model categories containing
power and energy, each has only two features. Seven neural network models trained with
combinations of wavelet coefficients have relatively closer performance, as can be seen in
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Figure 11. The power and energy coefficients derived from the detailed coefficients scored
76%, closely followed by the model trained with the normalized CA and CD coefficients,
with 74.6% prediction accuracy. A model with power and energy coefficients derived from
both CA and CD also scored 73% accuracy. In this regard, it may be possible to use any
of the top-performing coefficients or their combinations. The prediction accuracy for all
models in this subsection and in the entire work is that obtained on unseen datasets.
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were noticeable patterns among the signals of different categories. From a 250 window
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3.7. Most Damage-Sensitive Segment (MDSS) Extraction Approach

The nature of the signals was studied at the segment level to determine whether there
were noticeable patterns among the signals of different categories. From a 250 window
length and 75% overlap, the eighth segments of the 75th, 15th, 35th, and 105th signals were
randomly selected to correspond to the undamaged, with EOFs, damaged, and EOFs plus
damaged conditions.

Therefore, Figure 12 was plotted based on the maximum difference in the respective
defined coefficients among a randomly chosen baseline (undamaged state) signal and
all dataset signals. Accordingly, it was observed that the peak amplitude, crest factor,
skewness, and other coefficients of the signals from the damaged condition exhibited
relatively smaller values compared to the undamaged signals with EOFs. A considerable
pattern was also observable among the four conditions of the signal segments as, generally,
segments in the undamaged condition scored the largest coefficient values, followed by the
EOFs with damage condition, the EOFs condition, and, finally, the damaged condition.

This is evident in certain segments of each signal. Most importantly, this insight
leads to a segment-based feature extraction technique such that each signal returns its
characteristics. Thus, extracting such segments may assist machine learning models in
distinguishing a damaged state from those with EOFs and undamaged states.

Based on this insight, a procedure is developed to extract such features at a segment
level and use them to train damage-detecting neural networks. A maximum change
detection criterion is used to deal with the different conditions of the signals, including
the EOFs.

MDSS selection returns the most sensitive segment of each signal experiencing the
maximum difference from the baseline signal for the considered coefficient. Each signal is
therefore represented with several signal segments, each corresponding to a specific type of
coefficient. The procedure is summarized as follows. First, a random signal from a healthy
state is chosen. After it is segmented with a segment length of 250 data points and 75%
overlap, their PA, PF, CF, Sk, and Ku coefficients are computed. These segments thus serve
as references for the next step.
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This is evident in certain segments of each signal. Most importantly, this insight
leads to a segment-based feature extraction technique such that each signal returns its
characteristics. Thus, extracting such segments may assist machine learning models in
distinguishing a damaged state from those with EOFs and undamaged states.

Based on this insight, a procedure is developed to extract such features at a segment
level and use them to train damage-detecting neural networks. A maximum change
detection criterion is used to deal with the different conditions of the signals, including
the EOFs.

MDSS selection returns the most sensitive segment of each signal experiencing the
maximum difference from the baseline signal for the considered coefficient. Each signal is
therefore represented with several signal segments, each corresponding to a specific type of
coefficient. The procedure is summarized as follows. First, a random signal from a healthy
state is chosen. After it is segmented with a segment length of 250 data points and 75%
overlap, their PA, PF, CF, Sk, and Ku coefficients are computed. These segments thus serve
as references for the next step.

In the next step, for each of the available signal and condition categories in the given
dataset, each of the above coefficients except PF is taken and the difference in magnitude
between the healthy state segment and the corresponding segment of every signal is
computed. Thus, the segment with the maximum absolute value difference is chosen as the
most sensitive segment for a specific coefficient from a specific signal. The same is applied
for the remaining coefficients.

Figure 12. PSD coefficients of sample signals from all four conditions.

In the next step, for each of the available signal and condition categories in the given
dataset, each of the above coefficients except PF is taken and the difference in magnitude
between the healthy state segment and the corresponding segment of every signal is
computed. Thus, the segment with the maximum absolute value difference is chosen as the
most sensitive segment for a specific coefficient from a specific signal. The same is applied
for the remaining coefficients.

In this way, there are four sensitive segments corresponding to the stated four co-
efficients for each signal. For each sensitive segment, all four coefficients are computed.
Therefore, there are 16 coefficients for a given signal. At this point, PF, which was excluded
as a criterion due to its direct dependency on PA, is included as an output coefficient,
making a total of 20 coefficients for each signal. The flow chart in Figure 13 shows the
feature extraction process using the developed MDSS approach.
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Figure 13. MDSS FFT coefficient extraction flow chart.

The same is applied for each of the 680 signals. At this point, the difference between
the coefficients of the healthy state segments and all signals is computed. A segment
that returns the maximum absolute value difference between the respective coefficients of
corresponding signal segments is thus identified. Accordingly, each signal will have four
MDSS segments. A segment may be the MDSS for more than one coefficient. In such a case,
the segment is reused, as well as the coefficients. On the other hand, there may not be an
MDSS if all corresponding segment differences for a coefficient result in the same value. In
such a case, a segment is randomly chosen as the MDSS for the same specific coefficient.

Signal 78 from the healthy state was randomly chosen as a reference signal for the
MDSS feature extraction. The 250 data point length and 75% overlapping produced
129 segments per signal. Then, five PSD coefficients, PA, PF, CF, Sk, and Ku, were computed
for all 129 segments of signal 78.

In Table 5, the MDSS chosen based on the procedure stated above for three signals
from the three conditions are displayed. The numbers represent specific signal segments
out of all available 129 segments for a specific signal. As can be seen, for the first and third
signals, a segment was the MDSS for more than one coefficient. On the other hand, for the
second signal, there were four distinct MDSS segments for each coefficient. The indices of
the segments from healthy state 78 were the same as the corresponding displayed segments.

The PSD plots of the MDSS for the PA coefficient in Figure 14 show the amplitude
and frequency distribution of each MDSS and its corresponding segment from the healthy
state signal 78. Although each segment is chosen as the MDSS for each coefficient, all five
coefficients, including PF, are computed from each MDSS segment. This results in a total of
20 features for each signal. This highly reduces the dimensionality, even compared to PCA,
which reduced a number of features to 70 features only. The PCA-treated features resulted
in ML models with slightly reduced accuracy.

Figure 13. MDSS FFT coefficient extraction flow chart.



Eng 2024, 5 646

The same is applied for each of the 680 signals. At this point, the difference between
the coefficients of the healthy state segments and all signals is computed. A segment
that returns the maximum absolute value difference between the respective coefficients of
corresponding signal segments is thus identified. Accordingly, each signal will have four
MDSS segments. A segment may be the MDSS for more than one coefficient. In such a case,
the segment is reused, as well as the coefficients. On the other hand, there may not be an
MDSS if all corresponding segment differences for a coefficient result in the same value. In
such a case, a segment is randomly chosen as the MDSS for the same specific coefficient.

Signal 78 from the healthy state was randomly chosen as a reference signal for the
MDSS feature extraction. The 250 data point length and 75% overlapping produced
129 segments per signal. Then, five PSD coefficients, PA, PF, CF, Sk, and Ku, were computed
for all 129 segments of signal 78.

In Table 5, the MDSS chosen based on the procedure stated above for three signals
from the three conditions are displayed. The numbers represent specific signal segments
out of all available 129 segments for a specific signal. As can be seen, for the first and third
signals, a segment was the MDSS for more than one coefficient. On the other hand, for the
second signal, there were four distinct MDSS segments for each coefficient. The indices of
the segments from healthy state 78 were the same as the corresponding displayed segments.

Table 5. MDSS numbers for sample signals from all conditions.

Signal No. PA CF Sk Ku Condition

8 68 75 13 75 EOFs
35 70 110 50 112 Damaged
108 40 93 93 73 Damaged with EOFs

The PSD plots of the MDSS for the PA coefficient in Figure 14 show the amplitude
and frequency distribution of each MDSS and its corresponding segment from the healthy
state signal 78. Although each segment is chosen as the MDSS for each coefficient, all five
coefficients, including PF, are computed from each MDSS segment. This results in a total of
20 features for each signal. This highly reduces the dimensionality, even compared to PCA,
which reduced a number of features to 70 features only. The PCA-treated features resulted
in ML models with slightly reduced accuracy.
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Figure 14. PSD for MDSS segments for PA of sample signals from all conditions.

With this approach, a binary classification NN model was trained. The input layer
had 20 neurons and the hidden layer had 14. Its training dataset imbalance was then
handled using SMOTE oversampling with 6 k-neighbors. This treatment increased the
test dataset from 424 to only 426, and it was less affected by SMOTE. The corresponding
test loss and test accuracy given a 0.1 drop were 0.949 and 0.651, respectively. With the
rest of the hyperparameters kept the same as in the other models above, its prediction
accuracy showed an improvement compared to the other models, with 81.3% accuracy on
the unseen datasets. The corresponding improved precision and recall scores were 0.755
and 0.72, respectively.

Four MDSS segments for the 35th signal, with results in all 20 features for the same
signal, are plotted in Figure 15, each with its respective segment from the undamaged
condition of the 78th signal.
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Figure 15. PSD MDSS for PA, CF, Sk, and Ku, respectively, of signal 35.

As the MDSS is deployed to a segment (segments are treated as points) rather than
corresponding specific points on the same segment, shorter segment lengths or larger
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With this approach, a binary classification NN model was trained. The input layer
had 20 neurons and the hidden layer had 14. Its training dataset imbalance was then
handled using SMOTE oversampling with 6 k-neighbors. This treatment increased the
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test dataset from 424 to only 426, and it was less affected by SMOTE. The corresponding
test loss and test accuracy given a 0.1 drop were 0.949 and 0.651, respectively. With the
rest of the hyperparameters kept the same as in the other models above, its prediction
accuracy showed an improvement compared to the other models, with 81.3% accuracy on
the unseen datasets. The corresponding improved precision and recall scores were 0.755
and 0.72, respectively.

Four MDSS segments for the 35th signal, with results in all 20 features for the same
signal, are plotted in Figure 15, each with its respective segment from the undamaged
condition of the 78th signal.

Eng 2023, 1 18

Table 5. MDSS numbers for sample signals from all conditions.

Signal no. PA CF Sk Ku Condition

8 68 75 13 75 EOFs
35 70 110 50 112 Damaged
108 40 93 93 73 Damaged with EOFs

0.0 80.6 161.3
Frequency

0.0

0.1

0.2

0.3

0.4

Po
we

r S
pe

ct
ra

l D
en

sit
y

Segment 68

Ba
se

lin
e

EO
Fs

0.0 80.6 161.3
Frequency

0.00

0.02

0.04

0.06

0.08

0.10
Segment 70

Ba
se

lin
e

Da
m

ag
e

0.0 80.6 161.3
Frequency

0.00

0.02

0.04

0.06

0.08

Segment 40

Ba
se

lin
e

EO
Fs

 &
 D

am
ag

e

Figure 14. PSD for MDSS segments for PA of sample signals from all conditions.

With this approach, a binary classification NN model was trained. The input layer
had 20 neurons and the hidden layer had 14. Its training dataset imbalance was then
handled using SMOTE oversampling with 6 k-neighbors. This treatment increased the
test dataset from 424 to only 426, and it was less affected by SMOTE. The corresponding
test loss and test accuracy given a 0.1 drop were 0.949 and 0.651, respectively. With the
rest of the hyperparameters kept the same as in the other models above, its prediction
accuracy showed an improvement compared to the other models, with 81.3% accuracy on
the unseen datasets. The corresponding improved precision and recall scores were 0.755
and 0.72, respectively.

Four MDSS segments for the 35th signal, with results in all 20 features for the same
signal, are plotted in Figure 15, each with its respective segment from the undamaged
condition of the 78th signal.
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Figure 15. PSD MDSS for PA, CF, Sk, and Ku, respectively, of signal 35.
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As the MDSS is deployed to a segment (segments are treated as points) rather than
corresponding specific points on the same segment, shorter segment lengths or larger
overlap percentages positively contribute to a more detailed frequency content examination
(higher time resolution), thereby returning improved models, while negatively contributing
to the computational burden. A trade-off is therefore required when working with big data.

MDSS is a technique to be used in an attempt to capture potential patterns that
correspond to each coefficient type of interest at the segment level. It assumes that a change
observed in a coefficient that is chosen based on domain knowledge potentially captures
both damage-based and EOF-based changes, and it can readily be applied to any structure
and diagnosis problem.

4. Damage Detection ML Models

EOFs can also be addressed with machine learning models. For this reason, multiple
models based on different training features were developed and tested, and damage
predictions on an unseen dataset were made using these models. In this section, the
procedure followed for the training of the models and the outputs for damage detection,
localization, and severity are presented.

4.1. Dataset Splitting and Unbalanced Dataset Handling

Out of the 680-signal dataset, 150 signals are reserved to measure the accuracy of the
predictions made with these trained and fine-tuned models. The remaining 530 signals are
used to train and test the damage detection machine learning models. Through a targeted
random sampling approach, the 150 signals are selected from the main dataset.

The targeted random sampling approach followed here selects 150 signals randomly
such that the remaining dataset has the same number of damaged and undamaged labels.
This means that the dataset used to train and test the models is balanced. Therefore, the
strategy to select signals from the undamaged target and the damaged target remains
random. Accordingly, 95 signals from the undamaged state of the building structure and
55 signals from the damaged state of the building structure are sampled for prediction
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purposes as unseen datasets. The remaining 530 signals thus have an equal number of
signals with both undamaged and damaged labels, i.e., 265 signals each.

However, in the data splitting stage, the random splitting strategy introduces a data
imbalance, especially on the training dataset. An imbalanced dataset occurs when the
number of elements in each target class varies significantly. This imbalance can have
a profound impact on the quality of the model, and, of course, predictions made with
such data may not be reliable. To address this issue, targeted sampling and the Synthetic
Minority Oversampling Technique (SMOTE) are implemented.

In this approach, 20% of the dataset is randomly split as a testing dataset and the
remaining 80% is used as a training dataset. However, the imbalanced training dataset
needs to be treated with SMOTE. As per this method, signals with labeling minorities are
synthetically generated using the neighborhood values. It works as an oversample. The
number of neighbors used is tuned to avoid overfitting and underfitting as well. In this
work, however, the default value, 6 neighborhoods, is used to ensure a fair comparison
among the different models.

Moreover, random undersampling was also applied for SMOTE to solve the dataset
imbalance problem by generating unavailable data through random sampling.

4.2. Neural Networks (NNs)

Acceleration signals, including their labeling, were collected based on four conditions
and their combinations. Supervised machine learning models were then trained here. Both
the FFT and WT coefficients of various combinations were used to train multiple NN
models. Two RNN models were also trained with these coefficients. As the RNN training
process here was too slow, PCA was applied to reduce the dimensionality. However, the
limited availability of prediction datasets greatly affected the accuracy, especially that of
the WT-based model.

The NN model is structured with an input layer of extracted and selected features,
followed by one hidden layer with neurons equal to half the total of both the input and
output layers. The output layer has several neurons based on the type of model.

Both binary and multiclass classification models are trained. The binary classification
model categorizes the signal condition as damaged or undamaged and thus requires only
one neuron in its output layer. ReLU activation functions are used in the input and hidden
layers, while the output layer is activated with Sigmoid.

During the forward feed, weights and biases are randomly assigned. The backpropaga-
tion process updates these coefficients based on the binary cross-entropy loss function. The
loss function calculates the difference between the true and predicted labels and minimizes
this difference using the Adam optimizer. This process is repeated for 1000 epochs.

The multiclass classification model has the same structure as the binary model, except
that the output layer has neurons with sizes equal to the number of classes. In this case,
there are five classes. Therefore, the activation function for the output layer is softmax,
and the loss function is sparse cross-entropy. Hyperparameters such as the learning rate,
dropout, L1 and L2 regularization, early stopping, and loss of patience are more or less
the same. Dropout and regularization were applied to reduce the model’s memorizing
tendency and thus enhance the generalization. This, of course, lowers the test accuracy of
the model. The evaluation is therefore conducted using both the test dataset and a new
dataset, while making predictions on the same model.

Simple RNN models with PCA-transformed coefficients are also trained: one with
FFT coefficients and another with WT coefficients. Due to the limited size of the prediction
dataset, only 90% of the variance was explained when PCA was applied to the FFT features,
and 77% of the variance was explained when PCA was applied to WT. Therefore, the models
were trained excessively, resulting in reduced feature sizes due to the limited prediction
datasets. Accordingly, the prediction accuracy for the FFT-based RNN model is 64% and
that of the WT-based is 71.3%. The WT-based RNN may obtain much better accuracy as it
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was trained for several features, i.e., more than 300, which resulted in variance explained of
more than 95%.

4.3. Threshold Setting

Binary classification models require a threshold for prediction as their outputs provide
a percentage probability of being classified as label 0 or label 1. There are percentage-based
thresholds like the 95th percentile. Youndin’s J value is also another approach that utilizes
sensitivity and specificity.

Jstat= sensitivity + specificity − 1

sensitivity=
TP

TP + FN

specificity=
TN

TN + FP

(4)

Equation (4) shows how the J value is computed. TP represents true positive, TN
represents true negative, and FP represents false positive predictions.

The third one is the receiver operating characteristic (ROC), which is associated with
the maximum area under the curve. The ROC curve primarily plots the true positive rate
against the false positive rate for threshold values ranging from zero to one. Models with
ROC plots approaching the left vertical and top horizontal lines exhibit high accuracy, while
those aligned with a broken straight line suggest near-random prediction accuracy [34].

The performance of the 95th percentile is low. However, the results for Youden’s
J value and the ROC are nearly the same. In this work, we choose the ROC threshold
approach because it provides a more explainable output.

From the ROC plot in Figure 16, thresholds with larger TP and smaller FP rates are
preferable. The optimal threshold was automatically selected as 0.929.
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Figure 16. ROC plot for 250 data point width and 75% overlap NN model.

4.4. Damage Detection

Binary classification and multiclass classification machine learning models are em-
ployed to detect damage. Signals from the undamaged condition of the structure are
labeled as 0 (true negative), and those from the damaged condition are labeled as 1 (true
positive). Since the prediction output is continuous, a threshold is applied to classify sig-
nals as damaged or undamaged. Damage detection is also performed using the multiclass
classification model.

The confusion matrix for the binary classification model shown above in Figure 17
is specifically that of the 250 data point, 75% overlap case with FFT coefficients used as
training features. The prediction made on the unseen dataset resulted in 0.766 precision
and 0.655 recall, with an F1-score of 0.706.

These models were trained considering three cases regarding the data imbalance in the
training dataset: the unbalanced case, the SMOTE balanced case (oversampling), and the
random undersampling balanced case. Binary classifications with the original unbalanced
case performed best as compared to the other two, with 80% accuracy. Random under-
sampling also resulted in 75.3% accuracy, while the SMOTE approach’s performance was
poor, at only 43%. SMOTE resulted in 10 additional samples and random undersampling
resulted in a 10 sample reduction from the original training dataset size of 424.

Weighted Average =
∑n

i=1(Ci × Pi)

∑n
i=1 Ci

(5)

where Ci represents the class assigned to the i-th data point from 0 to 4, n is the number of
classes, and Pi is the i-th data point probability.

With the multiclass classifications plotted as a and b on Figure 18, binary classification
predictions can be extracted. Two approaches were followed when the multiclass classi-
fication predictions were made. In the first one, the signal with the highest probability
score determined the class, while, in the second one, a weighted average of all the classes is
obtained via Equation (5). Accordingly, the first option has 76% damage detection accuracy
and the second option has 72% accuracy. With SMOTE applied, however, for option 1,
60% accuracy is obtained; for option 2, only 36% accuracy is recorded. With random
undersampling, the multiclass classification models showed almost the same prediction
accuracy of 70% and 69.3% for options 1 and 2, respectively.

In the unbalanced case with option 1, multiclass classification resulted in prediction
accuracy of 76%, 95.3%, 86%, 82.6%, and 75.3%, respectively, from class 0 to class 4. The
second option resulted in 74.6%, 92.6%, 83%, 82%, and 78%, respectively.
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labeled as 0 (true negative), and those from the damaged condition are labeled as 1 (true
positive). Since the prediction output is continuous, a threshold is applied to classify sig-
nals as damaged or undamaged. Damage detection is also performed using the multiclass
classification model.
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The confusion matrix for the binary classification model shown above in Figure 17
is specifically that of the 250 data point, 75% overlap case with FFT coefficients used as
training features. The prediction made on the unseen dataset resulted in 0.766 precision
and 0.655 recall, with an F1-score of 0.706.
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Figure 17. Confusion matrix for binary classification FFT NN.

(a) Option 1 (b) Option 2
Figure 18. Multiclass classification confusion matrix FFT NN.

4.5. Damage Localization

Damage localization refers to predicting the position or area where damage has
occurred. One approach to achieve this is to include the coordinates of the labels during
training. This allows predictions using the same model to return not only damage instances
but also their corresponding locations.

In this specific work, conducting in-depth damage localization was difficult given
that only a single sensor was present on each story. It was thus infeasible to produce
interpolation or extrapolation damage localization approaches. In addition, each floor had
a square shape with a size of 30.5 cm and each column’s height was only 17.4 cm. As the
model size was small, locating the damage position based on the respective floor sensor
locations was considered appropriate. The acceleration sensors used in the data collection
process had 1000 mV/g detection and fell within the point sensor category. The damage
localization performed here was also specific to the location of each sensor, rather than the
length or area.

Since the unseen dataset used to make predictions using the trained models was
collected from the same structure, and the location of each signal was known during the
data collection phase, the task here was to include the coordinates or floors where each
signal’s sensor was located in the training models. This allowed the return of location
outputs for the damaged conditions.
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case performed best as compared to the other two, with 80% accuracy. Random under-
sampling also resulted in 75.3% accuracy, while the SMOTE approach’s performance was
poor, at only 43%. SMOTE resulted in 10 additional samples and random undersampling
resulted in a 10 sample reduction from the original training dataset size of 424.
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where Ci represents the class assigned to the i-th data point from 0 to 4, n is the number of
classes, and Pi is the i-th data point probability.

With the multiclass classifications plotted as a and b on Figure 18, binary classification
predictions can be extracted. Two approaches were followed when the multiclass classi-
fication predictions were made. In the first one, the signal with the highest probability
score determined the class, while, in the second one, a weighted average of all the classes is
obtained via Equation (5). Accordingly, the first option has 76% damage detection accuracy
and the second option has 72% accuracy. With SMOTE applied, however, for option 1,
60% accuracy is obtained; for option 2, only 36% accuracy is recorded. With random
undersampling, the multiclass classification models showed almost the same prediction
accuracy of 70% and 69.3% for options 1 and 2, respectively.

In the unbalanced case with option 1, multiclass classification resulted in prediction
accuracy of 76%, 95.3%, 86%, 82.6%, and 75.3%, respectively, from class 0 to class 4. The
second option resulted in 74.6%, 92.6%, 83%, 82%, and 78%, respectively.
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occurred. One approach to achieve this is to include the coordinates of the labels during
training. This allows predictions using the same model to return not only damage instances
but also their corresponding locations.

In this specific work, conducting in-depth damage localization was difficult given
that only a single sensor was present on each story. It was thus infeasible to produce
interpolation or extrapolation damage localization approaches. In addition, each floor had
a square shape with a size of 30.5 cm and each column’s height was only 17.4 cm. As the
model size was small, locating the damage position based on the respective floor sensor
locations was considered appropriate. The acceleration sensors used in the data collection
process had 1000 mV/g detection and fell within the point sensor category. The damage
localization performed here was also specific to the location of each sensor, rather than the
length or area.

Since the unseen dataset used to make predictions using the trained models was
collected from the same structure, and the location of each signal was known during the
data collection phase, the task here was to include the coordinates or floors where each
signal’s sensor was located in the training models. This allowed the return of location
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4.5. Damage Localization

Damage localization refers to predicting the position or area where damage has
occurred. One approach to achieve this is to include the coordinates of the labels during
training. This allows predictions using the same model to return not only damage instances
but also their corresponding locations.

In this specific work, conducting in-depth damage localization was difficult given
that only a single sensor was present on each story. It was thus infeasible to produce
interpolation or extrapolation damage localization approaches. In addition, each floor had
a square shape with a size of 30.5 cm and each column’s height was only 17.4 cm. As the
model size was small, locating the damage position based on the respective floor sensor
locations was considered appropriate. The acceleration sensors used in the data collection
process had 1000 mV/g detection and fell within the point sensor category. The damage
localization performed here was also specific to the location of each sensor, rather than the
length or area.

Since the unseen dataset used to make predictions using the trained models was
collected from the same structure, and the location of each signal was known during the
data collection phase, the task here was to include the coordinates or floors where each
signal’s sensor was located in the training models. This allowed the return of location
outputs for the damaged conditions.

Accordingly, based on the damage detection approach in the above section, damage
was located using both binary classification and multiclass classification models. Table 6
summarizes the outputs. On the first and fourth signals, the multiclass predictions detected
the damage and identified it as located in story 2. On the second and fifth signals, false
predictions were made, including those for the associated locations.

Table 6. Damage localization for the first six damaged state signals.

Classification Type Damage Location
Sig. No. True Label Binary Class Multi Opt1 Multi Opt2 Story No. Comment

2 1 0 3 2 1
3 0 1 2 2 0 False prediction
7 1 1 2 2 3
10 1 0 3 3 1
12 0 1 2 2 0 False prediction
16 1 1 2 2 2
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4.6. Damage Severity

The severity level of the damage in the experimental setup was influenced by the
bumper–suspension column gap, based on the considered setup and assumptions. Specif-
ically, the larger the gap, the higher the nonlinearity introduced to the structure. Conse-
quently, the severity of the damage was expected to be larger with a larger gap.

In this regard, therefore, the first task was to categorize the damage severity given the
bumper gaps and corresponding signals collected. Eight signals were chosen, of which the
first five had bumper gaps of 0.13, 0.1, 0.05, 0.15, and 0.2 mm, as well as a healthy baseline
signal and two signals with EOFs and associated bumper gaps of 0.2 and 0.1 mm. The peak
frequency, peak amplitude, crest factor, skewness, and kurtosis were extracted from their
respective PSD computations for the 250 data point segment width and 75% overlap. The
respective mean was then calculated and box plots of all eight signals for each coefficient
were plotted to observe the distribution.

With the help of the peak amplitude and crest factor, the bumper gaps of 0.13 and
0.15 mm were grouped as their distributions had similarities, as can be seen in Figure 19.
Therefore, the severity categories were assigned values of 0 for undamaged, 1 for less
damage with a bumper gap of 0.05 mm, 2 for medium damage with a bumper gap of
0.1mm, 3 for severe damage with bumper gaps of 0.13 and 0.15 mm, and 4 for very severe
damage with bumper gaps of 0.2 mm. The severity extents may not perfectly align with
the reality. They were implemented only to show the categorical differences in the damage.
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(a) Mean of peak amplitude distribution

(b) Mean of crest factor distribution
Figure 19. Severity class level grouping.

Figure 20. Training dataset size before and after imbalance treatment.

Figure 19. Severity class level grouping.
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As can be seen in Table 6 above, the damage severity classifications were made using
both option 1 and option 2.

The accuracy results for each model can be extracted from the confusion matrices
provided above in Figure 18. Therefore, predictions with option 2 in the unbalanced
case resulted in 76%, 95.3%, 86%, 82.6%, and 75.3% accuracy for classes 0, 1, 2, 3, and 4,
respectively.

Generally, the unbalanced dataset predictions exhibited better accuracy, followed
by undersampled models, while oversampled models showed poor performance. One
potential reason for this was the large number of synthetic samples (more than two times
the original training dataset), resulting in overfitted models and less generalization. This
may also be because of the lesser dataset imbalance effect compared to the relatively larger
synthetic dataset required with SMOTE.

Figure 20 shows that, for multiclass classification, both SMOTE and random undersam-
pling resulted in a very different synthetic training dataset from the original unbalanced
one. In the multiclass damage severity classifications, option 2 showed better performance
than option 1. Furthermore, the smaller number of labeled samples for each bumper gap
class contributed to the reduced performance of the SMOTE oversampling and random
undersampling models, ultimately favoring the original unbalanced models.
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(a) Mean of peak amplitude distribution

(b) Mean of crest factor distribution
Figure 19. Severity class level grouping.

Figure 20. Training dataset size before and after imbalance treatment.
Figure 20. Training dataset size before and after imbalance treatment.

5. Conclusions

Six hundred and eighty acceleration signals, each containing 8192 data points, collected
from an experimental three-story 3D frame structure, were used for training, testing, and
prediction to mainly detect damages. The effort was also extended to damage localization
and severity assessment. The objective was to examine the performance of potential feature
extraction approaches using data-driven ML models to detect damage from signals under
different approaches. Proposing a potential technique that could be easily integrated into
existing approaches was another objective.

Sensitivity analyses related to the segment length and overlapping percentage were
carried out. The effect of dimensionality reduction via PCA also was part of this analysis.

Although the time-domain signals in both cases without feature extraction and with the
implementation of PCA were applied, the AUCs of the ROC plots indicated highly random
predictions, which was due to the poor quality of the models. Different combinations of the
FFT and WT coefficients were also used to train both NN and RNN models. Moreover, the
most damage-sensitive segment was introduced as a potential feature extraction approach.

Generally, different approaches were tested to replace missing data and the RNN-
based regression approach resulted in better trends and amplitudes regarding the reference
signals. Given 8192 data point signals, a 250 data point segment width was found effective.
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Given the Hamming window, 75% overlapping returned better models. PCA resulted in
slightly less accurate models but was much more helpful in training RNN models, which
require more time for the original features. The PSD coefficients PA, PF, CF, Sk, and Ku
performed well in capturing information from the provided signals. The WT coefficients
CA and CD, their energy, and the power coefficients returned models with slightly better
accuracy than the PSD ones. The RNN models with WT coefficients indicated promising
results given the limited availability of prediction datasets.

In the presence of signals exposed to multiple conditions, such as healthy, with EOFs,
damaged, and with EOFs plus damage, the MDSS feature extraction procedure introduced
here might be considered a potential technique. The approach outperformed all other
feature extraction approaches and returned higher evaluation results for its corresponding
machine learning model. It also greatly reduced the dimensionality as a signal with multiple
segments was replaced with only a few of the most sensitive ones.

MDSS is a technique intended for deployment to capture potential patterns corre-
sponding to each coefficient type of interest at the segment level. It essentially assumes that
the change observed in a coefficient, chosen based on domain knowledge, can potentially
capture changes related to both damage and EOFs. Consequently, it can be readily applied
to any structural and diagnostic problem.

The damage detection and localization tasks were carried out using both binary and
classification models with high accuracy. The damage severity assessment was carried out
using classification models and the performance was very good. An unbalanced training
dataset, a SMOTE-treated oversampled dataset, and a randomly undersampled dataset
were used across the research. EOF effects could potentially be handled with NN models
combined with corresponding feature extraction approaches.

Overall, 20 NN and RNN models were trained in this work using different features
and their combinations.

Although it performed well for some binary classification models, with multiclass
classification, SMOTE’s accuracy was the poorest among the studied approaches. This was
potentially due to the much smaller number of signals from each severity class. The models’
accuracy could potentially surpass the recorded values mentioned here if there was a more
extensive dataset available for the given experimental structure.

At this point, it is worth affirming that data-driven damage identification approaches
present great potential in parallel to the size and quality of the dataset collected.
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