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Abstract: Physical roots, exemplifications and consequences of periodic and aperiodic ordering (repre-
sented by Fibonacci series) in biological systems are discussed. The physical and biological roots and
role of symmetry and asymmetry appearing in biological patterns are addressed. A generalization
of the Curie–Neumann principle as applied to biological objects is presented, briefly summarized
as: “asymmetry is what creates a biological phenomenon”. The “top-down” and “bottom-up” ap-
proaches to the explanation of symmetry in organisms are presented and discussed in detail. The
“top-down” approach implies that the symmetry of the biological structure follows the symmetry
of the media in which this structure is functioning; the “bottom-up” approach, in turn, accepts that
the symmetry of biological structures emerges from the symmetry of molecules constituting the
structure. A diversity of mathematical measures applicable for quantification of order in biological
patterns is introduced. The continuous, Shannon and Voronoi measures of symmetry/ordering and
their application to biological objects are addressed. The fine structure of the notion of “order” is
discussed. Informational/algorithmic roots of order inherent in the biological systems are considered.
Ordered/symmetrical patterns provide an economy of biological information, necessary for the
algorithmic description of a biological entity. The application of the Landauer principle bridging
physics and theory of information to the biological systems is discussed.

Keywords: biology; symmetry; asymmetry; periodic ordering; aperiodic ordering; Curie principle;
information; Landauer principle; continuous measure of symmetry; Shannon measure of symmetry

1. Introduction

Biological objects demonstrate remarkably repeatable patterns, governed by simple
mathematical laws and regularities. Biological systems frequently exhibit symmetry and
regularity on various spatial scales, starting from the genomic level and biomolecules and
extending to the entire organism [1–6]. A nearly universal observation, which was reported
recently, states the subunits in protein assemblies are arranged in symmetric ways (the
subunits themselves may be not symmetrical) [7]. It was hypothesized that the beautiful
symmetries of biomolecules may reflect basic principles about the energy landscape in
biology, just as symmetry relations do in particle physics [8]. Symmetry is inherent to the
bodies of practically all animals (with rare exceptions). Animals are characterized by some
kind of overall body symmetry, and these are of only a few types: translational, radial,
biradial and bilateral symmetry [9]. Symmetry, in turn, represents a kind of ordering in
physical and biological systems (“ordering” is understood as the process of putting elements
of a biological pattern in a particular order) [10,11]. When we address the symmetry of
ordered patterns, we usually restrict ourselves to mainly considering periodic order [12].
At the same time, order without periodicity has emerged to properly describe an increasing
number of complex systems, and in particular biological ones [12]. This kind of ordering
was referred to as aperiodic ordering [12]. An outstanding example of aperiodic ordering is
supplied by the Fibonacci numbers, or Fibonacci series [13–16]. Fibonacci and Lucas series
appear in biological patterns [17]. Perhaps the most striking example of such samples is
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supplied by phyllotaxis, which is the arrangement of leaves on a plant stem [13–17]. These
patterns are surprisingly regular, so regular in fact that a physicist can compare their order
to that of crystals. However, ordering in biological systems is usually not perfect, and
quantitative measures of the deviation from the perfect ordering, which were introduced
recently, will be discussed below in detail. It should be mentioned that non-ordered,
asymmetrical biological systems exist. It is generally agreed that sponges are completely
asymmetrical (see Figure 1); however, this thesis may be debated and will be addressed
below in detail.
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Figure 1. Calcareous sponges are depicted. Sponges are usually regarded as non-ordered
biological objects.

Moreover, it was suggested that breaking symmetry is a prevalent process in
biology [3,18]. However, to be broken, symmetry in biological patterns must first ap-
pear, and it appears on different levels of organization of biological systems [1,2,4,18]. First
of all, let us define rigorously the notion of "symmetry". Symmetry in the text is understood
as invariance of the biological object under some mathematical transformations, which may
be: translation, reflection, rotation or scaling (including fractal scaling).

A reasonable question is as follows: what is the biological reasoning for periodic
and aperiodic ordering in biological systems? In other words, why does nature prefer
ordered patterns? The possible answers to this fundamental question may be classified as
follows: (i) The appearance of symmetry and other sample patterns is due to the external
physical constraints implied on the biological system [5,19–21]. This hypothesis accepts
that just physical effects, which in many cases act as proximate, direct, tissue-shaping
factors during ontogenesis, are also the ultimate causes, (in other words) the indirect factors
that provide a selective advantage, of animal or plant symmetry, from organs to body
plan level patterns [19–21]. These physical constraints, in turn, may be responsible for the
time evolution of biological species. In particular, it was suggested that the last common
ancestor of metazoans (multicellular animals) was probably cylindrically symmetrical, with
a concomitant axial polarity generated by early embryonic signaling. Changes in symmetry
type occurred repeatedly with time, with respect to environmental parameters as the main
constraining forces, providing an evolutionary change in the macroscopic symmetry of
metazoans [21]. (ii) The second idea explaining the abundance of the symmetric patterns
in biology implies that the symmetry of biological systems stems from the symmetry of
molecules themselves and potentials describing interactions between molecules [22,23].
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It was demonstrated that the symmetry of these potentials governs the symmetry of
biological systems, such as actin, tubulin and the ubiquitous icosahedral shell structures
of viral capsids [22,23]. (iii) The third approach relates the appearance of mathematical
ordering in biological systems to pure survival reasons. For example, periodic cicadas
emerge from their underground homes to mate every 13 or 17 years, and 13 and 17 are
primes (this kind of temporal ordering also represents aperiodic ordering) [24–29]. The
philosophy of the evolutionary-based explanation of the mathematical ordering is that
if cicadas have 12-year cycles, all the predators with 2-, 3-, 4-, and 6-year cycles will eat
them; in other words, the cicadas with prime number cycles will have a higher probability
of survival. Rigorously speaking, cicadas will leave more offspring if their cycles are
described by primes [28,29]. Let us quote [29]: “a prey with a 12-year cycle will meet-every
time it appears-properly synchronized predators appearing every 1, 2, 3, 4, 6 or 12 years,
whereas a mutant with a 13-year period has the advantage of being subject to fewer
predators”. A second explanation, proposed by Cox, Carlton and Yoshimura, concerns the
avoidance not of predators but of hybridization with similar subspecies (consider that these
explanations are not mutually exclusive) [25–27]. Genuine reasoning for the prime-shaped
life cycle of cicadas remains debatable, and the discussion of this reasoning gave rise to
the deep philosophical discussion of the nature and roots of the notion of “explanation” of
natural/biological phenomena in [30]. Survival/reproductive reasons were also involved
in the explanation of symmetry appearing in the color of zebra finches, shown in Figure 2.
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Figure 2. Zebra finch is depicted. Symmetrically banded males and females are preferred by
an individual of the opposite sex.

It was demonstrated that symmetrically banded males produced more offspring that
survived past the period of parental care than males in either of the asymmetric treat-
ments. This appeared to be the effect of female choice processes and female-based parental
investment and not male intra-sexual dominance. Thus, it was shown that symmetri-
cally manipulated males gain reproductive advantages in controlled laboratory conditions,
which further supports recent theories indicating the evolutionary importance of symmetry
in signaling-trait design [31]. Moreover, it was demonstrated that symmetric patterns are
attractive not only to females, and it was found that males associated more with symmet-
rical than asymmetrical females, indicating a preference for symmetry [32]. (iv) Finally,
we discuss the more hypothetical relation of the appearance of symmetrical patterns in
biological systems to informational reasoning. It was suggested that symmetric biological
structures and patterns preferentially arise not only due to natural selection but also be-
cause they require less specific information to encode and are therefore much more likely
to appear as phenotypic variation through random mutations [33]. This novel concept,
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which is well tailored to the general informational paradigm of exact sciences and was
criticized recently in [34], will be discussed below in relation to the Curie–Minnigerode
–Neumann and Landauer principles [35–37]. In our paper, we focus on the physical and
informational reasoning of symmetry/ordering inherent in biological systems. We will
also demonstrate that the notion of ordering has a “fine structure” and hardly could be
quantified unequivocally with a single mathematical parameter.

2. Physical Reasoning for the Abundant Symmetry of Biological Patterns
2.1. The “Top-Down” Approach to the Explanation of Symmetry in Organisms: Symmetry Is
Dictated by the Properties of Media in Which the Organisms Act

Physical reasoning involved in the explanation of symmetry of biological objects may
be classified according to the following main approaches:

(i) The “top-down” approach, implying that the symmetry of the biological structure
follows the symmetry of the media in which this structure is functioning;

(ii) The “bottom-up” approach, assuming that the symmetry of biological structures
emerges from the symmetry of molecules constituting the structure.

Let us start with the “top-down” pure physical reasoning which may be responsible
for the symmetry abundant in the plant and animal realms. The two main symmetries
that can be observed in the animal body plan are radial and bilateral, as illustrated in
Figure 3 [21,38,39].
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Pure physical “demystification” of animal symmetry was suggested in [19,20]. Let
us quote [19]: “symmetry is a response in the geometry of the ‘living matter’ to physical
forces”. As an example of such a pathway of thinking, consider the directed locomotion of
sea inhabitants. The most comprehensive idea which explains how directed locomotion
is favored by bilateral symmetry comes from a theoretical paper [18], which argued that
bilateral symmetry is favorable for maneuverable locomotion in the macroscopic world
(in which inertial forces dominate over viscous forces, i.e., in the high Reynolds numbers’
realm) because bilateral is the only type of symmetry which is streamlined in only one
direction while being non-streamlined in others [18]. The symmetry of biological entities
which inhabit water and air becomes more clear when the ideas developed in [40] are
taken into account. It was concluded in [40] that a large proportion of fish species have
developed compressed, elliptical body cross-sectional shapes. This shape is justified from
the hydrodynamic point of view, as the basic issue of minimizing drag for a given volume
would result in a body of revolution [40]. Thus, this adaptation must have had very
significant advantages to have reappeared so many times. One such advantage is clear from
the use of the body as a propulsor, as the sideways oscillations of a vertically compressed
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body will produce much larger forces, but this also reduces rolling, which would, in turn,
induce yawing moments due to the difference in angle of attack on the pectorals and
the angle of attack on the caudal and dorso-anal fins produced by rolling. Thus, vertical
compression is a stabilizing development [40,41].

We propose the following development of the suggested pure “physical explanation”
of symmetry inherent for fishes, birds and flying insects. The observed symmetry is to
a great extent explained by the isotropy of physical properties of gases and liquids in which
fishes and birds act. Gases and some liquids are essentially isotropic media. Gases are
isotopic due to the random motion of molecules constituting the gaseous phase (also called
the molecular chaos hypothesis), implying that the velocities of colliding molecules are
uncorrelated and independent of position [42–45]. The hypothesis of molecular chaos also
implies the equipartition theorem serving as a basis for classical thermodynamics and statis-
tical physics, which states that in thermal equilibrium, energy is shared equally among all
of its various forms [46–50]. The equipartition theorem, in turn, is grounded on two main
assumptions: (1) the classical version of the canonical probability distribution is applicable
and adequate; (2) the classical expression for the total energy of the particle splits additively
into two parts: one part depends quadratically on a single variable (say x), and the other (de-
noted Uother) is entirely independent of that variable U = ax2 + Uother; a = const. It is easily
seen that the equipartition of energy holds whatever the value of the constant a is; moreover,
the equipartition theorem holds for a broad class of potentials U = ax2 + bx; a, b = const,
as discussed in [51]. Thus, symmetry of bodies of birds and flying insects possibly emerges
from isotropy of air accompanied by equipartition of energy, which is true for air molecules.
This “physically grounded” approach may be stretched even further: actually, conservation
laws appearing in physics arise from the fundamental symmetries of space-time; thus,
symmetry recognized in physical systems reflects these fundamental symmetries; hence,
it is plausible to suggest that the symmetry of biological systems also arises from the
fundamental space-time symmetries.

The situation with liquids is much more complicated; indeed, liquids may be isotropic
and non-isotropic (liquid crystals) [52]. However, the most important biological liquid is
water, which is considered isotropic in biophysical models which deal with water and water
inhabitants. This assumption, as a matter of fact, is far from trivial. It was demonstrated
that the state of water in the body constituents of living organisms and in the vicinity of
biological macromolecules differs significantly from the state of water in solutions of simple
molecules and in pure water [53,54]. Biological macromolecules induce a characteristic wa-
ter structure in their close vicinity due to weak macromolecular-water interactions [53,54].
Considering water as an isotropic medium is justified on the macroscopic level of treatment
of biological systems. On the other hand, aqueous solutions of DNA govern their chirality,
i.e., the lack of mirror symmetry of the solutions, which already brings us to the “bottom-up”
approach to the symmetry of biological objects, implying that the symmetry of biological
structures emerges from the symmetry of molecules constituting the structure [55–60].

2.2. “Bottom-Up” Approach to the Symmetry of Biological Systems, Mathematical Measures of
Order in Biological Patterns and the Curie-Neumann Principle
2.2.1. Mathematical Measures of Symmetry and Ordering in Biological Patterns

As we already mentioned in the previous sections, DNA constitutes the symmetry
properties (chirality) of aqueous solutions [55–59]. In addition, the tobacco mosaic virus
governs the lyotropic liquid crystalline behavior of its viral ensemble [60]. Thus, we
come to the “bottom-up” approach to the symmetry of biological structures and patterns,
accepting that the symmetry of large-scale, macroscopic biological structures emerges
from the symmetry of molecules constituting the structure. High-symmetry assemblies of
proteins, resembling those inherent to the geometries of the Platonic solids, were discussed
in 7. The symmetry of biological macromolecules in comparison with the symmetry of
nuclei, atoms and elementary particles was deeply analyzed in 8. Let us quote from 8: “The
role of symmetry in the physics of atoms, nuclei, and elementary particles is different from
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its role in the biological world. In microphysics, it has been fruitful to postulate symmetry
as being fundamental, thereby severely constraining the form of the underlying laws.
Furthermore, the consequences of symmetry for dynamics and stability are profound in
the subatomic world. General treatment of these symmetry effects, based on group theory,
allows a nearly complete classification of states and transitions. Indeed, even the deviations
from exact symmetry have their own quantifiable consequences. In the biological world,
symmetry exists too, but it often appears to be an accident. While accidents still can have
significant consequences, rationalizable on a case-by-case basis, there has been no general
unifying theory of symmetry in biology. Exact symmetry in biology would even seem to
be antithetical to the notions of complexity, variety, and metamorphosis that are central
to the idea of life, as we know it. Nevertheless, as in microphysics, life requires stability
and sameness as well as change For a particular protein, biomolecular symmetry will not
be exact unless it is the result of gene duplication. It is a quantitative issue how much the
forces leading to minimal frustration, partially determined by symmetry considerations,
are dominant over the aspects of the landscape arising from randomness”.

Indeed, the exact, perfect symmetry (in the rigorous mathematical sense) is rare in
the realm of biology. It is sparse on different levels of biological structures, and even on
the molecular level, it is not abundant. Exact symmetry may be inherent for “averaged”
biological species; however, the rigorous mathematical definition of “average” becomes
non-trivial for biological entities, which evolve with time. Now we come to the novel
ideas that appeared in the theory of symmetry in the last decades. Until now, it was
usually latently accepted that symmetry changes abruptly or intermittently, i.e., symmetry
is an exact feature of the pattern. In other words, symmetry is usually viewed as a binary
feature, where an object is considered as either perfectly symmetric or asymmetric. Despite
this, a fundamentally new approach to quantifying symmetry as a continuous measure
of a pattern was suggested and tested by Avnir, Zabrodsky and co-workers [61–65]. The
notion of the “continuous measure of symmetry” was introduced and developed [61–65].
The continuous measure of symmetry is a fundamentally new approach to quantifying
symmetry [61–65]. The continuous measure of symmetry is quantified by the sum of
minimum squared distances that are required to move the points of an original shape in
order to obtain a symmetrical shape [61–65]. The continuous measure broke the binary
“yes–no” paradigm traditionally used for the analysis of the symmetry of patterns [61–65].
This approach was successfully exploited for quantification of the symmetry of electronic
wave functions [66] and quasicrystals [67]. The continuous measure of symmetry was
recently applied to the analysis of the symmetry of proteins, as well as plant leaves and
other structures [68,69]. It was revealed that symmetry deviations of proteins are by far
higher in solution, compared to the crystalline state [69]. However, only the first results in
the field of the continuous analysis of the symmetry of biological objects were reported,
and it seems that the mathematical apparatus of the continuous measure of symmetry has
enormous potential in mathematical biology.

It should be emphasized that the continuous measure of symmetry is not a single
mathematical value enabling the quantification of order in biological patterns. The alterna-
tive measure of order in the biological patterns emerges from the Voronoi tessellation (or
Voronoi diagram). A Voronoi tessellation of an infinite plane is a partitioning of the plane
into regions based on the distance to a specified discrete set of points (called seeds or nuclei
and shown with black squares in Figure 4). For each seed, there is a corresponding region,
consisting of all points closer to that seed than to any other [70–77].
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The Voronoi (Shannon) entropy of a given set of points located in a plane is given by:

Svor = −∑i PilnPi, (1)
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sellation and i is the total number of polygon types with different numbers of edges [24–26].
The summation in Equation (1) is performed from i = 3 (the smallest possible
polygon—a triangle) to the largest coordination number of the polygon; e.g., for an octagon,
the largest value of i is 8. Consider the Voronoi diagram built of pentagons only; in such
a diagram, P5 = 1 and consequently Svor = 0. It is reasonable to relate to such a diagram
the maximal degree of order; in contrast, the Voronoi entropy of the random pattern of
seeds was established as Svor = 1.71. Seeds may be displaced continuously from their
initial locations, and the Voronoi entropy, in turn, will be changed continuously. Voronoi
tessellations were already successfully applied for the analysis of ordering in biological
systems, namely proteins [73], cell dynamics [74] and ordering of GABAA receptors in
hippocampal inhibitory synapses [75].

Thus, we already have two alternative continuous measures of order in biological
systems, namely the continuous measure of symmetry [68,69] and the Voronoi Entropy
(and this is not an exhaustive list) [73–77]. Thus, a reasonable question immediately arises:
are these measures correlated? It was recently demonstrated that the continuous measure of
symmetry and the Voronoi entropy of the pattern are not necessarily correlated; moreover,
the anti-correlation of these values was registered [67,78]. Alternative measures of order-
ing in biological patterns, such as Minkowski functionals, were also introduced [79,80].
A Shannon (informational) measure of symmetry was also suggested recently [81]. Con-
sider a 2D pattern built of 1D and/or 2D shapes or lines, demonstrating a number of
symmetry elements (rotational symmetry, centers of symmetry, axes of symmetry, etc.),
denoted Gi, i = 1, 2 . . . k, where k is a number of non-identical symmetry operations [81].
Elements Gi form the symmetry group of the shape G (which should be clearly distin-
guished from the symmetry group of the entire pattern). Thus, the informational measure
of the symmetry of the pattern Hsym(G) is defined in a Shannon-like form (compare with
Equation (2)) as:

Hsym(G) = −∑k
i=1 Pi(Gi)lnPi(Gi), (2)
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where Pi(Gi) is the probability of appearance of the symmetry operation Gi within the
shapes (lines) constituting the pattern, defined as:

Pi(Gi) =
m(Gi)

NG
≤ 1, (3)

where NG = ∑k
i=1 m(Gi) is the total number of symmetry elements (operations) appearing

in the 1D or 2D shapes, recognized in a given pattern, and m(Gi) is the number of the
same symmetry elements (operations) Gi calculated for a given pattern. The normalization
condition given by Equation (4) is applied:

k

∑
i=1

Pi(Gi) = 1 (4)

The informational (Shannon) measure of symmetry, defined by Equation (2), is appli-
cable for mixed patterns built of curves and shapes, and thus it is suitable for the analysis
of biological patterns (such as those depicted in Figure 5). We necessarily conclude that
the notion of “ordering in biology patterns” has a fine structure, and the correlation be-
tween various mathematical measures of order remains an open problem and should be
elucidated in future research.
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2.2.2. Bottom-Up Approach to the Symmetry of Biological Systems and the Curie
–Neumann Principle

Obviously, the properties of biomolecules influence the properties of macroscopic bio-
logical objects. However, what is the interrelation between the symmetry of biomolecules
and the eventual properties of macroscopic structures? In the realm of crystallography, this
interrelation is constituted by the Curie–Minnigerode–Neumann principle, which in its
simplest form was formulated by Minnigerode as “the group of the structure of a crystal is
contained in the group of each of its physical properties”, or in other words, all elements
of symmetry of a crystal are at the same time elements of symmetry of its macroscopic
properties [82,83]. This statement may be mathematically expressed as follows:

Gobject ⊆ Gproperty, (5)

which is understood as follows: for a physical property to be allowed to exist within
an object, it is a necessary but not sufficient condition that the group of the symmetry oper-
ations of the object Gobject be at least a subgroup of the group of the symmetry operations
of the physical property Gproperty, or alternatively, the tensor describing a physical property
(the so-called “property tensor”) has to be invariant against all symmetry operations of
the object (crystal), or alternatively, the symmetry elements of the causes must be found in
their effects, but the converse is not true; that is, the effects can be more symmetric than
the causes [82,83]. However, Curie already clearly understood the role of asymmetry in
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constituting the physical phenomena. The phenomenon of piezoelectricity emerges from
the symmetry breaking in certain crystals [84]. This idea was aphoristically formulated
by Curie as follows: “asymmetry is what creates a phenomenon”. And it seems that this
approach may be extended to biology; however, there is a long way ahead in order to
understand the role of asymmetry in constituting biological phenomena.

The paradoxical reduction in crystal symmetry at the textural level, without a concomitant
reduction in the intrinsic symmetry of the crystal structure, was observed for calcitic sponge
(Clathrina conrorta and Kebira ufroides) spicules (see Section 1). The effect, opposing the Curie
–Minnigerode–Neumann principle, was related to the addition of foreign macromolecules
to a growing crystal, occurring at surfaces [85].

3. Informational Reasoning for Symmetry in Biological Systems
3.1. Symmetry and Order in Biological Systems Have Informational/Algorithmic Roots

Alternative reasoning for the abundance of symmetrical patterns in biological sys-
tems was suggested in [33]. The authors of [33] noted that it is plausible to assume (by
a certain analogy to engineering design) that symmetry may stem from natural selection, as
discussed in Section 2.1, in which it was demonstrated that bilateral symmetry of sea inhab-
itants is favorable for their maneuverable locomotion in water [19]. However, evolution,
unlike engineers, cannot plan ahead, and so these symmetrical features must also afford
some immediate selective advantage which is hard to reconcile with the breadth of systems
where symmetry is observed. It was suggested in [33] that the symmetric structures prefer-
entially arise not only due to natural selection but also because they require less specific
information (and consequently less energy according to the Landauer principle [35–37])
to encode and are therefore much more likely to appear as phenotypic variation through
random mutations. Arguments from algorithmic information theory enabled the formaliza-
tion of this hypothesis, leading to the prediction that many genotype–phenotype maps are
exponentially biased toward phenotypes with low descriptional complexity (preference for
symmetry is a special case of the bias toward compressible descriptions [86]). The authors
of the aforementioned hypothesis validated the predictions of this idea with biological data,
showing that protein complexes, RNA secondary structures and a model gene regulatory
network all exhibit the expected exponential bias toward simpler (and more symmetric)
phenotypes [33]. The authors of [33] supplied arguments supporting their concept and
rooted in the algorithmic information theory, in which it is well accepted that when the
space of algorithms is considered, outputs that can be generated by short programs are
exponentially more likely to be produced than outputs that can only be generated by
long programs. It was demonstrated in [33] that formalism developed in the algorithmic
information theory may be successfully applied for the analysis of genotype–phenotype
maps. Thus, symmetry appearing in biological systems emerges from the “informational
arguments”, providing an economy of biological information necessary for the description
of a biological entity [33,86].

The “informational biological paradigm” introduced and developed in [33] was re-
cently criticized in [34], in which the role of symmetry breaking in biological systems
was stressed. It was noted that while symmetry may arise more commonly in biological
structures with low complexity, there is evolutionary pressure to develop asymmetry in
many biological structures with high complexity. The emergence of symmetry cannot
be fully understood without considering the emergence of asymmetry as well [34]. Con-
sider, for example, the human brain, one of the most complex and mysterious biological
structures [34,87]. While the two halves of the brain look roughly symmetric at first glance,
a recent large-scale neuroimaging demonstrated that structural left–right asymmetries are
the rule, rather than the exception, for cortical brain areas [87]. Importantly, the human
central nervous system is not the only one that shows such striking asymmetries. Breaking
symmetry is therefore a crucial step in the development of all nervous systems [34]. This
statement is in striking correspondence with the Curie–Minnigerode–Neumann principle,
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formulated by Curie as follows: “asymmetry is what creates a phenomenon” [82,83], which
may reshaped as follows: “asymmetry is what creates a biological phenomenon”.

The explanation of symmetrical patterns abundant in biological systems with argu-
ments rooted in the algorithmic information theory seems deep and promising. We propose
stretching this approach to the grounding of other kinds of periodic and aperiodic ordering
appearing in biological systems, such as Fibonacci series and Archimedean and Lucas
spirals [13–17,88]. Indeed, the Fibonacci series found in phenotypic structures of plants
and animals, defined by Equation (6).

Fn = Fn−1 + Fn−2;F0 = 0; F1 = 1, (6)

and the Archimedean spiral, defined by Equation (7).

r = a + bθ, a = const; b = const, (7)

represent examples of simple and informationally effective mathematical regularities,
which may be specified by short algorithms. The authors of [88] reported a model of the
cell division implying asymmetric cell division. In the model, cells divide asymmetrically
to generate a mature and an immature cell [88]. The model output on the number of
cells generated over time fits specific Fibonacci p-number sequences depending on the
maturation time [88]. Thus, the relation of the Fibonacci series to the asymmetry of
biological processes became elucidated [88].

3.2. Symmetry and Ordering in Biological Systems and the Landauer Principle: Informational
Paradigm of Biology

The idea that symmetry in biological patterns is deeply rooted in the informational
basic structure of reality fits with ideas introduced by John Archibald Wheeler, who sug-
gested that fundamentals of physics should be re-built on the informational groundings
and assumed that the main notions of physics are deeply rooted in the “bit-based” scientific
paradigm [89]. This approach may be very briefly and aphoristically summarized as fol-
lows: “all physical things are information-theoretic in origin”, aphoristically reduced to “it
from bit” [89]. The idea was developed recently within the highly debated and controversial
Landauer principle, suggesting the thermodynamic equivalent of information, establishing
the lower theoretical limit of energy consumption of computation [35,36]. It holds that
“any logically irreversible manipulation of information, such as the erasure of a bit or the
merging of two computation paths, must be accompanied by a corresponding entropy
increase in non-information-bearing degrees of freedom of the information-processing
apparatus or its environment” [35,36]. In other words, there is a minimum possible amount
of energy E required to erase one bit of information, known as the Landauer limit and
supplied by Equation (8):

E = kBTln2, (8)

where kB = 1.38 × 10−23 J
K is the Boltzmann constant and T is the absolute temperature

of the heat sink [90–93]. The Landauer principle was experimentally tested in [94,95].
Extensions of the Landauer principle to the realms of quantum mechanics [96] and gen-
eral relativity [97] were reported. The Landauer principle applied to mechanical motion
demonstrates that dissipation of energy is the key process through which mechanical
motion becomes observable [98]. The analysis of the performance of photon detectors
(such as eyes) leads to the conclusion that only efficiency is limited by the Landauer en-
ergy bounds on information gain and information erasure [99]. Estimation of information
contained in molecular motion based on the Landauer principle was performed in [100].
The Landauer principle restricts the informational capacity of biological systems; thus, it is
closely related to the abundance of ordering in biological systems; indeed, periodic and
aperiodic ordering enable the saving of memory/energy available for the organism. The
Landauer principle bridges the informational and thermodynamic paradigms of life, which
explains the ability of organisms to maintain low levels of entropy that explain order [101].
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The informational paradigm of life enabled the analysis of the SARS-CoV-2 virus using
Shannon’s information theory [102]. A relationship between the information entropy of
genomes and their mutation dynamics was established. In particular, it was revealed that
genomes undergo genetic mutations over time driven by a tendency to reduce their overall
information entropy [102]. Let us roughly estimate the informational capacity of living cells
with the Landauer principle. Consider that the characteristic spatial range of living cells,
namely, l ∼= 1 − 100 µm, spans the dimensions of a majority of prokaryotic and eukaryotic
cells [102]. Thus, the maximal informational capacity of a living cell may be estimated,
according to the Landauer principle, with Equation (9); if we speculate that information
exchange occurs only via the surface of a living cell we estimate the following:

ξ ∼=
Es

kBTln2
∼=

γintl2

kBTln2
, (9)

where ES and γint the total and specific interfacial energies of a cell. Assuming
γint

∼= 1.0 × 10−3 J
m2 yields ξ ∼= 3.5 × 105 − 3.5 × 109 [103]. (This value should not be

confused with the genomic capacity of a cell [104,105].) Thus, we may estimate the informa-
tional interfacial capacity of a small micro-scaled cell as ξ ∼= 3.5× 105 bits and compare this
with the DNA-based code, which enables the storage of 5.2 × 106 bits of information [106].
Thus, the informational capacity of DNA and cells is restricted; hence, assessing the ther-
modynamic efficiency of the computations performed by organisms becomes crucial. The
authors of [107] posed and addressed the following fundamental question: how close has
life come to maximally efficient computation (presumably under the pressure of natural
selection)? The suggested answer is summarized as follows: despite inevitable shifts across
the architectures of life, the authors revealed a surprising consistency in the efficiency
of translation, one of the most universal types of computation carried out in biological
systems [107]. The analyses demonstrated that as bacteria become larger, their overall trans-
lational efficiency converges on that of a single ribosome [107]. In addition, this efficiency
is maintained for unicellular eukaryote and mammalian cells [107]. Astonishingly, this
efficiency is only about an order of magnitude larger than the Landauer bound, supplied by
Equation (8) (see [107]). It is instructive to compare the efficiency of biological computations
to that of the best supercomputers. Actually, the cost of computation in supercomputers is
about eight orders of magnitude worse than the Landauer bound given by Equation (8),
which is about six orders of magnitude less efficient than biological translation when both
are compared to the appropriate Landauer bound [107]. Biology is beating our current
engineered computational thermodynamic efficiencies by an astonishing degree [107].

It should be emphasized that symmetry and order (periodic and aperiodic) inher-
ent in biological systems improve the efficiency of biological computation; indeed, when
an n-fold symmetry is present, the single computation act governs the location of a number
of n “spots” in the biological pattern. An interface between artificially created digital infor-
mation and information produced by organisms was addressed in 108. It was demonstrated
that human-related digital information has reached a similar magnitude to information in
the biosphere [108].

Information aspects of order in DNA were discussed in [12]. When the structure of
DNA was discovered, it was first assumed that the basic repeating unit of DNA polymer
was a tetranucleotide, in which the four different kinds of nucleotides recurred in regular
sequence [12]. Thus, DNA was originally viewed as a trivially periodic macromolecule,
characterized by translational symmetry, which is unable to store the amount of information
required for the governance of cell function [12]. It was Schrödinger who suggested that
genetic material should consist of a long sequence of a few repeating elements exhibiting
a well-defined order without the recourse of periodic repetition [109]. In this way, the
notion of a 1D aperiodic crystal was introduced and the deep connection between symmetry
and information was established [12,109]. Again, the correspondence: “more symmetry
–less information” takes place.
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4. Conclusions

The concept of symmetry became one of the central concepts of mathematical biology,
as already occurred in physics [110]. Biological systems demonstrate remarkable sym-
metry and ordering which may be periodic or aperiodic (represented by the Fibonacci
series, describing seed spirals on the sunflower’s face and primes appearing in the lifecycle
of cicadas) [1,2,4,12,17,24–28]. Various types of order and symmetry span all biological
spatial scales starting from biomolecules [7,8] and reaching entire organisms and the bi-
ological patterns created by organisms [9,19–21]. The two main symmetries that can be
observed in the animal body plan are radial and bilateral, [21,38,39]. The eggs of fucoid
brown algae such as Fucus spp. and Silvetia spp. (formerly Pelvetia) demonstrate spherical
symmetry [111]. The unfertilized eggs have no cell wall and have a spherical shape, and
their cytological components are evenly distributed [111]. Fractal symmetry was registered
for sponges [112]. The symmetry may be even regenerated with time, as occurs with
damaged jellyfish [113]. The challenging and fundamental question is as follows: what
is the physical and biological reasoning of periodic and aperiodic ordering in biological
systems? In other words, why does living nature prefer ordered/symmetrical patterns?
The possible answers to this fundamental question may be summarized as follows: (i) The
appearance of symmetry/ordering is due to the external physical constraints implied on the
biological system [5,19–21]. Physical factors/constraints follow the basic conservation laws
emerging, in turn, from the space-time symmetries [110]. Thus, it may be hypothesized
that the symmetry of biological systems also at least partially arises from the fundamental
space-time symmetries. (ii) The second hypothesis explaining the abundance of the highly
ordered patterns in biology accepts that the symmetry of biological systems emerges from
the symmetry of molecules themselves and potentials describing interactions between
molecules [22,23]. It was reported recently that roughly 40% of the biomolecules registered
in the Protein Data Bank exhibit some type of symmetry, including formal global sym-
metry, local symmetry or pseudo-symmetry (many proteins are built from asymmetrical
subunits; however, the entire protein may be symmetrical) [114]. (iii) The third approach
relates the appearance of mathematical ordering in biological systems to the pure survival,
evolutionary reasons [24–29]. (iv) The most recent hypothesis relates the appearance of
symmetrical patterns in biological systems to informational reasoning [33]. It was sug-
gested that symmetric biological structures and patterns preferentially arise not only due
to natural selection but also because they require less specific information (and less energy)
to encode [33]. We addressed this approach within the general informational scientific
paradigm, proposed by John Archibald Wheeler, who suggested that the fundamentals of
physics should be re-built on the informational groundings and assumed that the main
notions of physics are deeply rooted in the “bit-based” scientific paradigm [89]. The ideas
discussed in [33] stretch this approach to the “bit-based” biological paradigm, which may
be formulated as follows: economy of information is essential in the constitution of bio-
logical patterns. Thus, it becomes understandable why only the simplest mathematical
regularities such as Fibonacci series [13–17,89] and symmetrical patterns are abundant in
biology; these regularities decrease the algorithmic complexity of biological systems [33].
The informational paradigm of biology is closely related to the Landauer principle, bridg-
ing the theory of information to physics and suggesting the thermodynamic equivalent
of information, under establishing the lower theoretical limit of energy consumption of
physical/biological computation [35–37,90–100]. The analyses of the computational effi-
ciency of bacteria demonstrated that as bacteria become larger, their overall translational
efficiency converges on that of a single ribosome [106]. Moreover, this efficiency is universal
for unicellular eukaryote and mammalian cells, and it is only about an order of magni-
tude larger than the Landauer bound [35–37,90–100,107]. Thus, the Landauer principle
briefly formulated as “information is physical” may be re-shaped to “biological information
is physical and, strictly speaking, thermodynamically rooted”. Symmetry and ordering
essentially increase the computational/informational/energetic effectivity of biological
systems [33].
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It should be emphasized that the role of symmetry in biological systems is very
different from that in physics (such as symmetry of crystals). Symmetry in the biologically
rooted patterns is never perfect. Thus, mathematical methods enabling the quantification
of symmetry and its deviation from the mathematically perfect symmetrical patterns
were suggested [61–69]. A number of mathematical measures (Procrustes, Hausdorff or
Euclidian distances) may be used for quantification of deviation of a biological pattern from
a perfect symmetry [115,116]. It turns out that the notion of “order” has a fine structure
and may be quantified mathematically with essentially different mathematical measures
such as the continuous measure of symmetry, Voronoi (Shannon) entropy and Minkowski
functionals [61–81]. Thus, a unique mathematical measure quantifying “order” in biological
systems does not exist. It was demonstrated that the maxima and minima of the Shannon
entropy and continuous measure of symmetry are not necessarily correlated; moreover, in
certain cases, the maxima of the continuous measure of symmetry may correspond to the
minima of the Shannon entropy [78]. The concept of fluctuating asymmetry was introduced
for quantification of deviation from perfect symmetry in biological systems [115,116].
Accurate quantification of ordering and symmetry in biological patterns is well expected to
be a hot theme of the nearest future mathematical biology investigations. Consider that
“physical order”, as quantified by the Boltzmann entropy, and symmetry are in an intimate
relation: symmetry usually decreases the Boltzmann entropy of systems [10,11]. Correlation
between the Boltzmann entropy [44,45] and various mathematical measures of order should
be elucidated.

Moreover, breaking of symmetry and asymmetry are crucial for understanding bi-
ological phenomena [34,86,87]. For example, breaking symmetry is a crucial step in the
development of all biological systems [34]. Thus, the Curie–Minnigerode–Neumann princi-
ple may reshaped for biological systems as follows: “asymmetry is what creates a biological
phenomenon” [82,83]. Thus, we conclude that symmetry and order, abundant in biologi-
cally rooted patterns, could be hardly related to a single, unique physical or evolutionary
reason. It also should be emphasized that the symmetry of biological objects evolved with
time, as discussed in [116,117] for the bilateral symmetry of flowers and sea urchins (in
conjunction with cephalization). We conclude that a general unifying theory of symmetry
in biology does not exist and, perhaps, has no chance to be developed. However, the role of
symmetry/asymmetry (in relation to informational reasoning) in understanding biological
phenomena is crucial.
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