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Abstract: Studying the soils in the periodical flood zone of three reservoirs is of promising importance
for their subsequent return to economic activities. Research on the bacterial and archaeal communities
of soils that are periodically or continuously flooded by reservoirs is still insufficient. To evaluate the
chemical status of soils and their microbiota, the study was conducted in the Yumaguzino, Nugush,
and Slak reservoir sites in the South Ural area (Russian Federation). The bacterial and archaeal
communities of periodically flooded and non-flooded soils were investigated after a comparative
investigation of chemical, hydrological, and climatic factors. It was discovered that flooded soils
had anoxic conditions during the whole of the year, with brief drying intervals of limited length
and low levels of effective temperatures. In terms of chemistry, flooded soils are distinguished by
increased acidity, a fall in organic matter, and an increase in alkali-hydrolysable nitrogen. Compared
to their counterparts in non-flooded soils, bacterial and archaeal communities in flooded soils are
significantly different. Generally speaking, the biodiversity of flooded soils rises with the duration
and depth of floods. Significant variations at the phylum level are mostly caused by a decline in the
relative presence of Thaumarchaeota and an increase in Proteobacteria and Chloroflexi representation.
It was discovered that the Euryarchaeota phylum was either absent or had a significantly decreased
relative prevalence at the sites of intermittently flooding soils.

Keywords: water reservoir; flooded soil; soil properties; DNA sequencing; microbial communities

1. Introduction

Building reservoirs, which are artificial (or human-made) lakes in which water is
collected and stored in sufficient quantities for usage [1], leads to long-term land disposal.
At the same time, the ground cover inside the area covered by the reservoir bed during the
building process is not removed and stays under the water seasonally at levels between
the normal and dead volume levels or permanently, during the entire operating period,
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at levels lower than the dead volume. In flooded water reservoir areas, while retaining
the morphological profile of the soil under the reservoir drawdown area [2], silt sediment
accumulation [3], and partial or total destruction of the soil profile in the littoral zone (at
the development sites of wave extraction activities), specific soil hydromorphic processes
are developing.

The soils drowned in water reservoirs are influenced by various processes affecting
soil qualitative characteristics. Continuous [2] or seasonal [4] flooding adds to anoxic soil
conditions. By accumulating sediments made up of native materials, particularly aquatic
creature remnants [5], agricultural soil erosion products [6,7], and soil erosion products
from banks and reservoir beds [8], new soil horizons are created. Furthermore, in the littoral
zone, the upper horizons of flooded soils are destroyed or partially degraded. Flooded soils
cause soil hydromorphic processes to develop or intensify, most notably gleyification and
the creation of iron and/or iron–manganese concretions. Changes also occur in the transfer,
accumulation, and transformation of major nutrients: nitrogen [9,10], phosphorus [11–13]
and organic matter [5]. All these variables might have an impact on soil bacterial and
archaeal communities, but the dearth of published research makes it impossible to evaluate
these changes for soils in reservoir flood zones. Based on the examination of soils in
comparable environments, only a few hypotheses can be made concerning the processes
occurring here. Soil from paddy fields [14] and floodplains [15–17], which are well studied
in microbiological terms and are also subject to flooding and freshwater drainage processes,
is the closest to the flooded soils of water reservoirs.

The goal of this research is to comprehend how the bacterial and archaeal communi-
ties in soil have changed over time in regions that have experienced recurrent flooding.
Furthermore, the goal was to assess the relationship between the chemical properties and
the composition of the microbial community in order to ascertain the fluctuations in the
periodic flooding process. We believed that the bacterial and archaeal communities in the
soil were greatly impacted by recurrent floods, and that the microbial communities in the
submerged reservoir bed would differ greatly from those in the surrounding background
land plots.

2. Materials and Methods
2.1. Site Description

The study was conducted in the western part of the Republic of Bashkortostan (South
Urals region, Russia) (Figure 1). The search focused on three water reservoirs: Yumaguzino,
Nugush and Slak.

The Belaya River’s Yumaguzino Reservoir (Site 1) is the newest of all the surveys;
filling was finished in 2004 [18]. With 456 million cubic meters of reservoir capacity at
full capacity, this reservoir is sizable. There are just a few shallow water locations that
are suitable for investigation due to the ridges and low ridges topography of the Belaya
River’s regulated part of the reservoir. The reservoir’s river valley is somewhat limited,
with the majority of its bottom confined to a remote area that was home to hamlets and
tiny settlements prior to inundation. Soil hydromorphism is less evident outside of the
trapezoidal valleys, noticeable banks of abrasive type have formed, and destruction and
flushing are more common. Because of this, the location with soil hydromorphic conditions
that is closest to the Yumaguzino hydroelectric dam—which is located 16 km upstream—is
selected. The site, which has an approximate area of 1 km2, is situated on the lower left
slope of the Belaya River valley. The area is level and slopes up to 10 degrees toward
the river from the east to the location next to a stream bed that has been flooded. There,
samples 1 and 2 were gathered.
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Figure 1. Work areas (a,b) and location of sample plots (c). Site locations: I—The Yumaguzino
Reservoir; II—The Nugush Reservoir; III—The Slak Reservoir. 1–6—Sampling point locations: 1, 3,
5—flooded locations; 2, 4, 6—non-flooded locations.

Sample “Yumaguzino Reservoir flooded” was taken from the center of the drained
bed outside the outer boundary of the shoreline processing development zone by wind-
generated waves. The water table lies at a depth of 30 cm above the surface. The absolute
height mark in the area of sample 1 is 249.45 m (Baltic Normal Height System). At the
time of sampling (19 November 2020), the lodge was partly drained and occupied by old
tree stumps and snags, and no vegetation was present. Sample: dark gray, almost black,
crumbling sandy lumpy wet, partially freezing.

Sample “Yumaguzino Reservoir non-flooded” was collected 10 m from the shoreline
outside the flood zone. A medium density hardwood forest represents the vegetation with
a developing understory and pronounced ground litter. The absolute height in sample 2 is
262.30 m. Sample: dark grey, transitional to black, fine-grained dry, well-structured heavy
loam. It contains many plant roots.

The Nugush Reservoir (Site 2) was created on the Nugush River in the foothills of the
South Urals. The reservoir was filled in 1967 to a total volume of 400 million cubic meters.
The shape of the reservoir bed is a kettle, so inside its boundaries, great shoals are formed.
The calculated surface area of shoals, based on topographical maps, is 1.1 km2, the territory
with partial release of water from the reservoir increasing to 5.3 km2 or 21% of the total
surface area of the reservoir mirror. Within the reservoir bed, three separate large shoals
are formed, and the closest shoal to the dam was surveyed by us. The 0.9 km2 study area is
situated in the lower left of the Nugush River valley. Smooth relief characterizes the site
with an overall gradient of approximately 3◦ towards the Nugush River. A flooded stream
runs through the central portion of the site. Here, samples 3 and 4 were collected.
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Sample “Nugush Reservoir flooded” was collected from the central part of the drained
area outside the shoreline. The water table lies at a depth of 20 cm. The absolute height
inside the sampling point is 212.35 m. During sampling (15 November 2020), the reservoir
bed at the site was dry, without vegetation. Sample: dark grey, almost black, crumpled
heavy loamy, lumpy wet, partially freezing.

Sample “Nugush Reservoir non-flooded” was collected 15 m from the shoreline
outside the flood zone. Grassy-type vegetation with overpasture digression is seen. The
absolute height of the sampling area is 218.13 m. Sample: dark grey granular dry, well-
structured heavy loamy with numerous inclusions of plant roots.

The Slak Reservoir (Site 3) is situated on the Kursak River, the second-order left
tributary to the Belaya River. The reservoir was commissioned in 1988. The reservoir is
of the flat type and situated in the southern part of the Bugulma-Belebey Upland. The
reservoir is an average medium-sized type with a total volume of 8.4 million cubic meters.
The study area coincides with the Kursak River’s left floodplain and the terrace above
the floodplain. The shoal being studied covers an area of 0.19 km2 and has a generally
smooth topography with a 2◦ gradient towards the Kursak River bed. Samples 5 and 6
were collected from this location.

Sample “Slak Reservoir flooded” was collected from the center of the drained area
off the coastline. The absolute height within the sampling site was 167.80 m. At the time of
the investigation (10 July 2021), the reservoir bed inside the sampling area was dry. Reed
stands (Phragmites australis), which provided 80% projective coverage of the sampling area,
served as the vegetative representation. Sample: dark grey, almost black, dusty wet, loosely
structured loamy with numerous inclusions of plant roots.

Sample “Slak Reservoir non-flooded” was collected outside the flood zone, 20 m
from the shoreline. Vegetation within the sampling area is grassland with partial grazing
digression. The sampling point’s elevation in absolute terms was 169.55 m. Sample: dark
grey, granular dry, well-structured heavy loamy with numerous inclusions of plant roots.

2.2. Sample Procedure and Soil Analysis

The topsoil horizon was sampled with samples measuring 1.5 kg apiece (0–20 cm).
An additional soil sample was acquired from a neighboring location that had not been
flooded. These locations (free of floods) were chosen with the intention of reducing any
potential wave effects. All samples were collected in three replicates at each location for
basic chemical analyses and in five replications for DNA extraction and further microbio-
logical research.

Chemical analyses were carried out using conventional methods in the fine earth [19–21].
Under laboratory conditions, soil acidity (pHKCl and pH2O), soil organic carbon (SOC)
content, total and mobile phosphorous content, mobile potassium content, nitrogen alkaline
hydrolysable content, and iron oxide mobile quantity were determined. The SOC was
determined with use of CHN analyzer of the Scientific Park of Saint-Petersburg State
University. This method was chosen specially instead of dichromate oxidation method,
because the dry combustion approach is more precise for bottom sediments and soil-like
bodies [22]. The pH values were determined with the use of pH meter pH-150M with a
liquid–soil ratio of 1:2.5. Mobile forms of N, P and Fe content have been evaluated with
classical photometry, while the mobile K content was determined by flame photometry. All
these elements were determined in the Laboratory of Soil Science at Ufa Institute of Biology.

2.3. Water-Level Data and Meteorological Searches

Water reservoir fill levels were based on daily inspections of water levels at hy-
dropower complexes. The absolute heights of sampling locations were calculated using
geodetic data and compared with data from Google Maps. Data from the closest me-
teorological stations helped identify the climatic conditions of the sampling areas. The
calculated effective temperatures were the total effective temperatures above 5 ◦C that
occurred during the time the researched regions were not submerged by the reservoir. A
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brief stretch of springtime with air temperatures above 5 ◦C was marked; however, this
was not considered when calculating the effective temperatures. This is because, during all
these periods, the soils studied were covered in snow and were frozen.

Ongoing monitoring of the thermal regime of the water is performed continuously
solely within the Nugush reservoir. We considered that the data supplied could be extrapo-
lated for the Yumaguzino and Slak reservoirs given the unavailability of thermal regime
information for these reservoirs.

2.4. DNA Analysis

The subsamples for microbiological analysis were stored in double sterile plastic bags,
frozen and delivered immediately to the laboratory. The samples were mechanically disag-
gregated using a Precellys 24 homogenizer (Bertin Technologies, Montigny-le-Bretonneuxc,
France). Following the manufacturer’s instructions, total DNA was extracted from 0.5 g of
soil using the FastDNA Spin Kit (MP Biomedicals, Santa Ana, CA, USA). Electrophoresis
in 0.5 × TAE buffer on 1% agarose was used to check the quality and purity of the ex-
tracted DNA. Sequencing was performed on the Illumina MiSEQ sequencer (Illumina, San
Diego, CA, USA) using the F515 (GTGCCAGCMGCCGCGGCGGTAA) and R806 (GGAC-
TACVSGGGTATCTAAT) primers [23], targeting the variable region V4 of bacterial and
archaeal 16S rRNA genes. Processing of sequences was performed using R (v3.6.3) and
packages dada2 (v1.14.1) and phyloseq (v1.30.0). The main steps were (i) quality filtering
and trimming (truncLen 200/180, maxEE 2/5 for forvard/reverse reads respectively, maxN
0, PhiX reads removed); (ii) amplicon sequence variants (ASVs) calling; (iii) bimera re-
moving (using consensus method). Taxonomic annotation was performed using a built-in
dada2 realization of a naïve Bayesian classifier [24] with default parameters (k-mer size 8,
minimum bootstrap confidence 50 from total 100 bootstrap replicates). The SILVA reference
dataset (version 132, November 2020) [25] was used as a training set. All unclassified at
Phyla level ASVs were removed.

Microbiological diversity was investigated through several diversity indices. Alpha-
diversity was estimated using taxa richness (Observed ASVs index: reveals the num-
ber of procaryotic ASVs) and evenness (Simpson’s index: reveals the probability that
two randomly selected reads belong to the same ASV). Indices were calculated using phy-
loseq package, formulas are available in a review [26]. Beta-diversity was investigated
using PCoA ordination of Bray–Curtiss dissimilarity (reveals distance between samples
through the differences in abundances of every ASV). Calculation and ordination were
performed in phyloseq package, the diversity index is described in the original source [27].

3. Results

The chemical characteristics of the sites being studied are shown in Table 1. The
soils of the study locations have a medium availability of organic carbon. The organic
carbon content of the soil in the non-flooded areas of the Nugush and Slak reservoirs is
slightly greater than that of the flooded soils. In contrast, the Yumaguzino Reservoir’s
non-flooded parts have an organic carbon concentration that is less than half that of the
flooded areas. With the exception of the Yumaguzino Reservoir’s non-flooded locations,
which have highly acidic soil, the examined sites’ soils have an acidity that is comparable
to that of the neutral. All reservoir flooded soils have more iron (III) oxide (Fe2O3) than
their non-flooded counterparts. For hydrologically disturbed soils, a rise in iron oxide
concentration is typical [28–30].

For all reservoirs, the total phosphorous content was greater at the non-flooded
locations compared to the flooded ones. Mobile phosphorus levels vary considerably for
the non-flooded soils of reservoirs. The quantity of mobile phosphorus in non-flooded
parts of the Nugush and Slak reservoirs is characterized to have very low availability and is
lower than that in the sites being flooded. Areas of the Yumaguzino Reservoir that are not
flooded are characterized by an average availability of mobile phosphorus, and its contents
are superior to those of flooded areas.
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Table 1. Chemical characteristics of soils in flooded and non-flooded areas of the Yumaguzino,
Nugush, and Slak reservoirs (South Urals region, Russia) (Means ± SEM (n = 3)).

Indicator

Sites

Yumaguzino Reservoir Nugush Reservoir Slak Reservoir

Non-Flooded Flooded Non-Flooded Flooded Non-Flooded Flooded

Total phosphorous, mg/kg 135 ± 7.0 152 ± 9.0 123 ± 7.0 135 ± 6.0 175 ± 8.0 210 ± 9.0

Mobile phosphorous,
mg/100 g of soils 1.35 ± 0.04 2.23 ± 0.04 1.33 ± 0.03 0.43 ± 0.02 1.58 ± 0.04 0.97 ± 0.03

Nitrogen alkaline
hydrolysable, mg/kg 210 ± 18.0 392 ± 27.0 266 ± 21.0 280 ± 24.0 262 ± 23.0 270 ± 21.0

Soil organic carbon, % 2.66 ± 0.4 5.59 ± 0.5 5.55 ± 0.6 5.05 ± 0.4 5.58 ± 0.6 5.34 ± 0.4

pH (KCl) 4.5 ± 0.2 5.6 ± 0.2 5.3 ± 0.1 5.6 ± 0.2 6.1 ± 0.3 6.3 ± 0.2

pH (H2O) 5.9 ± 0.2 6.4 ± 0.3 6.1 ± 0.3 6.4 ± 0.3 6.8 ± 0.3 6.9 ± 0.3

Mobile potassium, mg/kg 116 ± 6.1 195 ± 6.9 106 ± 5.2 92 ± 5.3 154 ± 5.8 138 ± 4.9

Fe2O3, % 0.72 ± 0.08 0.68 ± 0.09 1.15 ± 0.07 0.91 ± 0.09 3.11 ± 0.08 2.85 ± 0.08

With a maximum of 392 mg/kg of soil, the potential nitrogen availability of soil
(nitrogen alkaline hydrolysable content) for all plots under study is described as high. In
every case, the non-flooded plots also had higher nitrogen contents. This might be because
of the high mobility of nitrogenous compounds, which make them simple to remove from
the soil layer, as well as the suppression of nitrification in an anoxic environment.

Except for the locations of the Nugush Reservoir, where a low potassium concentration
was discovered, the soils are characterized by medium availability based on the con-tent of
mobile potassium. Mobile potassium levels in non-flooded sites compared to flooded areas
were higher only within the Yumaguzino Reservoir.

Our data are very different from those obtained for the largest artificial lake Poyang,
located in China, where natural cycles of mineral nutrients have been completely replaced
by anthropogenic ones. This is due to the colossal chemical pressure of the surrounding
ecosystems and the long history of the lake’s development. The reservoirs in our study are
much less chemically pressurized and younger [31].

With the exception of the organic matter content, which was lower than the regional
average for soils at all of the research locations, the chemical characteristics of both flooded
and non-flooded soils were generally similar to those of the study region [32].

The examined reservoirs’ flooded soils are mostly in a dry state (i.e., under oxic
conditions) in the fall and winter. This is a result of the features of reservoir drawdown
in the examined reservoirs, which are filled in the spring, typically in late March to early
June, and are used until March of the following year. The process of lowering reservoir
levels through water uptake for water management purposes is accelerated by evaporation
from the water surface but is partially mitigated during summer and autumn rainfall. The
maximum fill level of the reservoir affects how quickly the sites dry out (the lower the
level, the quicker the sites are cleared of water), which results in the sites being under oxic
conditions that are good for the growth of microbial communities in the soil. The maximum
flood level for the areas studied inside the Yumaguzino Reservoir is 10.55 m, the Nugush
Reservoir is 4.65 m, and the Slak Reservoir is 0.20 m. The Slak Reservoir is therefore found
to have the most favorable conditions (by the sum of effective temperatures) at the time
when soils are in the dry state (not flooded) (Table 2).

Alpha diversity analysis showed a more reliable variety of flooded soils across all
sites considered (Figure 2). Both indices under consideration have a similar relationship
(Simpson and Observed ASVs).
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Table 2. Sum of effective air temperatures (above 5 ◦C) throughout the drying time and the length
of the drying period up to the temperature transition date of 5 ◦C (2009–2020) for the Yumaguzino,
Nugush, and Slak reservoirs (South Urals region, Russia).

Sites
Sum of Effective Air Temperatures, ◦C Length of the Drying Period, Days

Min Mean Max Min Mean Max

Yumaguzino Reservoir 0 (100%) - - - 0 (100%) -

Nugush Reservoir 0 (37.5%) 54.0 309.5 0 (37.5%) 6.4 33

Slak Reservoir 67.8 623.6 1598.6 6.0 51.8 100

Ecologies 2024, 5, FOR PEER REVIEW 7 
 

 

Table 2. Sum of effective air temperatures (above 5 °C) throughout the drying time and the length 

of the drying period up to the temperature transition date of 5 °C (2009–2020) for the Yumaguzino, 

Nugush, and Slak reservoirs (South Urals region, Russia). 

Sites 
Sum of Effective Air Temperatures, °C Length of the Drying Period, Days 

Min Mean Max Min Mean Max 

Yumaguzino Reservoir 0 (100%) - - - 0 (100%) - 

Nugush Reservoir 0 (37.5%) 54.0 309.5 0 (37.5%) 6.4 33 

Slak Reservoir 67.8 623.6 1598.6 6.0 51.8 100 

Alpha diversity analysis showed a more reliable variety of flooded soils across all 

sites considered (Figure 2). Both indices under consideration have a similar relationship 

(Simpson and Observed ASVs). 

 

Figure 2. Observed ASVs and Simpson alpha diversity indices for microbial communities in flooded 

and non-flooded areas of the Yumaguzino, Nugush, and Slak reservoirs (South Urals region, Rus-

sia). 

Beta diversity distinguishes Slack samples within a distinct cluster: the bacterial and 

archaeal communities of flooded and non-flooded soils is very similar here and at the 

same time is isolated from soil samples from Yumaguzino and Nugush (Figure 3). The 

difference between flooded and non-flooded areas in the phylum is determined by the 

various proportions of Thaumarchaeota (higher share in non-flooded soils), Proteobacteria 

and Chloroflexi (higher share in flooded soils). 

Similar patterns were found in the soils of the Yumaguzino and Nugush reservoirs. 

Communities of non-flooded soil form a separate cluster, whereas communities of flooded 

soil form another cluster in these areas. Both clusters had a comparable taxonomic com-

position at the phylum level (Figure 4). These reservoirs’ non-flooded soils are distin-

guished by a significant portion of Thaumarchaeota, Proteobacteria, and Actinobacteria, but 

the flooded soils are characterized by an increasing portion of Firmicutes and Chloroflexi. 

Figure 2. Observed ASVs and Simpson alpha diversity indices for microbial communities in flooded
and non-flooded areas of the Yumaguzino, Nugush, and Slak reservoirs (South Urals region, Russia).

Beta diversity distinguishes Slack samples within a distinct cluster: the bacterial and
archaeal communities of flooded and non-flooded soils is very similar here and at the
same time is isolated from soil samples from Yumaguzino and Nugush (Figure 3). The
difference between flooded and non-flooded areas in the phylum is determined by the
various proportions of Thaumarchaeota (higher share in non-flooded soils), Proteobacteria
and Chloroflexi (higher share in flooded soils).

Similar patterns were found in the soils of the Yumaguzino and Nugush reservoirs.
Communities of non-flooded soil form a separate cluster, whereas communities of flooded
soil form another cluster in these areas. Both clusters had a comparable taxonomic compo-
sition at the phylum level (Figure 4). These reservoirs’ non-flooded soils are distinguished
by a significant portion of Thaumarchaeota, Proteobacteria, and Actinobacteria, but the flooded
soils are characterized by an increasing portion of Firmicutes and Chloroflexi. Similar vari-
ations at a taxonomic level as high as phylum are probably caused by the prevalence of
spore-forming bacteria (Firmcutes) and phototrophs (Chloroflexi) in flooded soils.
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Based on a correlation analysis, the link between the chemical properties of the soil
and the taxonomic structure of the bacterial and archaeal communities has been evaluated
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(Figure 5). According to the findings of the analysis, there is a strong, multidirectional
relationship between each phylum and the soil’s characteristics. The strongest correlation
was discovered for pH, where Bacteriodetes and Patescibacteria showed a high negative
correlation while Actinobacteria showed a positive correlation. The SOC content, on the
other hand, is characterized by lower correlation values; for the Patescibacteria phylum, there
is a strong negative connection with SOC, while for the Bacteriodetes and Nitrospirae, there
is an average negative correlation. Alkaline-hydrolyzed nitrogen has a negative correlation
with Cloroflexi and Firmicutes and a high correlation with the proportional prevalence
of Rokubacteria, Thaumarchaeota, and Verrucomicrobia. Furthermore, there are significant
positive correlations between the prevalence of the phylums Actinobacteria, Euryachaeota,
and Gemmatimonadetes and the Fe2O3 level. There is less of a correlation between relative
phylum representations, mobile potassium, and mobile phosphorus.
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Figure 5. Correlation matrix between the relative representations of the bacterial and archaeal
populations (n = 14 plus “>0.02 abundance”, top 1000 most abundant taxa were used) and the
primary chemical properties of the soil. Furthermore, a connection is provided for each sampling
point’s relative phylum representations and the length of drying period. TP—total phosphorus,
MP—mobile phosphorus, NAH—nitrogen alkaline hydrolysable, MPT—mobile potassium,
LDP—length of drying period.

Furthermore, the correlation between the taxonomic structure and the length of drying
period (LDP) was evaluated. Despite the fact that LDP is not a direct indicator of nutritional
content, there are significant positive correlations between it and the relative abundance of
Proteobacteria, Gemmatimataeota, and Euryachaeota. Regarding the relative representation of
Planctomycetes, a substantial negative LDP association has been found.
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4. Discussion

Flooded soils have different chemical properties than their non-flooded counterparts.
The chemical features of the zone soils in the area are similar to those of the non-flooded
areas’ soils, which have a neutral reaction, a high availability of alkaline hydrolysable
nitrogen, and an average level of organic carbon. Soils at flood sites are characterized by
nutrient accumulation and increased acidity.

The assumption of a major effect of site flooding on bacterial and archaeal commu-
nities is validated, as evidenced by a comparison of the diversity indices of the analyzed
sites. All periodically flooded locations have greater levels of alpha diversity in their
communities, and the difference becomes more noticeable the longer the time of flooding.
The Yumaguzino Reservoir exhibits the largest variances since it is not drained during the
warm season because of its morphometric features and the relief’s mountainous nature.
The Slak Reservoir’s flooded sites, which have an average long-term drying time of 51 days,
are the ones closest to the non-flooded area, according to the alpha diversity index.

Because of the limited investigation of the microbial communities of the examined
items, soil from paddy fields, wetlands, and river floodplains were used as analogues.
Through comparison with these locations, we discovered several other variables that can
influence the bacterial populations in flooded soils, such as the risk of contamination from
heavy metals and petroleum products.

Pollution can affect bacterial and archaeal populations by interacting with flooded soils
and melting surface waters. Studies have demonstrated that frequent floods can lead to
significant soil pollution [33] and negatively impact plant populations [34]. Nonetheless, the
research sites are situated in regions with low background concentrations of heavy metals
and minimal anthropogenic load. The basins of the Yumaguzino and Nugush reservoirs
are located inside a poorly reclaimed mountain-forest zone. The Slak Reservoir’s water
collecting region is located in the steppe zone, which has a human effect on the territory
due to agriculture. Major sources of pollution (industrial plants, urban agglomerations, etc.)
are not present in any of the three reservoirs. Therefore, while evaluating the variations in
microbial communities, the pollution effect was disregarded.

Many studies have been conducted on the effects of vegetation on microbe and archaea
communities in analogue settings, particularly flooded agricultural fields situated in flood
plains. Even brief flooding may result in dramatic changes in the bacterial biota of the
rhizosphere [35]. Moreover, vegetation does not reduce soil communities’ sensitivity to
flooding [36]. Possible contributing factors include the vegetation at the Slak Reservoir
site. In sites with a high diversity of plant functional groups, there is a drop in microbial
biomass because of increasing oxygen restriction, which has more substantial effects on soil
processes [37]. Sites 1 and 2’s flooded regions include high aquatic vegetation and a rare
juvenile willow, which are representative of the shallow area flora. However, there was no
vegetation at the sample locations at sites 1 and 2. Therefore, for sites 1 and 2, there is no
evidence of the rhizosphere effect on the soil microbiome, whereas additional research is
needed for site 3.

We do not have direct measurement of microbial taxonomy of waters in our plots.
Thus, we can only compare these data with those of other research. It has been shown that
pH does not seriously affect the microbial composition of Baikal waters and adjacent rivers,
while the dissolved organic carbon demonstrated more pronounced effect on the alpha
diversity of the microbial community [38]. This research also demonstrates the dominance
Proteobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria, and Verrucomicrobia predomi-
nated in the estuaries and estuarine waters of the rivers. It seems that the number of OTUs
and alpha diversity of micro-organisms is more changeable in water flows and reservoirs
than in bottom sediment, as it was shown for Mongolia [39]. The data obtained by us
can be useful for organizing monitoring of changes in microbiome composition under the
influence of external pollution, as it was performed by colleagues in Baikal [40]. It seems
that comparison of water and bottom soils hardly makes sense, since, as microbiological
studies of Baikal waters have shown, the microbiome of different layers of the water column
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and in different periods of time is extremely variable [41]. Moreover, the composition of
the water microbiome can vary significantly between day and night as has been shown
in a meromictic soda lake [42]. Due to this dynamic nature of the water microbiome, the
design of our experiment based on comparing more stable mineral soils with each other
is reasonable.

We observed that the relative abundance of the Euryarchaeota phylum was significantly
reduced in the flooded soils of the Nugush and Yumaguzino reservoirs. This group of
Archaea contains numerous methanogens and nitrificators, including anaerobes [43,44]. The
change in the relative representation of this group is related to the flooding of sampling
points, which may be caused by both changes in soil aeration during flooding and the
quantity of ammonium available during seasonal changes in the hydrological regime. On
the flooded soils of the Slak Reservoir, there are just a few Euryarchaeota species, according
to an analysis of phylum relative abundance. Samples from this site were collected during
the summer flood season, when the water cover was approximately 20 to 30 cm thick
above ground level. Since Euryarchaeota representatives are a sign of flooding and the
average no-flooding time for the Slack Reservoir site is the longest of all those analyzed,
we assume that drainage has a negative impact on their population. Following floods,
their population recovers by moving from the locations of the remaining submerged and
deep-lying soil strata.

The high transformation or humification rate in the areas of the Nugush and Yu-
maguzino reservoirs explains the existence of the Rokubacteria phylum, which inhabits
peat swamp environments [45]. Swampy meadows or wet deciduous woods with debris
layers are typical examples of the coastal vegetation found at these locations. These loca-
tions have also been identified to have the phylum Patescibacteria. Patescibacteria are small,
slow-moving micro-organisms that thrive in low oxygen environments and the absence of
sunlight, such as aquifers, lake waters, and sediments [46,47]. The brief period and shallow
depth of the flooding can be directly attributed to the total absence of Patescibacteria in
samples from the Slack Reservoir sites.

All identified archaeal ammonia oxidizers and species whose metabolism has not
been thoroughly explored are members of the Thaumarchaeota phylum [48]. Thaumarchaeota
has a reverse correlation with soil organic matter that inhibits ammonia oxidation [49].
The relative contribution of Thaumarchaeota in our situation is dictated by the nitrogen
concentration and acidity of the soil because both non-flooded and flooded soils have
significant levels of organic material.

A notable increase in the relative proportion of Firmicutes is a defining trait of the
microbiome of all analyzed flood locations. Firmicutes are characterized by the formation of
endospores, which remain viable for an extended period [50]. The growth of this phylum
that we discovered conforms to the findings of earlier research [51], which demonstrated
that Firmicutes had a greater relative presence in paddy soils.

The nature of the effect of floods on the soil ecosystems of bacteria and archaea cannot
be conclusively determined by analyzing published research. Individual investigations
have revealed that flooding causes notable changes in microbial activity [17] and the struc-
ture of the soil bacterial community [52], including modelling of flooded soils and river
water. Nonetheless, there is evidence that the following flooding, microbial community
numbers revert to their initial condition in both flood and biosolids application trials [53].
Bacterial communities are also quite stable and recovering from brief floods, according to
model tests conducted on organic soil [54]. Research conducted on paddy soils subjected to
prolonged recurrent flooding revealed notable alterations in the composition of microbial
communities [55]. Our findings also reveal a statistically significant change in the organi-
zation of soil bacteria and archaea communities at reservoir locations following recurrent
flood and drainage operations.
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5. Conclusions

Flooded soils were quite different from non-flooded soils in terms of key chemical
indexes. Comparing the diversity indices revealed that flooding had a considerable effect
on bacterial and archaeal communities, with low-depth areas draining more rapidly and
having microbial communities that were more comparable to those of non-flooded soils.
All flooded areas have higher alpha biodiversity of bacterial and archaeal communities than
their non-flooded counterparts. The Yumaguzino Reservoir, which is not emptied during
the warm season because of its morphometric characteristics and the relief’s mountainous
nature, exhibits the largest variances. Based on the alpha biodiversity index, the non-
flooded soil is most comparable to the flooded soils of the Slak Reservoir, which has an
average drainage period of 51 days. Thus, hydromorphic regime changes essentially not
only basic soil properties, but, also the microbiological state of soils.

The relative representation at the phylum level has undergone major alterations,
which highlights the differences between flood and drainage areas. The microbiome of lake
sediments and soils of periodically flooded zone, when compared, show more similarity
with the analyzed areas, according to an analysis of related publications. We believe that
this is caused by the recurrent floods and the movement of the microbial mass from the
area next to the examined locations. The absence of specific phyla from flooded locations
(Euryarchaeota, Thaumarchaeota) is determined by restrictions caused by lower ammonia and
pH changes in flooded soils, not the existence of oxic and anoxic periods.

Metagenomic techniques may be used to locate areas that experience frequent floods
and the development of anoxic conditions because the microbial communities of the
analyzed soils differ significantly from one another in terms of structure.
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