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Abstract: Microalgae are used in flocculation processes because biopolymers are released into the
culture medium. Microalgal cell growth under specific conditions (temperature, pH, luminosity,
nutrients, and salinity) provides the production and release of exopolysaccharides (EPS). These
biopolymers can be recovered from the medium for application as bioflocculants or used directly in
cultivation as microalgae autoflocculants. The optimization of nutritional parameters, the control of
process conditions, and the possibility of scaling up allow the production and industrial application
of microalgal EPS. Therefore, this review addresses the potential use of EPS produced by microalgae
in bioflocculation. The recovery, determination, and quantification techniques for these biopolymers
are also addressed. Moreover, other technological applications of EPS are highlighted.

Keywords: autoflocculation; bioflocculation; biopolymers; microalgal biotechnology; recovery pro-
cess; identification techniques

1. Introduction

Microalgae are photosynthetic microorganisms cultivated in marine, hypersaline,
brackish, freshwater, or wastewater for the production of high value-added compounds
(pigments, proteins, lipids, polyunsaturated fatty acids, and intracellular and extracellular
polysaccharides) [1–3]. Thus, the biomass of these microorganisms is of industrial inter-
est in the development of pharmaceuticals, nutraceuticals, cosmetics, and food/feed [4].
However, the recovery of microalgal biomass is costly (20–30% of total production costs),
limiting the commercialization of these bioproducts on a large scale [5].

Moreover, there is growing interest in alternative methods of harvesting microalgae
biomass at low cost and energy. Microalgae exopolysaccharides (EPS) have been high-
lighted for promoting autoflocculation or acting as bioflocculants. Thus, these compounds
can act in the process of microalgal biomass recovery and treatment of industrial effluents,
with the additional advantage of low energy consumption, low environmental impact, and
reduced production of toxic compounds [6–9].

In this sense, Yang et al. [10] reported bioflocculant activity of EPS from Scenedesmus
acuminatus in the recovery of the biomass of this same microalga. The results showed that
the addition of microalgae EPS (3.2 mg g−1) significantly reduced the use of aluminum
coagulant (Al3+) from 77.6 to 4.5 mg g−1. The authors noted that this result potentially
reduced the chemical cost by up to 75%. Aljuboori, Uemura, and Thanh [11] reported that
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EPS from Scenedesmus quadricauda showed bioflocculant activity in the biomass recovery of
this same microalga with flocculation efficiency of up to 86.7%.

Microalgal EPS production depends on the microalgae species, cultivation conditions,
or nutrient limitations such as nitrogen and phosphorus deprivation [12–14]. Furthermore,
polysaccharides produced by microalgae can be classified based on their functionality:
(i) structure of cell walls, (ii) storage (intracellular), and (iii) extracellular or exopolysaccha-
rides, which are released into the environment. In addition to being a flocculating agent,
microalgal EPS may have immunomodulatory [15], antioxidant [16], anti-inflammatory [17],
anticoagulant [18], antibacterial [19], and anticancer properties [20], and may act as a gelling
and thickening agent [12].

The most prominent families of microalgae in the production of EPS were Desmidi-
aceae, Chlamydomonadaceae, Chlorellaceae, Porphyridiaceae, and Glaucosphaeraceae [1].
However, there are few studies about other microalgae diversities in the production of this
metabolite and its flocculating efficiency. In this context, this review reports the potential
use of EPS produced by microalgae in bioflocculation. The recovery, determination, and
quantification techniques concerning these biopolymers are also addressed. Moreover,
other technological applications of EPS are highlighted.

2. Potentiality of Microalgal Polysaccharides in Bioflocculation

The use of autoflocculating microalgae to induce flocculation of non-flocculating
species is considered one of the most promising methods in bioflocculation [21]. EPS
can create a viscous coating around cells [12]. This coating in bioflocculation allows the
formation of an aggregate consisting of microalgae–microalgae, or microalgae with another
microorganism, leading to adherence of microalgae to the flocculent moss surface [22] or
flocculent sludge surface [23,24].

Wang et al. [25] examined the algal-bacterial bioflocculation induced by strains of
Scenedesmus obliquus, Botryococcus braunii, Chlorella sp. BWY-1, Haematococcus pluvialis,
Dictyosphaerium ehnenbergianum, and Chlorella vulgaris. The microalgae Scenedesmus obliquus
and Botryococcus braunii did not allow flocculation. Chlorella sp. BWY-1, Haematococcus
pluvialis, and Dictyosphaerium ehnenbergianum showed high flocculation activity with 67.8,
50.9, and 43.2%, respectively. The concentration of chlorophyll a was approximately
5.5 mg L−1 for Chlorella sp. BWY-1, 3.0 mg L−1 for Haematococcus pluvialis, and 4.9 mg L−1

for Dictyosphaerium ehnenbergianum. Chlorella vulgaris exhibited the best flocculation activity
(86.6%). However, the concentration of chlorophyll a decreased rapidly, reaching the lowest
value in the experiment (1.6 mg L−1). The authors attributed these results to the high
energy required for the production of EPS.

EPS represent carbon and energy reserves for cells and are often excreted by microal-
gae as part of physiological processes or under stress conditions [12,21,26–28], such as
light intensity and light continuity, temperature [29,30], pH [31,32], excess, limitation or
absence of nutrients, such as carbon, nitrogen, phosphorus, sulfur, sodium, potassium, iron,
magnesium and calcium [14,33,34], and toxic substances [35,36], such as cadmium [37],
copper, lead, chromium, nickel [31,38], and silver [39].

Koçer et al. [40] investigated the potential for EPS production using the microalgae
Chlorella minutissima, Chlorella sorokiniana, and Botryococcus braunii. The authors analyzed
the effects of nitrogen and carbon concentrations in the culture medium and light inten-
sity on EPS production. Chlorella minutissima produced the highest concentration of EPS
(0.245 ± 0.003 g L−1) compared to Chlorella sorokiniana (0.163 ± 0.002 g L−1) and Botryococ-
cus braunii (0.117 ± 0.001 g L−1). Regarding the effects of nitrogen (NaNO3) and carbon
(Na2CO3) concentration in the BG-11 medium and lighting time on EPS production, the best
conditions for three microalgae were nitrogen reduction (0.2 g L−1) and carbon (0.02 g L−1)
and 12 h of lighting time. Under these conditions, Chlorella sorokiniana, Botryococcus braunii,
and Chlorella minutissima produced 0.183, 0.120, and 0.215 g L−1 EPS, respectively. Thus,
the authors observed an inverse relationship between the supply of these nutrients and the
concentration of EPS produced.
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Surendhiran and Vijay [41] analyzed the flocculation efficiency of the Chlorella salina
using a microbial flocculant. The authors found that flocculation was improved with zinc
chloride (ZnCl2) as a cationic inducer. Moreover, the flocculation obtained maximum effi-
ciency (98.6%) with the following conditions: temperature (30.6 ◦C), pH (10.4), flocculation
time (6.2 h), the volume of bioflocculant (0.34 mL), and cationic inductor concentration
(0.031 mM).

Thus, in addition to contributing to biomass recovery and mitigation of industrial
effluents, the use of microalgae for the production of EPS proves to be an efficient and low
environmental impact way to reduce costs in the flocculation process.

3. Recent Advances in Harvesting Algae and Pretreatments for the Extraction of
Cell-Bound EPS

Studies on optimization strategies for the recovery of microalgae biomass are increas-
ing since it demands high energy and operating costs (20 to 30% of the total production
cost) [42–44]. In this way, it is necessary to define the recovery method to process high
biomass production (Table 1). Thus, physical and chemical characteristics of the culture
medium, such as pH, salinity, and cellular structure of microorganisms, must be analyzed
and linked to the chosen method [44–46].

Table 1. Technoeconomic analysis of microalgae biomass recovery (adapted from Valdovinos-
García et al. [47]).

Drying Process Harvest Method
Responses

Electrical Power
(kWh Year−1) *

Unit Production
Cost (US $ kg−1) *

Operating Cost
(US $ Year−1) *

Biomass Production
(kg Year−1)

Spray drying

Auto-flocculation followed by
vacuum filtering 13,988 1.25 61,000

48,145.6–53,495.11
Auto-flocculation followed by plate

press filter 8738 1.19 58,000

Drum dryer

Auto-flocculation followed by plate
press filter 8297 0.85 42,000

48,145.6–53,495.11
Auto-flocculation followed by

vacuum filtering 13,597 0.91 45,000

Spray drying

Adding an iron salt followed by
vacuum filtering 13,987 1.21 59,000

48,145.6–54,306.51
Adding an iron salt followed by

plate press filter 8737 1.15 56,000

Drum dryer

Adding an iron salt followed by
plate press filter 8296 0.81 40,000

48,145.6–54,306.51
Adding an iron salt followed by

vacuum filtering 13,546 0.87 43,000

Spray drying

Flocculation with chitosan followed
by vacuum filtering 13,988 1.26 62,000

48,145.6–54,306.51
Flocculation with chitosan followed

by plate press filter 8728 1.20 59,000

Drum dryer

Flocculation with chitosan followed
by plate press filter 8297 0.86 43,000

48,145.6–54,306.51
Flocculation with chitosan followed

by vacuum filtering 25,597 0.92 46,000

* The values presented are the sum of respective data obtained from harvesting and drying processes.

Traditionally, methods used in biomass recovery include coagulation, flocculation,
flotation, gravity sedimentation, and centrifugation [45,46,48]. In flocculation methods,
chemical compounds such as sodium hydroxide (NaOH), magnesium sulfate (MgSO4),
magnesium chloride (MgCl2), calcium chloride (CaCl2), sodium alginate (NaC6H7O6),
tannin, and other polymers can be used (Table 2). However, these can be combined to
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optimize the processes in the recovery of larger volumes of biomass [43,45,49]. In recent
years, combined methods such as sedimentation–flocculation–coagulation, flocculation–
centrifugation, and electrocoagulation–flotation have been used and show promise con-
cerning cost and energy efficiency [43–46,49,50]. Moreover, natural (including EPS) and
synthetic flocculating agents are applied in microalgal recovery [42,51].

Table 2. Comparative yield of microalgae flocculation/coagulation using different substances.

Microalgae Recovery Process Experimental Conditions Substance Used in
Biomass Recovery Process Yield Reference

Chromochloris
zofingiensis

Flocculation and
alkaline

sedimentation

Bold’s Basal Medium, biomass
concentration 0.5, 1.0, 1.5 g L−1,

200 L working volume, air
sparged (~10 L min−1),

centrifugation 12,000× g for
10 min, pH 7.0

NaOH (4.6 and
8 mM) and MgSO4 (6,

8 and 10 mM)

Sedimentation yield
above 90% [52]

Chlorella vulgaris
UTEX 395

Flocculation with
naturally available

magnesium in
brackish water

BG-11 medium, biomass
concentration 0.3% v v−1,

stirring at 700 rpm for 5 min,
pH 9.0

Mg2+ (0.3 mM) and
MgCl2 (9.6 mM)

Sedimentation yield
of 100 cm h−1 [53]

Chlorella marinha sp. Flocculation induced
by NaOH

F/2 medium Guillard, 5000× g
for 5 min NaOH (5 and 7 mM) Flocculation yield

of 90% [54]

Chlorella vulgaris
Reversible

flocculation

Wright’s Cryptophyte medium,
10 L working volume,

centrifugation 20 min of
stirrung at 250 rpm, pH 8.5

Mg (2.5 mM) and
NaOH (4 mM)

Maximum
flocculation efficiency

of 90%
[55]

Phaeodactylum
tricornutum

Maximum
flocculation efficiency

of 73%

Chlorella salina Alkaline
autoflocculation

Guillard’s F/2 media with
artificial seawater media,

optical density of 0.1, 11,500× g
for 12 min, pH 8.0

NaOH (4 mM)
Biomass recoveries

greater than 95%
efficiency

[56]

Scenedesmus sp.,
Kirchneriella sp., and
Microcystis aeruginosa

Induced flocculation
Medium mixture, 50 L working

volume, 200 rpm for 1 min,
pH 7.7

CaCl2 (20, 60, 120
and 180 mg L−1),

NaC6H7O6 (10 and
20 mg L−1) and
Tannin (10 and

20 mg L−1).

Maximum
flocculation efficiency

for Tannin 95.35%,
sodium alginate

90.49% and, calcium
chloride 84.04%

[57]

Chlorella vulgaris Induced natural
flocculation

N8 medium, 1 L working
volume, 100 rpm for over 24 h,

pH 6.8

Chitosan (0.25 g L−1)
and aluminum

sulfate (2.5 g L−1)

Flocculation yield
of 90% [58]

Chlorella vulgaris Induced flocculation
MLA medium, 350 L working

volume, 100% CO2 for
1 min d−1, pH 9.0

Cationic
polyacrylamide

polymer (2 g L−1)

Flocculation yield
of 97% [59]

Nguyen et al. [42] develop cationic polymers (poly[2(acryloyloxy) ethyl]trimethylam-
monium chloride and poly(3acrylamidopropyl) trimethylammonium chloride) for the
harvest of Chlorella vulgaris and Porphyridium purpureum. The polymers show excellent
flocculation performance for both microalgae with stable floc formation. Similar recovery
strategies were also observed by Zhu et al. [51] when they analyzed three types of sulfates
(aluminum sulfate, aluminum potassium sulfate, and ferric sulfate) as flocculants for
harvesting Chlorella vulgaris. The results showed the flocculate potential of the chemical
agents at a dosage of 2.5 g L−1 and speeds for coagulation and flocculation (150 and 25 rpm),
and time of 10 min. The biomass recovery efficiency found ranged from 83 to 90%.

After recovery, it is important to pretreat the biomass to obtain EPS bound to microal-
gal cells [12,60]. Researchers describe that up to 50% of the total EPS can remain bound
to the cell of these microorganisms. However, there are no standard methods for this
extraction. The use of chemical reagents such as formaldehyde, ethylenediaminetetraacetic
acid, sodium hydroxide, as well as sonication, heating, and washing with distilled wa-
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ter and/or complexation/treatment with ionic resins, were performed to recover these
polysaccharides from the surfaces of microalgal cells [12,60,61].

Furthermore, the method used to break EPS and cell wall interactions must not pro-
mote cell lysis to avoid contamination by intracellular compounds and compromise the
entire EPS recovery process [60,61]. Thus, some chemical agents such as formaldehyde
and glutaraldehyde were used to protect the microalgal cell from lysis during EPS iso-
lation [60,61]. These fixing agents chemically react with hydroxyl, sulfhydryl, carbonyl,
or amino groups present in microalgae cell membranes and prevent cell lysis during
EPS extraction. However, they can compromise the method if they react with the ex-
tracted EPS [12,60,61]. The washing of microalgae cells with water demands temperature
(30–95 ◦C) and time (1–4 h), which can promote cell lysis and consequent contamina-
tion with intracellular constituents [60]. In this sense, in most studies, microalgae EPS
were isolated without biomass treatment since these treatments add a high cost to the
processes [12,60,61].

4. Techniques for Recovery/Identification of Microalgae Polysaccharides

The recovery of intracellular and extracellular compounds from microalgae cultures
is the bottleneck to applying this sustainable technology [62]. Recently, several studies
have investigated microalgae recovery and sedimentation methods from flocculants as an
alternative with high energy efficiency (Table 3) [43].

Table 3. Techniques for recovering and identifying of microalgal EPS.

Techniques Microalga Process Conditions Objective Responses Reference

Membrane filtration Porphyridium
cruentum

Permeate fluxes of 49.8, 68.9
and 81.9 L h−1 m−2 and 4 bar

for, respectively, cross-flow
velocities of 2.5, 3.3 and

4.2 m s−1; 49.7 L h−1 m−2.

Influence of
cross-flow velocities

on filtration
performances.

EPS concentration at
6.3 to 10.4 times
reaching from

1.74–2.26 g L−1 (80%
(w w−1) recovery).

[63]

Membrane filtration Botryococcus braunii
CCALA778

Culture flow circulating in
110 cm2 area 0.2 µm

microfiltration hollow fiber
membrane (GE Healthcare®,

CFP-2-E-35MA).

Optimization and
efficiency of

extraction and
recovery, ensuring

high efficiency
without

compromising the
viability of the

culture.

Increased EPS
productivity by 25%
(4 g m−2 d−1). Daily
EPS extraction rate of

0.36 g m−2 d−1.

[64]

Ultrafiltration
(polymeric
membrane)

Porphyridium
cruentum

PES 50 kDa flat membrane in
full recirculation mode, with

permeate flow transmembrane
pressure (TMP) curves

(0.10–1.06 kg GlcEq m−3),
tangential fluid velocity

(0.3–1.2 m s−1), and
temperature (20 and 40 ◦C).

Parametric study of
ultrafiltration of EPS
solutions in organic

membrane.

The concentrated
solution of 0.10 kg

GlcEq m−3

(moderate fouling,
portion of irre-

versible/reversible
fouling was 88

and 12%).

[65]

Diafiltration Flintiella sanguinaria
Vivaflow ultrafiltration system

(Sartorius) and 100 kDa
NMWCO membranes.

Native EPS
extraction.

EPS solution was
concentrated

(volume reduction
factor of 5).

[66]

High Pressure Anion
Exchange

Chromatography
(HPAEC)

Flintiella sanguinaria

The quantification of
monosaccharides was achieved

by injecting different
concentrations of

monosaccharides and plotting
the response area as a function

of concentration.

Quantification and
identification of

native EPS extract.

Identification of
galactoxylan, with

rhamnose and
glucuronic acid, low

content of sulfate
groups (0.6%), and

methylated and
acetylated

compounds (5.1 and
3.2%, w w−1).

[66]
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Table 3. Cont.

Techniques Microalga Process Conditions Objective Responses Reference

Molecular weight
(Mw) Chlorella zofingiensis

Determination with gel
permeation chromatography

and refraction detector (RI), and
at a flow rate of 0.5 mL min−1

using 0.2 M sodium nitrate as
the mobile phase.

Investigation of the
physicochemical

characteristics of EPS.

EPS yields were 208.4
and 364.3 mg L−1

with average
molecular weights of

2.66 × 104 and
1.88 × 104 Da,
respectively.

[20]

Several species of algae can act as flocculants, where the process allows the advantage
of recycling the medium [67]. The flocculation capacity of autoflocculating microalgae
is closely related to EPS secretion [6]. With the optimization of cultivation conditions,
the extraction of EPS becomes advantageous since it promotes higher productivity of the
biomass and biocompound. In this way, increases in the extraction yield and sustainability
of the process are reached. The implementation of recovery and identification protocols
varies according to the location of the polysaccharides in the culture [68,69].

Among the classic methods of extracting EPS are centrifugation and microfiltration.
These procedures separate the biomass from the EPS-constituted precipitate [20]. After this
step, the centrifuged material must be precipitated using methanol, alcohol, ethanol, or
isopropanol. With this method, the selective concentration of EPS is possible [70]. As an
alternative to the classical methods described, the recovery of EPS can be carried out during
the downstream and upstream processes, without the need for chemical additives [12,71].
Methods such as sonication and heating are also used to extract microalgal EPS [72]. Filtra-
tion modules from 1 kDa to 500 kDa have been used for the concentration of extracellular
compounds present in the culture medium. The ultrafiltration technique can be performed
in the following forms: rotating devices, tubular, flat, or spiral plate and hollow fiber, where
the liquid medium flows parallel to the ultrafiltration surface and the fraction of interest is
permeated through the membrane [12,69].

To increase the performance of filtration techniques, the use of synthetic material is
necessary, such as nanocomposite membranes consisting of nanoparticles in a polymeric
membrane (SiO2, TiO2) [73]. The identification of EPS can be performed through Fourier
transform infrared spectroscopy from functional compound determination [68]. Gas chro-
matography with mass spectrometry has shown excellent results in the identification of
microalgae EPS. Other techniques, such as ion-exchange chromatography, size exclusion
chromatography, and affinity chromatography, are widely used to purify and fractionate
microalgal polysaccharides [68,69].

5. Application of Microalgal Bioflocculants in Microalgae Harvesting
5.1. Bioflocculation

Bioflocculation is considered a sustainable method that occurs from the aggrega-
tion of microalgal cells in the presence of biopolymers synthesized by microorganisms.
Biopolymers are mainly composed of extracellular polymeric substances, which contain
polysaccharides, proteins, lipids, and nucleic acids in their structure [21,24,74,75].

In addition to the presence of metabolites synthesized by microorganisms, the biofloc-
culation processes of non-flocculating microalgae can occur in the presence of other microor-
ganisms, such as fungi, bacteria, and other microalgae [21,75]. This process was demon-
strated by Guo et al. [7], using supernatant and cell suspension from the autoflocculating
Scenedesmus obliquus AS-6-1 culture for the recovery of non-flocculating microalgae biomass.
Furthermore, to increase the efficiency of bioflocculation processes, other flocculants such
as Al3+ and Fe3+ can be added together with extracellular polysaccharides [7,10,76]. Ac-
cording to Yang et al. [76], the extracellular polymeric substance co-extracted in the Al3+

recovery process after the primary flocculation step contributed to the clotting process of
Scenedesmus acuminatus. There was an increase in the process’ efficiency when extracellular
substances (≥0.430 mg L−1) were added.
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Bioflocculation has been considered a promising strategy for cost reduction in the
recovery of microalgal biomass. Among the advantages of this method, there is the absence
of chemical flocculants, ease of operation, and an ecologically correct and sustainable
approach [24].

5.2. Autoflocculation

Unlike bioflocculation processes, autoflocculation can occur naturally from cell adhe-
sion and aggregation. The autoflocculation of microalgae cells is a phenomenon caused by
the secretion of flocculating substances (e.g., glycosides or polysaccharides) which adhere
to the microalgal cells. Under alkalinity conditions, autoflocculation occurs from positive
precipitates formed by calcium and magnesium ions that neutralize the negative charge of
microalgal cells. The other mechanism is related to the EPS produced by microalgae during
their physiological activities, which induce flocculation [74]. The autoflocculation process
is dependent on the cellular characteristics of the microalgae and other factors such as the
composition of available nutrients (e.g., the concentration of Ca, Mg, N, and P), type and
concentration of precipitates formed, and pH value [21,24,74,77]. Some autoflocculating
species have been reported, such as Scenedesmus rubescens SX [68], Scenedesmus obliquus,
Chlorella vulgaris, Ettlia texensis, Ankistrodesmus falcatus [78], and Neocystis mucosa SX [60],
among others. Although the mechanisms of autoflocculation are still not well understood,
it has been shown that extracellular polymeric substances can influence the autoflocculating
capacity of microalgae [21,77]. According to Wan et al. [79], autoflocculation can occur
when flocculants produced by the microalgae neutralize charges, forming bridges or patch-
ing adjacent cells. Additionally, the hydroxyl and carboxyl groups in the polysaccharide are
strongly related to microalgae flocculation. They serve as binding sites during this process.
These characteristics were demonstrated in studies by Alam et al. [9], Guo et al. [7], and
Lv et al. [60].

Some microalgae produce extracellular polymeric substances in significant amounts
during physiological activities, especially at the end of the growth phase when the extracel-
lular polymer acts as a flocculant [74,80]. In these cases, the parameters used in cultivation
tend to influence this process, as they affect the production and composition of extracellular
polymeric substances [81].

Guo et al. [7] determined that the autoflocculant activity of Scenedesmus obliquus
AS-6-1 occurred until the end of the exponential phase and increased with the time of
cultivation and the cell concentration of the medium. Autoflocculation occurred from
the presence of extracellular biopolymers, which formed a membrane on the cell surface,
forming aggregates and sedimenting. Alam et al. [9] studied the spontaneous flocculation
of Chlorella vulgaris JSC-7 and the addition of medium from this strain in non-flocculent
microalgae. According to the authors, spontaneous microalgae flocculation was associated
with an extracellular polysaccharide composed of glucose, mannose, and galactose. Chlorella
vulgaris JSC-7 was also able to improve the biomass recovery of the other microalgae tested.
In another study, polymeric substances synthesized by Chlorella vulgaris (FACHB-31) and
bound to the cell were responsible for increasing autoflocculation. The production of
polymeric substances was influenced by glycine added in the medium with light intensity
and mixing time. As the concentration of polymeric substances is higher at the end
of the cultivation, this period was also responsible for the higher solid concentration
rates achieved in the flocculation. However, cultivation time is a parameter that must be
considered, as it can increase the costs of harvesting microalgae [80]. Table 4 presents some
studies on the production and potential application of extracellular polymeric substances
in microalgae harvesting. According to Ummalyma et al. [24], more studies are needed to
understand the mechanisms involved in microalgae autoflocculation. The development
of research based on the mechanisms of autoflocculation will contribute to cost reduction,
ensuring sustainability in downstream processes.
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Table 4. Production and potential application of microalgal bioflocculants in microalgae harvesting.

Microalga Description of the
Experimental Set

Chemical Composition and
Identification of
Bioflocculants

Produced and
Applied

Concentration of
Bioflocculants

Bioflocculant
Application Reference

Spirulina sp. LEB-18

Outdoor cultivation,
using a raceway
(250 L), Zarrouk
medium, under

natural light for 30 d
(probable stationary

phase), and pH
9.8–10.5.

Sugars composition: glucose,
galactose, fructose, and organic

acids were glucuronic,
galacturonic and pyruvic.

9.5 g L−1 was the
highest production of

extracellular
polymeric
substances.

Possible application
as a bioflocculant

and/or other
industrial

applications.

[82]

Scenedesmus obliquus
AS-6-1

Cultivation to
stationary phase,

28 ◦C, 14/10 h
light/dark cycle,
60 mol m−2 s−1.

Cell wall-associated
polysaccharides.

Monomers consist of glucose,
mannose, galactose, rhamnose

and fructose.

0.6 mg L−1 of
bioflocculant was

responsible for 88%
of the flocculant

activity of
Scenedesmus obliquus

FSP-3.

Bioflocculation of
Chlorella vulgaris

CNW-11, Scenedesmus
obliquus FSP-3 and

Nannochloropsis
oceanica DUT01.

[7]

Chlamydomonas
reinhardtii

Cultivation at 5 to
25 ◦C, pH 6–10,

40–60 µmol photons
m−2 s−1, 30 d of

cultivation.

Bioflocculant composition:
proteins (42.1% w w−1),

carbohydrates (48.3% w w−1),
lipids (8.7% w w−1), and nucleic

acid (0.01% w w−1).

4 mg L−1 of
bioflocculant was

responsible for 96.6%
of the flocculant

activity of
Chlamydomonas

reinhardtii.

Microalgae
bioflocculation [83]

Ettlia texensis

Cultivation in a 4 L
photobioreactor,
batch mode, 24-h
lighting, 300 rpm,
26 ◦C, pH 6.5, and
300 µmol m−2 s−1.

Bioflocculants containing
mainly glycoproteins patched

to the cell surface.
_

Microalgae
autoflocculation and

bioflocculation.
[6]

Desmodesmus sp. ZFY
and Monoraphidium

sp. QLY-1

Microalgae were
used in co-culture,

cultivated in
mixotrophic medium
BG-11 + ammonium
nitrate and glucose,

pH 6.8, 300 mL, 25 ◦C,
120 rpm, 3500 lux,

and 7 d of cultivation
(stationary phase).

Bioflocculant consisted mainly
of polysaccharides and proteins.
The levels of polysaccharides in

co-culture were 46.53% in
substances loosely bound to

cells (LB-EPS).

Concentration of
total extracellular

polymeric substances
was 368.40 mg L−1.

Microalgae
bioflocculation. [84]

Scenedesmus
acuminatus

Cultivation
performed in 15 L

photobioreactors at
25 ◦C, modified

BG-11 medium (NO3
reduction),

180 µmol m−2 s−1,
light period 24 h d−1

and pH 6.5–7.0.

High (>50 kDa; 35.1%) and low
molecular weight (<3 kDa;

46.1%) polymeric substances
were identified; being
composed of galactose,
glucosamine, mannose.

3.2 mg g−1 of
extracellular

polymeric substances
were added in the
harvesting process
together with Al3+

(4.5 mg g−1).

Microalgae
bioflocculation. [10]

Chlorella vulgaris
JSC-7

Modified Bold’s
Basal Medium with

nitrogen
supplementation was
used, pH 6.9, 28 ◦C,
13/11 h light/dark

cycle and
25 µmol m−2 s−1.

The bioflocculant is a cell wall
polysaccharide; The monomers

consist of glucose, mannose,
and galactose.

47 mg of the
bioflocculant was

extracted from 4 L of
culture; Addition of

0.5 mg L−1 of the
bioflocculant was

responsible for >80%
of the flocculation of

the suspended
microalgal cells.

Bioflocculation of C.
vulgaris CNW11 and

Scenedesmus
obliquus FSP.

[9]
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6. Other Applications of Microalgal EPS

EPS produced by microalgae have specific structural and physicochemical charac-
teristics that allow industrial and environmental application (Figure 1). The use of these
biopolymers as biosurfactants and heavy metal biosorbents is an innovation in environmen-
tal biotechnology. These approaches are economically and ecologically sound strategies
for reducing environmental pollution [85]. EPS are also crucial for biological soil crust
(biofilm) development. This application reduces water infiltration into the soil by inducing
surface sealing and clogging of the pores. Therefore, there is an increase in the availability
of nutrients and improvement in the soil’s aggregate stability [86,87]. In addition, the
different biological activities presented by EPS, such as antiviral and antibacterial [88],
antioxidant [89], anti-inflammatory [90], immunomodulatory [91], and anticancer, indicate
the potential of these compounds for application in various sectors such as food, cosmetics,
pharmaceuticals, and biomaterials [14,20].

Figure 1. Interactions and structure of EPS with microalgae cultivation and their applications.

7. Conclusions

Microalgae exhibit rapid growth to produce metabolites under specific cultivation
conditions, contributing to a more ecological approach to biomass and EPS production. In
addition, to improve the economic competitiveness of innovative products derived from
microalgae, industries must seek in scientific research the effectiveness and advantages of
using these biotechnological processes. Microalgal EPS have been explored in the field of
flocculation due to the need for new products obtained from sustainable alternatives to
petroleum-based compounds. The main future challenges in the bioremediation sector will
be EPS production on an industrial scale. In addition, the cost reduction of the identification
and recovery processes of these biopolymers also deserves further investigation. However,
the structural diversity of EPS produced by microalgae provides different properties that
imply alternative and integrative applications. Moreover, EPS have antioxidant, anti-
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inflammatory, anticancer, antiviral, antimicrobial, and immunomodulatory activities, which
boost the development of natural pharmaceuticals and nutraceuticals.
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