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Abstract: The food packaging sector generates large volumes of plastic waste due to the high
demand for packaged products with a short shelf-life. Biopolymers such as starch-based materials
are a promising alternative to non-renewable resins, offering a sustainable and environmentally
friendly food packaging alternative for single-use products. This article provides a chronology
of the development of starch-based materials for food packaging. Particular emphasis is placed
on the challenges faced in processing these materials using conventional processing techniques
for thermoplastics and other emerging techniques such as electrospinning and 3D printing. The
improvement of the performance of starch-based materials by blending with other biopolymers, use
of micro- and nano-sized reinforcements, and chemical modification of starch is discussed. Finally,
an overview of recent developments of these materials in smart food packaging is given.
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1. Introduction

The overexploitation of natural resources and accelerated climate change has led
industries to incorporate more environmentally friendly materials and technologies into
their processes. Hence, the food packaging industry is increasingly looking to replace
petroleum-based materials in single-use applications. Until 2019, world plastics production
reached 368 million tons [1], of which 40% corresponds to food packaging and take-away
food [2]. The main reasons why plastics have been the most widely used materials for such
applications are their low cost of production, higher versatility, good barrier properties to
water and gas permeability, as well as their mechanical and optical properties [3]. However,
the accumulation of waste, which interferes with the natural dynamics of ecosystems, has
had a particularly negative impact on the environment in the case of plastics due to their
high durability and difficult degradation (up to 400 years) and this has stimulated research
towards the development of new biodegradable materials [4].

Biopolymers are considered the best solution with regard to replacing synthetic plastics
as, although they present similar characteristics, they possess a short biodegradation time
and good biocompatibility with other materials and high availability. During the last
decade, world biopolymer production has increased to 2.1 million tons in 2018 [5]. The
Nova-Institute predicts that by 2023 this will amount to 2.62 million tons [1], which opens
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up opportunities to overcome resource depletion and plastic pollution. A wide range of
materials are used in the production of biodegradable polymers such as starch, cellulose,
chitosan and proteins [6], among the most used are starch and cellulose for the manufacture
of food packaging for their biodegradability, non-toxicity, low cost, abundance in nature and
renewability, all of which make them ideal candidates in the development of sustainable
materials [7,8].

Starch is not a thermoplastic material, however in the presence of plasticizers (water
and polyols), heat and under shear stresses or in their absence it behaves as a thermoplastic.
Plasticization of the starch granule by extrusion leads to structural disruption and diffusion
of the plasticizer. Starch is incorporated in the form of granules or in gelatinized form in
film formulations manufactured by thermoplastic material transformation processes [9,10].
These films have the disadvantage of moisture sensitivity; to reduce these disadvantages,
starch has been blended with other synthetic or biodegradable polymers such as PLA, or
chemically modified [11,12]. Different starch-based materials are available on the market
under the brand names Mater-Bi®, Bioplast and Biopolar. The properties of starch-based
materials depend, among other factors, on the botanical source, crop conditions and genetic
variety where the starch is extracted from. The aim of this review paper is to review the
evolution in the preparation, modification, and processing of starch-based materials for
food packaging applications. Figure 1 shows a schematic of the structure, modifications
and processing techniques studied in the evolution of starch-based materials.

Polysaccharides 2022, 3, FOR PEER REVIEW 2 
 

 

up opportunities to overcome resource depletion and plastic pollution. A wide range of 
materials are used in the production of biodegradable polymers such as starch, cellulose, 
chitosan and proteins [6], among the most used are starch and cellulose for the manufac-
ture of food packaging for their biodegradability, non-toxicity, low cost, abundance in 
nature and renewability, all of which make them ideal candidates in the development of 
sustainable materials [7,8]. 

Starch is not a thermoplastic material, however in the presence of plasticizers (water 
and polyols), heat and under shear stresses or in their absence it behaves as a thermo-
plastic. Plasticization of the starch granule by extrusion leads to structural disruption and 
diffusion of the plasticizer. Starch is incorporated in the form of granules or in gelatinized 
form in film formulations manufactured by thermoplastic material transformation pro-
cesses [9,10]. These films have the disadvantage of moisture sensitivity; to reduce these 
disadvantages, starch has been blended with other synthetic or biodegradable polymers 
such as PLA, or chemically modified [11,12]. Different starch-based materials are available 
on the market under the brand names Mater-Bi®, Bioplast and Biopolar. The properties of 
starch-based materials depend, among other factors, on the botanical source, crop condi-
tions and genetic variety where the starch is extracted from. The aim of this review paper 
is to review the evolution in the preparation, modification, and processing of starch-based 
materials for food packaging applications. Figure 1 shows a schematic of the structure, 
modifications and processing techniques studied in the evolution of starch-based materi-
als. 

 
Figure 1. Schematic illustration of the structure, modifications and processing techniques of starch-
based materials. The images were taken from various sources: Starch granule [13]; acetylation starch 
film [14]; plasticization starch [15]; solve casting and 3D printing [16]; and blend and nanocomposite 
starch [17]. 

2. Starch 
Starch is a natural, renewable, and biodegradable polysaccharide produced by many 

plants during photosynthesis as a source of stored energy [7,18]. Starch is the second most 

Figure 1. Schematic illustration of the structure, modifications and processing techniques of starch-
based materials. The images were taken from various sources: Starch granule [13]; acetylation starch
film [14]; plasticization starch [15]; solve casting and 3D printing [16]; and blend and nanocomposite
starch [17].

2. Starch

Starch is a natural, renewable, and biodegradable polysaccharide produced by many
plants during photosynthesis as a source of stored energy [7,18]. Starch is the second
most abundant organic substance found in nature and serves as the major conserved
carbohydrate in plants. Starch can be isolated from various sources such as cereal grains
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(considered the main source of obtaining), some roots, tubers [19], fruit stones [20], and
rhizomes [21]. Starch extraction is carried out by simple and economical methods. The
main stages involved in the extraction of starch granules by wet extraction are washing,
milling, extraction, decantation and drying [13].

Starch is a multi-scale structure consisting of amylose and amylopectine macro-
molecules. Amylose is a linear polymer consisting of glucose units linked through α-(1,4)
glycosidic bonds and amylopectin, the major component, has a branched structure, with
a linear main chain composed of glucose units linked by α-(1,4) bonds and the branched
chains formed through α-(1,6) glycosidic bonds. The short chains of amylopectin with
a degree of polymerization (DP) greater than 10 form the double helices responsible for
the crystallinity of the starch granule [22,23]. The crystalline region in the starch molecule
is believed to have been formed by the crosslinking of amylopectin side chains, while
amylose is found in the amorphous region of the granule as a single molecule randomly
interspersed between amylopectin molecules [24].

Starches can be classified according to the amylose/amylopectin ratio; thus, so-called
“waxy” starches contain less than 5% amylose, “normal” starches between 20–30% amylose
and “high amylose” starches have amylose contents equal to or higher than 40% [25,26].
The starch from cereals, tubers and pulses has around 15–33%; 15–30%, and 25–50%,
respectively, of amylose content [27,28]. In the case of cereals, the amount of amylose they
present is accompanied by lipids with amylose, while roots and tubers have little or no
lipid [29].

The shape, size, composition and molecular structure of starch granules depend on
their botanical origin, period of formation and growing conditions [30]. Starch granules
have different shapes: Spherical, oval, polygonal and lenticular. Starch granule size and
shape is an important feature, and the granules appear in many different forms. The
starch granule size varies from 1 to 110 mm in diameter and exhibits a round, or lenticular
to polygonal shape. Furthermore, they also present a high degree of polymerization
and crystallinity with repeating glucose linked by α-glycosidic bonds [23,29]. Table 1
summarizes the characteristics of cereal, tuber, pulse and no conventional source of starches
grains. Thus, for example, cereal starches have different grain shapes, their amylose
percentage is in the range 15–27% and their structure is of type A (monoclinic).

Table 1. Characteristics and source of starch granules.

Clasification
Source Source of Starch

Characteristic
Reference

Geometry Size
(µm)

Amylose
(%) Structure Type

Cereal

Buckwheat (Fagopyrum
esculentum) Polygonal 5–8 - A [31]

Amaranth Polygonal 1–2.5 4 A [32]
Normal maize
Waxy maize Angular 15–20 3–40

1–3 A [33]

Rice White
Rice red
Rice black

Polygonal and angular -
18–20
24–26

20
A [34]

Wild-type wheat starch
High-amylose wheat
starche

Spherical
Deformed and

heterogeneous shapes of
granules

- 32
71–84

A
B [35]

Canary seed
CDC maría
C05041

Polygonal 2–3
2.4

23–25
22–24 A [36]
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Table 1. Cont.

Clasification
Source Source of Starch

Characteristic
Reference

Geometry Size
(µm)

Amylose
(%) Structure Type

Tuber

Amadumbe corms purple
and white Irregular and polygonal 1–6 7.5 A [37]

Arracacia xanthorrhiza
Oxalis tuberosa
Sweet potato

Oval and circular circular
and polyhedral circular

and polyhedral

5–15
10–30
5–20

22
31–33
41–43

- [38]

Yellow sweet potatoes
Qin5
Qin 9
12-18-28
Shang 19
Orange sweet potatoes
Su16
Qin 8
Purple sweet potatoes
Qinzi 2,
Quinzi 3

The eight starch granules
of sweet potato were

similar, exhibiting round,
polygonal, oval,
semi-oval, and

hemispherical shapes
with different sizes.

17–18
16–17
20–22
20–22
22–24
20–22
20–22
21–24

23
20
23

18–21
19
25
21
23

C type: Qin 8, Qin
9, Qingzi 2,

12-18-28, Qingzi 3,
and Su 16, and A
type for Shang 19

and Qin 5.

[39]

Arisaema elephas
Buchet
Arisaema yunnanense
Buchet
Arisaema erubescens (Wall.)

Three starches all had
spherical, irregular and
truncated shapes with

central hila.

3.0–5.0
29
28

32.0
CACAA [19]

Chayote tuber starch Oval, irregular, truncated
and rounded 7–50 13 - [40]

Curcuma aeruginosa
Curcuma amada
Curcuma aromatica
Curcuma caesia
Kaempferia parviflora
Zingiber montanum

Elongated, elliptical, oval,
polygonal, cuboidal and

spheroid

6–25
10–30
5–28
8–30
2–15
5–20

22
23
25
28
24
23

B [41]

Pulse

Pea
Lentil
Faba bean

Oval, kidney and
irregular shapes 10–45

40–42
38–40
39–40

C [42]

Chickpea Round shape 9–70 36–41 C [43]

No
conventional

Babassu mesocarp Polygonal - - C [44]
Cashew nut shell Irregular in shape and size 26–28 B [45]

Jackfruit seed
Trigonal, tetragonal,

round, semi-oval, and
bell shape.

3–15 32–34 A [46]

Loquat (Eriobotrya
japônica) seed Oval and cylindrical 29–45 15–46 C [47]

Avocado seeds (Persea
americana Mill) Oval and ellipsoid 10–44 30–31 B [48]

Chesnut Oval and ellipsoid 15–22 15–20 B [49]
Pehuen Spherical 12–21 38–40 C [13]

Most of the reported works related to starch focus on wheat [50], corn [6], potato [39],
and rice starches [34], due to their commercial importance. However, there is increasing
interest in studying new non-conventional starch sources to produce bio-based and/or com-
postable materials such as pehuen [13], chesnut [49], jackfuit seed [46], avocado seed [48],
pea, lentil, faba bean [42], and chickpea [43] among others.

The crystalline arrangement of the double helices generates three X-ray diffraction
patterns for starch, known as type-A, type-B and type-C [51]. The type-A polymorphism
is characteristic of most cereals; the amylopectin double helices are packed in the form
of monoclinic unit cells and contain 4–8 water molecules (this packing being denser than
that of type-B). In this polymorphism, the chains are short with a degree of polymerization
(DP) between 11 and 16 [52]. The type-B polymorphism, usually found in tubers and roots,
presents hexagonally packed double helices with 36 water molecules when hydration is
27%. In type-B polymorphism the amylopectin chains, which form the double helices,
are long with PD between 30 and 45 [53]. The C-type polymorphism is a mixture of type
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A and B polymorphism, characteristic of leguminous starches. At low humidity, high
temperature and pressure can cause a structural transition from type B to type A to occur;
this transition is due to water loss, which causes reorganization of the double helices [54].
The crystalline structure of the grain influences the physicochemical properties of starch.
Thus, for type-A starches, the gelatinization temperature tends to increase as the degree
of crystallinity increases, whereas for type-B starches, this parameter decreases with an
increasing degree of crystallinity in the granule [55]. In addition, it has been reported
that the percentage of crystallinity in starch granules is inversely proportional to amylose
content [56–58]. Tester et al. [26] found that in pea starches with C-type polymorphism, the
center of the granule is rich in B-type polymorphism, whereas the peripheral regions are
rich in A-type.

3. Chronology of the Development of Starch-Based Materials for
Industrial Applications

Starch is an attractive raw material for non-food industrial applications as it is widely
available, cheap, biodegradable, and uniquely granular. However, the swollen granules
cannot retain their swollen structure and collapse instantaneously. Starch materials have
limited industrial applications due to their high hygroscopicity, poor mechanical proper-
ties and syneresis [59]. Hence, at least three generations of starch-based materials can be
distinguished (Figure 2): Traditional, where the development of thermoplastic starches was
achieved; Transitional, where physical and chemical modifications, blends with other poly-
mers and industrial scale processing were possible; and, Nanostructured. Several strategies
have been reported to improve the performance of starch-based materials in humid en-
vironments. For example, starch can be blended with a hydrophobic polymer, such as
poly(lactic acid) and polyhydroxybutyrate to increase its hydrophobicity [60–62]. However,
these blends have poor mechanical properties and high starch contents [13]. Incorporating
natural fibers into starch-based materials also reduces their water uptake, however these
materials also require a high fiber content to decrease their hydrophilicity [63,64]. Another
way to improve starch based materials’ properties through chemical or physical modifica-
tion. This can be achieved by reducing its hydrophilicity and tendency to dissolve in water
via esterification of OH groups of α-D-glucan with methylene groups [65,66]. Currently we
are in the most advanced generation, where new processing techniques and modifications
and the manipulation of matter at the nanometer scale have all been achieved and, as such,
have enabled the creation of high performance materials.

Polysaccharides 2022, 3, FOR PEER REVIEW 6 
 

 

 
Figure 2. Evolution of starch-based materials. 

3.1. Modification of Native Starches 
3.1.1. Thermo-Plasticization 

Starch is not a thermoplastic material, however, in the presence of plasticizers (water 
and polyols), heat (90–180 °C) and with or without shear stress, it presents thermoplastic 
properties. The transformation of starch to a thermoplastic depends on gelatinization. In 
this irreversible process, the starch granules lose their crystalline arrangement, swell, and 
become unstructured. In addition, the partial separation of starch components occurs as 
the amylopectin double helix unwinds and dissociates and amylose separates from amy-
lopectin [22,67]. The loss of crystalline order produced in excess water (>63%) is mainly 
due to the penetration of water into the granule, causing a decrease in the inter- and in-
tramolecular interactions of starch components. Heating in the water damages the crys-
talline structure of the starch granules and makes amorphous amylopectin [68]. During 
the processing of thermoplastic starches (TPS), several thermal transformations related to 
gelatinization occur, e.g., water diffusion, starch granule expansion, melting and crystal-
lization [69]. Poor mechanical properties and higher hydrophilic are some of the charac-
teristics of TPS that make it unsuitable for various applications, like food packaging ma-
terials. For this reason, several modifications have been explored in order to modify their 
properties. The incorporation of reinforcements, chemical modification and blending with 
other polymers are the main ways to improve the positive attributes or minimize the de-
fects of starch-based materials. 

3.1.2. Chemical Modifications 
Chemical modifications of starches are carried out by the incorporation of functional 

groups into the starch macromolecules (breaking of glycosidic bonds), leading to partial 
or total disruption of the physicochemical properties such as structure, compositions, ge-
latinization, retrogradation, and pasting characteristics. The main chemical modifications 
made to starch are reduction (oxidation, hydrolytic, enzymatic) [70], substitution (etheri-
fication, esterification) [63,64] and crosslinking (di ether, di ester) [71]. 

Starch substitution is a method of modification, in which a portion of the hydroxyl 
groups of anhydro-glucose units that constitute the starch chain is changed to other 
groups such as acetyl group, thereby changing the molecular structure of the starch. There 
have been reports that state starch esterification with organic acids and acid anhydrides 
reduces retrodegradation and improves the physicochemical properties of TPS used in 
the plastics industry, specifically in the packaging sector [72–74]. Thus, for example, Lopez 
et al. [75] concluded that films made from previously acetylated corn starch reduced water 
vapor permeability and increased the percentage of elongation at break with respect to 

Figure 2. Evolution of starch-based materials.



Polysaccharides 2022, 3 141

3.1. Modification of Native Starches
3.1.1. Thermo-Plasticization

Starch is not a thermoplastic material, however, in the presence of plasticizers (water
and polyols), heat (90–180 ◦C) and with or without shear stress, it presents thermoplastic
properties. The transformation of starch to a thermoplastic depends on gelatinization.
In this irreversible process, the starch granules lose their crystalline arrangement, swell,
and become unstructured. In addition, the partial separation of starch components occurs
as the amylopectin double helix unwinds and dissociates and amylose separates from
amylopectin [22,67]. The loss of crystalline order produced in excess water (>63%) is
mainly due to the penetration of water into the granule, causing a decrease in the inter-
and intramolecular interactions of starch components. Heating in the water damages
the crystalline structure of the starch granules and makes amorphous amylopectin [68].
During the processing of thermoplastic starches (TPS), several thermal transformations
related to gelatinization occur, e.g., water diffusion, starch granule expansion, melting and
crystallization [69]. Poor mechanical properties and higher hydrophilic are some of the
characteristics of TPS that make it unsuitable for various applications, like food packaging
materials. For this reason, several modifications have been explored in order to modify
their properties. The incorporation of reinforcements, chemical modification and blending
with other polymers are the main ways to improve the positive attributes or minimize the
defects of starch-based materials.

3.1.2. Chemical Modifications

Chemical modifications of starches are carried out by the incorporation of functional
groups into the starch macromolecules (breaking of glycosidic bonds), leading to partial
or total disruption of the physicochemical properties such as structure, compositions,
gelatinization, retrogradation, and pasting characteristics. The main chemical modifica-
tions made to starch are reduction (oxidation, hydrolytic, enzymatic) [70], substitution
(etherification, esterification) [63,64] and crosslinking (di ether, di ester) [71].

Starch substitution is a method of modification, in which a portion of the hydroxyl
groups of anhydro-glucose units that constitute the starch chain is changed to other groups
such as acetyl group, thereby changing the molecular structure of the starch. There have
been reports that state starch esterification with organic acids and acid anhydrides reduces
retrodegradation and improves the physicochemical properties of TPS used in the plastics
industry, specifically in the packaging sector [72–74]. Thus, for example, Lopez et al. [75]
concluded that films made from previously acetylated corn starch reduced water vapor
permeability and increased the percentage of elongation at break with respect to films
made from unmodified starch; in addition, modified starch films were more easily heat
sealed. The most commonly used esterifying agents are formic acid, acetic acid, propanoic
acid, butanoic acid, maleic acid and the corresponding anhydrides [76]. The mechanism of
starch esterification with anhydrides is based on a nucleophilic substitution reaction.

Starch reduction is a modification method that consists of generating more functional
groups, for example in starch oxidation, carbonyl and carboxyl are introduced in the
starch modified by reduction, hence its functionality and reactivity increase. A decrease in
swelling capacity and viscosity of the paste has been reported when starch was modified by
reduction [77]. Sandhu et al. [78] compared the physicochemical properties of a waxy corn
starch with those of a starches chemically modified by oxidation using sodium hypochlorite
as the oxidizing agent. Significantly different results were reported for oxidized modified
starch, which showed decreased swelling power, solubility, and gelatinization enthalpy,
however showed increased pasting viscosity as compared to its native starch. Depending
on the reactive oxidants used for chemical modification and starch source, the final products
are different, with independent properties [79]. The main reactive oxidants used in starch
modification include hydrogen peroxide, potassium permanganate, sodium hypochlorite,
per-acetic acid, chromic acid and nitrogen dioxide.
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Starch crosslinking is a method of modification, in which a linear or branched chains
are covalently interconnected. The crosslinking of starches enhances the hydrophobicity
and structural stability of the granules, thus improving their hydration properties. Sodium
trimetaphosphate (STMP), sodium tripolyphosphate (STPP), epichlorohydrin (ECH) and
phosphorus chloride (POCl3) and acid have been used in the chemical modification of starch
by crosslinking [80]. However, glutaraldehyde and epichlorohydrin are not considered safe
due to the risk that they are hazardous to health due to their toxic and irritant nature [81].
Citric acid is one of the most widely used crosslinking agents in starch granule modifications
as, due to its carboxyl groups, it can react with the hydroxyl groups of starch molecules
to form intermolecular diester-covalent bonds, and it is inexpensive and non-toxic. In
addition, it has been shown to increase film stability during storage [82] and to reduce water
vapor transmittance in starch-based materials [83]. The effects of chemical modification
using sodium tripolyphosphate (STPP) and sodium phosphate (STMP) on oat starch was
investigated by Berski et al. [84]. The results reveal that the amount of amylose decreased
after modification, which was attributed to partial depolymerization of amylopectin and
the release of sufficient long chains to create a color complex with the iodine reagent.
In addition, an increase in the swelling capacity and viscosity were observed. Table 2
summarizes the main chemical and physical modifications of starches.

Table 2. Chemical and physical modifications of starches.

Physical Modifications Chemical Modifications

Source of Starch Treatment Conditions
(Time/Temp) Reference Source of Starch Treatment Conditions

(Time/Temp) Reference

Metroxylon sagu Microwave heat 15 min at 4 ◦C [85] Corn Branching enzyme
treatment 99 ◦C for 15 min [86]

Horse Chestnut
seeds Heat-moisture 110 ◦C for 3 h [87] Horse Chestnut

seeds Acid hydrolysis 50 ◦C for 30 min [87]

Corn
Heating in

evaporating
dishes

210 ◦C for 30 min [88] Potato Acetylation pH 8, 30 ◦C
stirred for 1 h [89]

Wheat Superheated
steam

130 ◦C, 150 ◦C and
170 ◦C for 1 and 4 min [90] Oat and Barley Oxidation

10 g Cl for 1 kg
of starch using
NAClO, milled

for 50 min

[91]

Corn Repeated
dry-heat (RDHT)

Cycles of 140 ◦C for 4,
8, 12 and 16 h and 1 h

of cooling
[92] Corn Octenyl succinic

anhydride modification
pH 8, 35 ◦C,

stirred for 3 h [88]

Pea and lentil
cultivar Hydrothermal 120 ◦C for 24 h [93] Wheat Cross-linking

Stirring at
170 rpm, 40 ◦C

for 80 min
[94]

Barley Annealing
(ANN) 50 ◦C for 72 h [95] Rice starche

Esterification
(octenylsuccinic
anhydride (OSA)

2 h [96]

Amaranth Heat-moisture 150 mL min−1, 130 ◦C [97] Rice starch
Esterification

(octenylsuccinic
anhydride (OSA)

35 ◦C, 5 h [98]

Mango kernel Heat-moisture 3 h at 110 ◦C with
occasional shacking [99] Quinoa starch

Esterification
(octenylsuccinic
anhydride (OSA)

35 ◦C, 3 h [100]

Wheat High hydrostatic
pressure

300, 400,
500, 600 MPa; 20 ◦C

for 30 min
[101] Waxy cassava

starch

Esterification
(octenylsuccinic
anhydride (OSA)

24 h [102]

Sago starch
Esterification

(octenylsuccinic
anhydride (OSA).

9.65 h [63]

Ginkgo starch
Esterification

(octenylsuccinic
anhydride (OSA)

35 ◦C, 8 h [64]

Sorghum and
maize Waxy

starches

Esterification
octenylsuccinic anhydride

(OSA)/β-amylase
- [103]

Waxy maize
starch Cross-linking 40 ◦C, 4 h [71]

Waxy maize
starch Cross-linking 40 ◦C, 4 h [104]

Native potato
starch Cross-linking 30 ◦C, 20 h [105]
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Table 2. Cont.

Physical Modifications Chemical Modifications

Source of Starch Treatment Conditions
(Time/Temp) Reference Source of Starch Treatment Conditions

(Time/Temp) Reference

Tapioca starch Cross-linking 30 min [106]
Carboxymethyl

starch Grafting - [107]

Native
corn-starch Chemically grafting 130 ◦C, 24 h [70]

Corn starch Grafting (DMSO) 50 ◦C, 36 h [108]

Normal maize
starch Citric acid

room
temperatura,

12 h
[109]

Corn Debranching by
pullulanse 55 ◦C for 1.5 h [110]

Corn Hydroxipropilation pH 11.5, 20 h
with stirring [110]

Sorghum Acid Hydrolysis 40 ◦C, stirring 1h [111]

Sorghum Oxidation 40 ◦C, pH 9.5,
30 min [112]

Potato starch Acetylation 115◦C, stirring
for 5 h [113]

Cassava Ozonation

gas flow of
1 L·min−1, ozone

concentration
41 mg O3·L−1,

25 ◦C for 15 and
30 min

[114]

Broken rice Succinylation

pH 9–9.5,
addition of 2%,
4% and 5% of

anhydride

[115]

Rice starch Acetylation 90 ◦C, 10, 30 and
90 min [116]

3.1.3. Physical Modifications

Recently, non-thermal treatments have gained relevance due to the minimal amount
of energy required and environmental sustainability (Table 3). Also, these technologies
represent great modifications or changes in the material properties. Some of the treatments
influence the physical properties of starches. In this context, high hydrostatic pressure
treatments influence the gelatinization and crystallinity patterns of starches [101]. The
ozonation results in the disruption of starch granules influencing the particle size and
weight increasing the crystallinity [114]. Non-chemically-modified starch that functions
like chemically-modified starch is of great interest. Non-thermal technologies also have an
effect on the chemical properties and it has been found that plasma applications indicate
chemical changes, including crosslinking in the starch molecules, modifying the thermal
transitions such as melting temperature and enthalpy [117,118].

Table 3. Non-thermal treatments modification in starches.

Non-Thermal Treatments

Source of Starch Treatment Conditions
(Time/Temp) Reference

Modified Starch RS4 Ultrasound 2 s pulses, 30 min, 25 ◦C [119]
Corn UV irradiation 2.88 J/cm2 for 30 min [88]

Corn Electron beam irradiation 6.23 MeV, 75 mA, 100 Hz,
pulse duration of 3.5 µs, [120]

Corn Corona electrical discharges 25 kV, 50 Hz, pulse duration
of 100 ns, during 5 min [120]

Barley High pressure 400, 450 and 500 MPa at 75 ◦C [95]

Wheat and potato Pulse electric field Pulses at 10, 15, 20, 25 and 30 kV,
600 Hz, 6 µs pulse width [121]
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Table 3. Cont.

Non-Thermal Treatments

Source of Starch Treatment Conditions
(Time/Temp) Reference

Tapioca Irradiation Gamma Cell 5000, doses of 0, 5,
10 and 20 kGy [122]

Corn Plasma 20 rpm, 90 W during 30 min [118]
Corn HMDSO plasma 4.5 × 10−1 mbar pressure, 30 min, 70 W [117]

The ultrasound treatments are under the influence of strong shear force, high tem-
peratures (reached by ultrasound waves application), which influence the properties of
the starch and inherently the applications. The changes in starch depend on frequency,
intensity, and the amount of time ultrasound was applied, and also the source of starch.
Usually, ultrasound treatments cause damage to the starch granule, pores, fissures and
cracks. At the molecular level, changes in the amylose and amylopectine molecules function
as part of the experimental conditions. This structural change affects the physicochemical
properties of the starch. Several research works show that a clear tendency or pattern to
the modification of physicochemical properties of starch treated by ultrasound does not
exist. This means in some cases an increase or decrease in gelatinization, retrogradation
swelling, pasting properties and viscosity. Rather, all these properties are the consequence
of the source, type and structure of starch, the intensity and duration of ultrasonication,
and the temperature and water content of the starch [123–126].

Some differences and modifications in time of treatments, pulses and intensity are
reported on starch modifications under PEF (Pulsed Electric Fields). However, most of
the research focused on PEF application that referred to damage to the starch granule,
a greater agglomeration of granules, the reduction in its relative crystallinity, a break-
down in viscosity, the reduction in gelatinization temperature, and an alteration to the
birefringence [121,127–130].

3.2. TPS Blends whit Biodegradable Polymers
3.2.1. Poly (Lactic Acid) (PLA)

PLA is an aliphatic polyester produced through the polymerization of lactic acid
obtained from sugar and beets [131]. Categorized as a Generally Recognized as Safe
(GRAS) by the Food and Drug Administration (FDA), this material is suitable to be ap-
plied in food and beverage packaging [132]. Starch is blended with PLA to reduce the
PLA cost and to improve the biodegradation properties. However, both polymers have
different polarities, which limit their compatibility due to low barrier and mechanical
properties [62,133]. Hence, several studies are focused on improving the compatibility of
PLA and TPS [61,134,135]. The compatibilizers of PLA blends mainly include non-reactive
compatibilizers, reactive polymer compatibilizers or active small molecular substances,
and in situ form block copolymers or graft copolymers. The common principles and char-
acteristics of compatibilization for PLA/starch blends were studied by Zeng et al. [136];
Nagarajan et al. [137]; and Li et al. [138]. Gurler et al. [139] examined the effects of
crosslinker reagent (3-(Aminopropyl) trimethoxy silane) and the bilayer film material of
PLA/starch blend. The results achieved revealed that they have beneficial properties for
protecting the environment and are applicable to food packaging. TPS prepared from mod-
ified graft starches have been shown to reduce TPS hydrophilicity, resulting in enhanced
compatibility with PLA. Thus, PLA-gMTPS could act as a compatibilizer by reducing coa-
lescence and surface tension of the TPS phase during blending [140]. However, an excessive
coupling agent may act as plasticizer and be responsible for the decrease in the maximum
tensile strength. Noivoil and Yoksan [61] substituted the cassava starch with acetylated
cassava starch PLA/TPS modified films, which may be used as flexible packaging where
biodegradability and short-term use are needed.
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3.2.2. Poly (Butylene Adipate-Co-Terephthalate) (PBAT)

PBAT is an aromatic-aliphatic copolyester and a typical example of biodegradable
polymeric materials from petrochemical resources [141]. The physical and mechanical prop-
erties of PBAT are close to those of polyethylene. However, the application of PBAT in some
fields is limited due to the high cost. Wei et al. [142] demonstrated that by modifying the
starch (SMGs), using commercial compatibilizer (Joncryl-ADR-4368) and an adequate ratio
of the components (PBAT/M-PBAT/TPS: 40/20/40), excellent physical and mechanical
properties of PBTA/starch blends are achieved. Recently, Leelaphiwat et al. [60] studied
Nisin and EDTA as compatibilizers in PBAT/TPS blends by blown-film extrusion for active
packaging applications. Their results shown Nisin improved the compatibility of starch
and PBAT films, which increased smoothness, while EDTA increased hydrophilicity and
the oxygen barrier of PBAT/TPS films; active films with EDTA reduced microbial growth
in chilled meat up to 1.4 log and Nisin and EDTA stabilized redness and delayed lipid dete-
rioration in packaged pork. PBAT/TPS-based biodegradable packaging containing sodium
benzoate (6%) and potassium sorbate extended the shelf-life of packaged rice noodles by
delaying Aspergillus niger and Rhizopus sp. growth [143]. The incorporation of maleate
PBAT and citric acid (2%) on PBAT/TPS blends were investigated by Fourati et al. [144].
They observed a much improved strain at break, which could be due to their use of a phase
inversion, with the TPS phase being the continuous matrix and PBAT the dispersed phase.

3.2.3. Polyvinyl Alcohol (PVA)

PVA is a synthetic polymer highly soluble in water, which for this reason has been
widely used in the textile industry in the preparation of stabilizers and thickeners. PVA
also possesses good chemical resistance and high mechanical properties although its disad-
vantages include a limited barrier and thermal properties and relatively high cost [145]. In
addition, it possesses high compatibility with other polymers, and for this reason is often
mixed with starch in order to form biocomposites [146,147]. The TPS films show weak
mechanical properties, and higher degradation due to decomposition when compared to
TPS film added with PVA. This is one of the reasons starch is mixed with PVA.

Table 4 shows several works where it is possible to observe that when PVA was
added to the mixture, the mechanical properties of the films were improved. Ismail
and Zaaba [148] reported a remarkable increase in the tensile strength of the blend films,
which indicated the presence of intermolecular interactions of the components by way
of hydrogen bond formation, which strengthened the bonding of the PVA with sago
starch. Syamani et al. [149] reported that the addition of 25% polyvinyl alcohol (PVA) into
bioplastic made from modified cassava starch produced a bioplastic with higher tensile
strength compared to that without PVA addition. On the other hand, the addition of
100% PVA could slightly increase bioplastic elongation. The decomposition temperature of
bioplastic made from modified cassava starch with the addition of 50% PVA was higher
than of that without PVA addition, which indicated that it was more thermally stable. In
terms of food packaging, the permeability at water vapor content and water adsorption
are important issues when deciding upon applications. More of the works reporting
PVA/starch films are not reporting adsorption of water or permeability at water vapor, and
there is little information regarding this (Table 4). This mix is less hydrophilic than other
film mixtures, such as PLA/starch.
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Table 4. Blend system and characteristics of starch-based materials.

Blend System Starch Source Modifier Processing Method Tensile Strength (MPa)
Water Vapor
Permeability

(g/m Pa s)
Reference

PLA/Starch Potato Crosslinking with 3-(Aminopropyl)
trime-thoxy silane (3-APTMS) Films casting 11 ± 2 15 ± 0.5 [138]

PLA/Starch Tapioca - Extrusion 8 ± 2 - [62]

PLA/Starch Corn Maleic anhydride (MA) and epoxidized
cardanol (Epicard) Extrusion 25 ± 12 - [135]

PLA/Starch Corn Poly (ether block amide) (PEBA) Reactive blending 22 ± 2 - [134]
PLA/Starch Casava maleic anhydride Extrusion 4 ± 1.0 [150]
PLA/Starch Casava PLA-g-TPS Extrusion 6 ± 1.0 [140]
PLA/Starch cassava Acetylated starch Twin-screw extruder 23 ± 4 8 ± 1.0 [61]

PBAT/starch Casava nisin-ethylenediaminetetraacetic acid
(EDTA) Blown-film extrusion 20 ± 10 2 ± 1.0 [60]

PBAT/starch Potato Joncryl-ADR-4368,ynthesized reactive
compatibilizers, SMGs Extrusion 20 ± 8 - [142]

PBAT/starch Potato Maleic anhydride (MA), citric acid (CA) Extrusion 10 ± 1 (MA), 5 ± 2 (CA) [151]

PBAT/starch Cassava starch Sodium benzoate (SB) and potassium
sorbate (PS) Blown-film extrusion 10 ± 4 2 ± 1.0 [143]

PBAT/starch Tapioca Maleic anhydride and benzoyl peroxide Reactive extrusion 10 ± 3 [152]
PVOH/starch Corn Photo crosslinking with sodium benzoate Film casting 16–20 MPa NR [153]
PVOH/starch Corn Citric acid (co-plasticizer) melt-blending NR NR [154]
PVOH/starch Corn Glutaraldehyde Casting 7.8–13.7 MPa NR [155]
PVOH/starch Corn Glacial acetic acid as a crosslinking agent Casting 5–240 MPa NR [156]

PVOH/OH Cassava Acetate solution Casting 1.35–13.03 MPa NR [149]
PVOH/starch Tapioca Supercritical CO2 Injection molding 20–25 MPa NR [157]

Chitosan/starch Corn - Casting 10–40 MPa - [158]
Chitosan/starch Tapioca - Casting - 2.8–12.1 × 1010 [159]

Chitosan/starch/mustard oil Potato 2-hydroxyethyl methacrylate (HEMA) Casting 1.7–13 MPA - [160]

Chitosan/starch NR Glutaraldehyde Casting and solvent
evaporation method NR 15.57–16.57 (g/m2 h) [161]

Chitosan/starch Corn - Casting 3.44–19 MPa NR [162]
Chitosan/starch corn - Casting 1.6–73 MPa 1.4–2.5 (g/m2 h kPa) [163]

PCL/starch Meritena (corn), Waxy,
Amarant and GelInstant - Extrusion NR 100–1800 MPa [164]

PCL/starch NR Maleic anhydride and clay Extrusion NR 7–40 MPa [165]
PCL/starch Corn - Pressing and molding NR NR [166]
PCL/starch NR - ND NR NR [167]
PCL/starch Corn - Molding NR 5–29 MPa [168]
PCL/starch NR Maleic anhydridegrafted-polyethylene Mixing NR [169]
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Table 4. Cont.

Blend System Starch Source Modifier Processing Method Tensile Strength (MPa)
Water Vapor
Permeability

(g/m Pa s)
Reference

TPS/Natural Rubber Corn Natural latex Mixing 0.7–9 MPa NR [170]
TPS/Natural Rubber Corn Oxidized natural rubber (ONR) Extrusion 0–4 MPa NR [171]

TPS/Natural Rubber Potato Natural rubber (NR) and epoxidized
natural rubber (ENR) Compressing and molding 1–9 Mpa NR [172]

TPS/Natural Rubber Cassava Epoxidized natural rubber (ENR) Melt blending, molding and
compressing 0–2.5 MPa NR [173]

TPS/Natural Rubber Cassava Rubber wood sawdust (Hevea brasiliensis) Compression and molding 0.33–1.23 MPa NR [174]
TPS/Natural Rubber Sago Natural rubber latex Compression and molding 4.46–25.2 MPa NR [175]
TPS/Natural Rubber Cassava Natural rubber latex Casting 4–8.5 MPa NR [176]

TPS/PE Corn Maleic anhydride (MAH Bleeding and extrusion 3.8–9.0 MPa NR [177]

TPS/PE Potato random ter-polymer of ethylene, acrylic
and maleic anhydride Blown film extrusion 7–22 MPa [178]

TPS/PE Rice and potato - Mixing and extrusion 3.04–8.34 MPa 0.1–160 (g m−1 s−1 Pa−1)
× l0−13 [179]

NR: Not reported.
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Sometimes the hydrophobic nature of the mixed film of TPS-PVA still needs to be
improved and for this reason nanofibers are added [180]. Some research works showed
the addition of nanofibers or nanoparticles improved the water uptake of films. Hei-
darian et al. [181] reported an increase in the moisture penetration of films when the
concentration of nanofibers was increased up to 10%. This was attributable to the imperfect
morphology developed by the composite films due to the aggregations, cavities and voids
presented by addition. On the other hand, addition of nanoparticles also has influenced
the low water content. Keshk et al. [182], reported that the addition of magnetic particles
in composite films manifested lower water vapor transmission, thus it can be concluded
that MNPs improve the hydrophobicity. This research is in line with that reported by
Fahma et al. [183] and Fahma et al. [184] who reported the difficulty of water vapor pene-
tration into obtained nanocomposite films caused by the strong hydrogen bonding between
cellulose nanofibers and TPS-PVA matrix.

3.2.4. Chitosan

The films prepared with a blend of chitosan and TS are preferred, due to their mechan-
ical properties (tensile strength and elongation at break), to films that are only enhanced
with chitosan [158,161]. Pavoni et al. [157] reported that these mechanical properties are
the result of the formation of intermolecular hydrogen bonding between NH3

+ of the
chitosan backbone and OH− of the starch. This enhancement in mechanical properties
may be favorable in terms of resistance of biodegradable materials. On the other hand, in
presence of glycerol as plasticizer there is a decrease in tensile strength, and an increase
in elongation at break due to the plasticization phenomena. The addition of glycerol pro-
moted the interactions among chitosan, starch and glycerol through hydrogen bonding
and proved the strong interactions (decrease in glycerol mobility) occurring among starch,
chitosan and glycerol [162]. In this way, new formulations can be prepared to select it as
food packaging materials with the most desirable characteristics, not only to protect the
foods but also in terms of the biodegradability of materials. In this context, the addition
of glycerol reduces the tensile strength, for example Xu et al. [158] referred 40 MPa as the
maximum value reported for films, meanwhile, Liu et al. [162] reported almost the half of
this value (19 MPa). Also in presence of chitosan there exists a decrease in water vapor
transmission rates and the crystalline structure is depressed in the presence of starch.

3.2.5. Polycaprolactone (PCL)

The polycaprolactone is an aliphatic polyester biodegradable with a low melting point
(60 ◦C) compared with other polymers and a thermal transition temperature around of
−60 ◦C [159]. Few research works are made in the blend of PCL/TS. This is probably due
to the PLC being a highly biodegradable polymer. Most of the works focus on the addition
of fibers and additives to give reinforcement.

The simple blend of PCL with starch did not cause significant changes to the mechani-
cal properties of films such as tensile strength and elongation to break [164]. It seems to
be that the physicochemical characteristics (especially the mechanical properties) of the
PCL/TPS blend are dependent on the type of starch used. In addition, the gelatinized starch
made the blends more fluid, increased the absorption of water, reduced the crystallinity
of PCL, and maintained a good dispersion of the blends [166]. Also, it has been reported
that the mechanical and thermal properties of PCL became noticeably worse when it was
blended with starch, due to the poor compatibility between the two phases [169].

3.2.6. Other

Blends of starch with other polysaccharides, such as pectin, perform better with regard
to hydration and have more favorable mechanical and thermal properties than the polymers
alone [185,186]. Pectin is a non-toxic complex heteropolysaccharide with a linear backbone
of α (1–4) linked polygalacturonic acid residues and neutral side chain sugars [187]. The
galacturonic acid can be partially methoxylated or amidated. Unmodified starch/pectin
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blends can form films with mechanical properties like synthetic polymer films. Coffin &
Fishman [188] reported that the mechanical properties of hydrocolloid films prepared with
a starch/pectin ratio of 70/30 and glycerol as plasticizer are adequate for use as an edible
biodegradable film. The hydrogen bond interactions of starch/pectin favor slippage of the
pectin chains when stretched.

Sabando and Castaño et al. [189] reported novel hydrocolloid pectin-starch (30/70)
films with bioactive extracts made from cross-linking pectin-starch gels with Poly(ethylene
glycol) diglycidyl ether (PEGDGE). The films had the adequate water-uptake capability,
ranging from 100% to 160%. PEGDGE also inhibits the disintegration of the pectin-starch
films. Carreño and Castaño et al. [190] have reported a novel method for preparing green
hydrogels synthesized by crosslinking polyvinyl alcohol (PVA) and aliphatic dicarboxylic
acids. The hydrogels they produced had a specific release profile intended to carry active
compounds or fillers for bioplastics and could be used for active food packaging.

3.3. TPS Blends with Synthetic Polymers

The development of materials based on TPS with other synthetic polymers contributes
not only to an increase in the performance properties of starch-based materials but also as
a way to reuse plastic waste and to achieve higher quality products. Another advantage
of the TPS/ synthetic polymer blends is that they are considered according to definition
in ASTM D6852 bio-based materials [191]. A biobased product can be partially or fully
made from renewable resources and the biobased content can be determined via ASTM
D6866. Table 4 summarizes the main blend systems of starch-synthetic polymers and
their characteristics.

3.3.1. TPS/Polypropylene (PP)

Polypropylene (PP) is a linear hydrocarbon polymer and is considered the second-
most widely used polyolefin produced and an excellent candidate for preparing TPS
blends. However, PP and TPS are incompatible due to their differences in chemical struc-
ture: strongly polar for TPS and nonpolar for PP and hence the use of a compatibilizer,
such as maleic anhydride grafted polypropylene (MA-g-PP), is common in TPS blends
to improve the interfacial adhesion of the composite phases [192]. The maleic anhydride
functional group, which is grafted into PP (PP-g-MA), forms covalent bonds with the
hydrophilic starch being the most acceptable and economical compatibilizer for PP/TPS
blends. Raee et al. [193] examined the influence of the maleic anhydride as compatibilizer
and their concentration (up to 30%) on properties of PP/TPS blend. The results shown the
rheological behavior, morphology, and mechanical properties were improved by increasing
the amount of compatibilizer up to 20 wt%. Martins et al. [194] prepared PP/TPS blend
with C14, C16 and C18 carboxylic acids as compatibilizers. Results concluded that the
addition of carboxylic acids proved to be equivalent or better compatibilizers when com-
pared to maleic anhydride polypropylene and no compatibilizer. In addition, the adhesion
between both polymers phases was improved and the tensile strength, elongation and
impact strength increased by the addition of carboxylic acids.

3.3.2. TPS/Natural Rubber (NR)

Rubbers are polymers that consist of organic compounds. Many types of rubbers
exist such as Indian Rubber, latex, Amazonian Rubber, caucho, etc. The development of
TPS films by including natural, modified or ozidized rubbers have interesting behavior.
In some cases, the addition of rubber improves the tensile strength, however in other
cases it results in a soft material [170,172]. It is important to mention that this is the
function of the level of glycerol included in the TPS. On the other hand, reports by some
authors [170,174,175] explain that a drastic increase in rubber level causes the separation
of phases or agglomeration in the mix, resulting in a total change of matrix of materials.
The blends became brittle with an irregular aspect and regions bearing free of rubber. As a
consequence, the mechanical properties and water uptake of the material are unexpected,
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showing dispersion in the obtained data. For this reason, low rubber content is desirable in
many cases, in addition to the blends exhibiting high biodegradability [172]. It is worth
mentioning that based on the results reported in literature, an optimal level of rubber can
be added to the new blend of formulations to form continuous phases contributing to the
resistance of the material with reach fractures or agglomeration. A better interaction with
another kind of rubber gives differences in mechanical properties to those of others. For
example, Cai et al. [172] reported better interaction of epoxidized rubber compared with
natural rubber. These results are in line with those reported by Jantanasakulwong et al. [173],
who proved the interaction of chitosan and starch with epoxidized natural rubber. They
found that the chemical interaction of chitosan with the epoxy groups of the rubber exists
and this interaction improved the mechanical properties of the blend. Saetun et al. [174]
reported that the hydroxyl groups in the three-dimensional network of lignin in the rubber
wood sawdust that could interact with starch to act as an interfacial compatibilizing agent
and produce a higher tensile strength. Then, the molecular interactions and crosslinking
of rubbers with starch or polymers resulted in changes in the mechanical properties of
the films.

3.3.3. TPS/Polyethylene (PE)

Polyethylene is the most chemically simple polymer with a lineal chain backbone. It is
obtained by the ethylene polymerization. Commercially, there are variations of polyethy-
lene with different densities: low (PLD) and high (PHD). The PHD is characterized by
possessing a great rigidity and resistance. Some advantages of the use of PLD are greater
flexibility, good resistance to impact, as well as the high resistance at high temperature that
this material possesses. The results shown by Arvanitoyanni et al. [178] found that LDP
and rice starch presented low compatibility, which was difficult to modulate due to the
tensile strength as the crystalline and amorphous regions were presented.

3.4. Starch Based Composite Materials

The incorporation of inorganic and organic reinforcements into a starch matrix allows
us to obtain better mechanical and functional properties (Table 5). These reinforcements are
added in low concentrations to the biopolymer matrix. The main challenges in preparing
nanocomposites include achieving a high level of dispersion, finding suitable plasticizers,
and controlling the interfacial strength of the inorganic reinforcement in the biopolymer
matrix [93]. Thus, organic cationic compatibilizers have been used to improve the disper-
sion of clays in PTS [195].

Table 5. Composite system, processing techniques and main results of starch based materials.

Composite System Starch Source Compatibilizante Processing Techniques Conclusions Reference

Starch/titanium dioxide
(TiO2) Wheat Glycerol/maleic

anhydride (MA)
Solution
casting-Melt mixing

Is described as a reliable, reproducible,
two-step preparation of highly
homogeneous TPS/mTiO2 composites,
with very good dispersion of the filler.

[196]

Dialdehyde
starch/magnetic
nanoparticles

Potato Maleic anhydride (MA)
Microwave-assisted
in-situ
precipitation method

The composite films manifested lower
water vapor transmission, thus it can be
concluded that MNPs improve the
hydrophobicity and mechanical properties
of MNPs/DAS composite films.

[182]

Starch/nanodiamond Corn Glycerol Solution-blending.

The incorporation of a small amount of
ND, the mechanical properties of starch
were improved. To further improve the
thermal stability and barrier properties of
starch for food packaging applications

[197]
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Table 5. Cont.

Composite System Starch Source Compatibilizante Processing Techniques Conclusions Reference

PBAT/starch/clay Tapioca Maleic anhydride (MA) Reactive extrusion

Grafting with MA also improves the
mechanical properties, and nanocomposite
can be exploited for various commercial
packaging applications.

[152]

TPS/PP/HDPE/
nanoclaycorn Corn Glycerol/maleic

anhydride grafted Single-screw extruder

The addition of nano-clay to the system
decreased the melt flow index, this may be
due to the reaction between the modifying
agent of the clay and Maleic anhydride
being presented in PE-g-MA or/and the
hydroxide in the glycerol.

[198]

TPS/PP/halloysite
nanotubes Corn PP-g-MA Internal mixer

The aforementioned results indicated that
blending PP with TPS would successfully
overcome the drawbacks of TPS such as
poor mechanical properties and moisture
sensitivity; in addition to improving the
biodegradability of PP which is a real
hazard for the environment. HNT could
improve mechanical and thermal
properties of the samples showing its
usefulness as a promising filler.

[193]

TPS/PP/date
palm flour Potato PE-g-MA, 2% w/w Extrusion

This indicates that in addition to the
interactions existing formerly between the
DPF flour and the TPS phase, esterification
treatment improved also the wettability of
the filler by the PP phase through
mediating its hydrophilic character

[199]

Inorganic reinforcements into starch-based composites for food application include clays
(montmorillonite) (MMT) and bentonite [200], nano-clay [198,201], nano-silica (SiO2) [202],
metal oxides [203].

Recently, Sarkar et al. [204] reported that bentonite and hectorite clay incorporation
in starch-based nanocomposite incorporation strengthens the polymeric structure and
increases the compatibility of starch/PVA blends.

Nano-SiO2 is also a suitable nano-filler for TPS-based composite. The addition of nano-
SiO2 to TPS films exhibited better TS and Young’s modulus [205]. Islam et al. [206] reported
that the addition of clay to potato starch/hectorite nanocomposite films significantly
improved their mechanical and biodegradability properties. Corn starch/clay films had
the highest absorption and best antibacterial properties [207]. However, their swelling
ratio increased with time, however decreased with the addition of plasticizer and hectorite
clay. Solution casting of corn starch-lithium perchlorate (LiClO4)-nano-silica composites
were prepared by Teoh et al. [208]. The network structure formed by combining nano-
silica with corn starch prevented the water molecules from dissolving, improved the
water resistance of the film, making nanocomposites a suitable candidate for packaging
applications. Likewise, the incorporation of a natural and innocuous mineral filler, such
as talc in films based on thermoplastic starch, allowed us to obtain a bionanocomposite
suitable for food packaging with improved functional properties such as low water vapor
and oxygen permeability [209].

3.5. Starch-Based Materials with Filler/Reinforcement

The incorporation of organic lignocellulosic fibers has been one of the main stud-
ied reinforcements to improve TPS properties. Many lignocellulosic fibers have been
evaluated, including hemp, sisal, green coconut, cellulose fibers, nanofibers, and mi-
crofibers from recycled paper, polysaccharide-based nanocrystals, and microcrystalline
cellulose [81,210–212]. Ochoa-Yepes et al. [213] investigated the effect of the incorporation
of lentil flour fiber in thermoplastic starch films prepared by film casting. The composites
containing lentil flour as filler demonstrated this fiber act as starch-glycerol film reinforce-
ment, making them more resistant and protecting food products from being damaged.
Similar results were previously reported by Glenn et al. [214] when preparing starch-based
foam composites by extrusion foaming using different sources of cellulosic fiber: cellulose;
softwood and hardwood pulp fiber; and municipal solid waste fiber. Increased tensile
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strength and tensile modulus without affecting the foam density were obtained in food
packaging trays. Menzel [210] prepared starch-based films filled with cellulose fibers, and
results showed that the cellulose fibers improved the resistance showing high-stress values
(1086 MPa). They attribute this behavior to starch-cellulose interactions, which decrease
starch chain mobility [215]. Most research papers reported that the addition of fibers among
2.5–3.0% of fibers improved the mechanical resistance of films [210,211,216], although a
fragile structure is also presented. This is attributable to the nonhomogeneous structure of
films, resulting in brittle composites.

The processing method and length of fibers added to a film’s formulations have an
important effect on the mechanical properties. Then, some processing techniques involving
compression, molding, or mechanical processing could impact fiber length and a film’s
final fiber content. As a result, the mechanical properties of the final products are affected.
Liu et al. [217] prepared biocomposite from kenaf fiber and soy-based bioplastic with extru-
sion injection molding, compression molding, and injection molding. The results suggested
that compression molding processing is beneficial to both the thermal and mechanical
properties of the composites. Compared with the synthetic materials (e.g., low-density
polyethylene), some films’ reinforcement with fibers or nanofibers exhibit less tensile
strength (0.24–0.50 MPa). This can be positive in terms of the biodegradability of materials.
For meat packaging development for specific food applications, other physicochemical
characteristics in films must be analyzed with caution, e.g., water vapor permeability.

4. Advance in Preparation of Functional Starch-Based Food Packaging

Recent advances in the development of starch-based materials for food packaging
applications are based on the combination of the emergence of new preparation techniques,
equipment and the manipulation of matter at the nanometer scale, which have allowed us
to achieve special properties with adequate performance [218,219].

4.1. Incorporating Bioactive

In recent years the incorporation of additives such as antioxidants and antimicrobials
in starch-based films plays a key role in improving functional properties. These active pack-
aging films provide a semi-permeable barrier that helps to extend shelf life by reducing the
migration of moisture, loss of solutes from fruit respiration and oxidation reaction [218,220].
Essential oils are a clear example of active components in food packaging, their antioxidant
and antimicrobial properties have improved the quality and safety of food [221]. Essential
oils are natural substances composed of alcohols, phenols, terpenes, esters and among other
bioactive agents, whose main function is the release of their active components avoiding
microbial and fungal attack and oxidation of food [218]. Oregano oil, thyme [38], cinnamon
bark, clove [222], ho wood (Cinnamomum camphora), and cardamom [223] have been
evaluated as additives in the control of various pathogens.

Raigong et al. [224] evaluated the addition of clove oil and cinnamon oil in starch
films against S. aureus, C jejuni and E. coli, and the results showed the inhibition of the
pathogens. Clove oil inhibited between 22–100%, while cinnamon oil was effective against
C. jejuni (19–22% inhibition) and E. coli (33–40% inhibition), respectively. Souza et al. [223]
evaluated that the addition of Pickering emulsions to essential oils, ho wood (Cinnamomum
camphora), cardamom, and cinnamon, showed that the ho wood oil lowered water vapor
transmission rate, improving the release of the active compound. Ho wood oil was the
most promising with regard to being applied as a biodegradable active packaging. The
addition of natural extracts from various sources, such as fruit by-products, has been
evaluated in starch-based films. Mango puree and pineapple pomace were incorporated
into maize starch-gelatin films, improving the physicochemical properties of the films and
increasing the antioxidant activity and antimicrobial activity [218]. Table 6 lists the most
recent studies on starch-based bioactive systems prepared by film casting method for food
packaging applications.
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Table 6. Bioactive system, processing techniques and main results of bioactive starch based materials for food applications.

System Starch Source Bioactive Results Application Reference

Poly (vinyl alcohol)-corn
starch Corn Pineapple peel extract as a

natural antioxidant agent

Film thickness and water vapor permeability
increased slightly, antioxidant capacity
increased.

Food Packaging [225]

Lemon essential
oil/surfactants (Span 80,
Tween 80)/corn and wheat
starch

Corn and wheat Lemon essential oil

All concentrations of lemon oil were effective
against selected bacteria (both Gram-negative
and Gram-positive) compared with control
film (without lemon oil)

Food Packaging [226]

Chitosan-Starch-antioxidants Rice

Antioxidants (from cranberry,
blueberry, beetroot, pomegranate,
oregano, pitaya and resveratrol,

thymol and carvacrol)

The addition of natural extracts gives
chitosan-starch a higher apparent density
values. The addition of natural extracts
provided chitosan-starch films with better
thermal and physical properties

Food Packaging [227]

Sodium alginate-starch Yucca

Anthocyanin and betanin (from
the exocarp of the black eggplant

(Solanum melongena) and the
mesocarp of beet (Beta vulgaris))

Incorporation of natural extracts influenced
the mechanical properties, however did not
influence film thickness or water vapor
permeability. Films with eggplant extract had
higher antioxidant activity against the (DPPH)
radical and were more sensitive to the
exposure of gaseous amines in
comparisonwith films with beet extract.

Food Packaging [228]

Mung bean starch-chitosan
(MSC) Water chestnut
starch-chitosan (WSC)

Mung bean/Water
chestnut Hydrophobic perilla oil

The results showed that the cheese coated by
WSC film containing perilla oil presented
better treatment performance in terms of
microbial growth delay, weight loss and shelf
life length.

Food Packaging for cheese [229]

Cassava starch- essential
oil-sodium bentonite nanclay Cassava Cinnamon essential oil

The meatballs stored at ambient temperature
in cassava starch film incorporated with
cinnamon oil and nano-clay, significantly
inhibited the microbial growth till 96 h below
the FDA limits (106 CFU/g) in foods
compared to control films that exceeded the
limit within 48 h.

Food Packaging for meatballs [230]
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Table 6. Cont.

System Starch Source Bioactive Results Application Reference

Starch-furcellaran-lavender
essential oil-gelatin Potato Lavender essential oil

Antioxidant properties proved to be
significantly enhanced with increasing
lavender essential oil concentration. The
solubility, water absorption and degree of
swelling of the film decreased with increasing
concentration of oils.

Food Packaging [231]

Tapioca starch-cinnamon
bark essential oil-glycerol Tapioca Cinnamon bark essential oil

Increasing cinnamon bark essential oil
improves tensile strength and antibacterial
activity of the film and preserved the
freshness of the beef during 15 days of storage.

Food Packaging for fresh beef [232]

(Gelatin-pectin-starch)-
(gelatin-pectin)-(gelatin-
starch)-(starch-pectin)

Potato Mentha pulegium and Lavandula
angustifolia essential oils

The incorporation of essential oils resulted in
films with enhanced antibacterial properties,
lower water vapor permeability, and reduced
mechanical properties

Food Packaging [233]

Carvacrol essential oil-corn
starch-montmorillonite-
tween 80/Carvacrol essential
oil-glycerol-corn starch

Corn Carvacrol essential oil
The starch-montmorillonite-carvacrol essential
oil hybrid films showed antimicrobial
behavior against E. coli.

Food Packaging [234]

Arrowroot starch-carnauba
wax nanoemulsion-cellulose
nanocrystals-essential oils
from Mentha spicata and
Cymbopogon martinii

Arrowroot Mentha spicata and
Cymbopogon martinii

The essential oils from Mentha spicata and
Cymbopogon martinii incorporation
improved the thermal stability of the films
and provided excellent protection against
fungi Rhizopus stolonifer and Botrytis cinerea.

Food Packaging [235]

Corn starch-thyme essential
oil microcapsules Corn Thyme

The addition of thyme essential oil
microcapsules to starch films increased the
opacity, thickness, tensile strength and water
solubility. They also showed an inhibitory
effect against Botryodiplodia theobromae Pat
and Colletotrichum gloeosporioides Penz and
extended the shelf life of mangoes up to
10 days at 25 ◦C.

Food Packaging for mango [236]

Corn starch-PVA- neem and
oregano essential oils Pea Neem and oregano

Starch-PVA films with 6.7% of oregano
essential oils exhibited the best physical
properties, without significant differences
with respect to the starch-PVA matrix, while
exhibiting antibacterial activity.

Food Packaging [237]
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4.2. Starch Nanostructures (SNEs)

The field of natural biopolymers have shown great potential for important, rapidly
growing applications ranging from green electronics, food packaging, dye and heavy metal
removal, oil/water separation, therapeutic agent delivery, tissue engineering scaffolds, bio-
logical devices, optics, and sensing [238]. However, the application of advanced functional
biopolymer materials suffers from their poor processability and weak mechanical prop-
erties. Regarding this, there are enormous challenges to break the strong intermolecular
interactions (hydrogen bonding) in their native forms, while re-establishing predominant
hydrogen bonding in the processed materials in a cost-effective way. The introduction
of one or more new functional groups into native polysaccharides alters their physical,
chemical and, above all, biological properties. The biological properties of polysaccharide
derivatives depend on the molecular weight, the type of modification, the type of native
polysaccharide, the conditions of the modification process, the solubility and the conforma-
tion of the polysaccharide. The manipulation of matter at the nanometer scale (1 to 100 nm)
has recently been studied to create new materials and devices with special properties and
adequate performance. The unique properties of nanoparticles depend on the size and
shape, charge and surface modification, and hydrophobicity of the starting material [239].
For example, starch nanoparticles prepared by acid hydrolysis from waxy corn and high
amylose maize starch exhibit a crystal structure and size of type A-type, B-Type, and 50 nm,
540 nm, respectively, while their morphology was polygonal and smaller starch granules,
pores, respectively [240].

In order to alter the crystalline structure of the starch, SNEs are obtained mainly by
top-down and bottom-up methods. In the “top-down” method, macroscopic materials are
reduced from the microscale to the nanoscale through physicochemical processes such as
acid hydrolysis [105,241] due to the sensitivity of the amorphous rings in starch granules
to acid treatment, homogenization [69], crushing [242,243], gamma irradiation [244], and
ultrasound [245,246]. Acid hydrolysis and ultrasonication methods are particularly effective
in breaking up the aggregates of nanoparticles formed through hydrogen bonds, thereby
reducing the size and polydispersity of nanoparticles [247].

In the “bottom-up” process, SNEs can be obtained from a buildup of starch molecules
in a controlled manner that is regulated by thermodynamic means such as regeneration [248]
nanoprecipitation or self-assembly [242]. Micro-nano emulsion and nanoprecipitation are
very simple and convenient methods for producing nanoparticles with a desired size [249].
For example, starch granules are dispersed in water or dimethylform sulfoxide, completely
gelatinized at 100 ◦C, and then precipitated by dropwise addition of nonsolvents (such as
methanol, ethanol, isopropanol, n-propanol) to obtain SNPs with different sizes [250,251].
In addition, it has been shown that the combination between chemical methods, for ex-
ample acid hydrolysis, and physical methods such as ultrasonication, generates higher
homogeneity and yield in the obtained starch nanostructures [248,252,253].

Among the recently studied starch-based nanostructures are nanoparticles [254,255],
nanospheres [18,256], nanocrystals [253,257,258], nanomicelles [259,260], nanogels [261]
and nanofibers [262]. Table 7 summarizes the main preparation methods and size of starch
nanostructures. Emphasis is placed on their responsiveness, permeability, toxicity, interac-
tions with other components and applications. The aim of producing such nanocrystals or
nanoparticles is to use them as fillers in polymeric matrices to improve their mechanical
and/or barrier properties. Starch nanoparticles are non-toxic and respond to pH, tempera-
ture, light and other stimuli. Starch nanoparticles have a wide range of applications, such
as improving the mechanical properties of films and gels, stabilizing emulsions, use as a
fluorescent indicator, forming or directing agent in self-assembling structures, scaffolds,
and reconstruction of hollow organs.
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Table 7. Preparation methods and size of starch nanostructures.

Nanoestructure Raw Materials Preparation Method Size (nm) Reference

Nanocrystal Potato Acid hydrolysis-ultrasonication 40–70 [151]
Nanocrystal Pea Acid hydrolysis-ultrasonication 30–80 [253]
Nanocrystal Waxy Acid hydrolysis-ultrasonication 70–100 [66]
Nanocrystal High amylose maize Acid hydrolysis 118–130 [18]
Nanospheres Soluble starch Micro-emulsion 50–350 [263]
Nanospheres Native sago starch Nanoprecipitation 270–420 [256]
Nanospheres Corn Microemulsion 96–100 [264]
Nanospheres Corn Nanoprecipitation 90–100 [265]
Nanospheres Potato Acid hydrolysis-ultrasonication 40 [266]
Nanogels Corn, potato, and pea starch Reverse emulsification 100 [267]
Nanogels α-starch Chemical crosslinking 30 [261]

Nanogels Starch/poly(alginic
acid-cl-acrylamide) Chemical crosslinking 380 [268]

Nanogels CMS EB radiation N 380 [269]
Nanogels Potato Chemical crosslinking 120–160 [270]
Nanofibers Corn Electrospinning 750–900 [271]

Nanofibers High amylose
Maize starch Cross-linking/Electrospinning 300–700 [272]

Nanofibers Corn Coaxial Electrospinning 110–160 [273]

Nanofibers High-amylose maize starch
and nGO Electrospinning 30–50 [274]

Nanofibers Soluble starch Coaxial electrospinning 90–250 [262]
Micelle Corn Graft copolymerization/self-assemble 20–30 [275]
Micelle Waxy Maize Emulsion/self-assemble 60–70 [276]
Micelle Soluble Schiff-base bonds [277]
Micelle Starch-octanoic Graft copolymerization/self-assemble 400–600 [278]
Nanoparticulas Waxy Maize Acid hydrolysis-ultrasonication 50–80 [252]

Nanoparticulas Waxy Maize Enzymatically hydrolyzed-emulsion
cross-linking 80–130 [248]

Nanoparticulas Pea Precipitation-complex formation 50–100 [254]
Nanoparticulas Corn Complex formation 10–20 [248]

5. Processing Techniques
5.1. Traditional Techniques
5.1.1. Extrusion

When you think of food packaging based on starch or polymer blends with starch,
extrusion is one of the most used processes for their production. The extrusion process
consists of subjecting the starch to relatively high pressure, heat and shear forces that
produce multiple chemical and physical reactions, which decrease its crystallinity [279].
This process can be of three forms: extrusion blowing, compression extrusion molding
and extrusion injection molding [280]. In extrusion, in addition to gelatinization, starch
degradation occurs due to the partial depolymerization of amylose and amylopectin, the
latter being the most affected by its rigid structure [281]. During processing, the molecular
weight of amylopectin decreases by a factor of 15, while for amylose it decreases only
1.5 times [282]. Processing parameters such as temperature, residence time, water content,
plasticizer type and percentage, temperature, shear stress, and shear speed influence the
final properties of TPS [283].

The extrusion process has excellent mixing capacity, is continuous, efficient, low-
cost, and highly flexible in operation, thus enabling large-scale film production [279]. In
addition, controlling the humidity properly during the process would affect the viscosity
and the efficiency of the extrusion, increasing the inhibition of retrogradation of the film and
therefore its mechanical properties [284]. The chemical composition, crystal structure and
morphology of the starch granules also influence the final properties of TPS. High amylose
starches are preferred for film production as they are resistant and more flexible [285] For
example, Rindlav-Wrestling et al. [286] studied the mechanical and barrier properties of TPS
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films obtained from “high amylose” and “waxy” potato starch. The authors concluded that
tensile strength, barrier, and water permeability properties were better in high amylose TPS
films. Thuwall et al. [15] evaluated the effect of amylose content in obtaining TPS. The TPS
obtained with “high amylose” potato starch during extrusion exhibited unstable flow and
nozzle clogging, however, they showed better mechanical properties such as tensile strength
and elongation at break than the starch extruded TPS “normal”. Pure starch does not meet
the properties necessary for the manufacture of films, so it is necessary to mix it with a
plasticizer or another polymer. Table 3 shows some blends of starch with different polymers
such as polylactic acid (PLA), polybutylene adipate-terephthalate (PBAT), polyvinyl alcohol
(PVOH), chitosan and polycaprolactone (PCL) that have been processed by extrusion to
improve their performance in film formation. Yusoff et al. [62] made a bioplastic of tapioca
starch (TS) with PLA (10–50 wt%) and determined that the tensile strength improved by
26% and the impact testing value decreased with the addition of 30% of TS as extrusion
reduced the retrodegradation of the starch. Likewise, Hubackova et al. [164] evaluated the
biodegradable capacity of an extruded mixture of corn starch with PLC and determined
that the mixtures with starch plasticized with glycerol had better mechanical properties
and a higher degree of biodegradability in an aerobic environment. This was due to the
extrusion improving the incorporation of the mixture and the disposition of the polymer
chains in relation to the environment to be degraded.

Extrusion has not only favored the development of polymeric starch mixtures, but
its mixing efficiency has also allowed the development of nanostructured materials with
nanofibers, nanoparticles and high-value compounds to develop smart packaging. For ex-
ample, Zhou et al. [287] made antimicrobial films of a starch-PBAT mixture with AgNPs@SiO2
nanoparticles by extrusion and found that the films had good mechanical properties and
increased the hydrophobicity of the surface compared to films without particles. Addition-
ally, the films were tested to pack peaches and nectarines at 53% relative humidity and
24 ◦C and were found to inhibit microbial spoilage and extend shelf life. On the other hand,
Ceballos et al. [288] developed an extruded film of starch with yerba mate extract and
found that at a concentration of 20% the yerba mate extract behaved as a plasticizer, since
the deformation at break and the toughness increased considerably. Also, they determined
that the films disintegrate after 10 weeks of burial, and therefore serve as a great example
of biodegradable material.

5.1.2. Foaming Processing

The foaming process of a polymer is a thermodynamic process composed of cell
nucleation, growth of the structure and thermal stabilization. Nucleation is initiated
by thermodynamic instability in a polymer saturated with gas at high temperature and
pressure [289]. The foaming process of a polymer can be carried out by extrusion, thermo-
pressing, microwave heating, solvent extraction, and supercritical fluid extrusion [290].
The most commercialized foamed packages are those of expanded polystyrene due to
their high resistance, low density and low cost. However, these are not very friendly
to the environment, since they could take a long time to degrade [291,292]. Therefore,
it is necessary to develop foams from biodegradable materials such as starch. The low
mechanical resistance, high hydrophilicity, low resistance to retrogradation and low thermal
stability posed by starch make it a material not suitable for being foamed [290]. That is why
blends of starch with polymers and plasticizers have been used to improve the mechanical
properties of the resulting foams (Table 3). Chauvet et al. [293] developed a biodegradable
foamed material with PLA and TPS using CO2-assisted supercritical extrusion (scCO2). In
their study they determined that with the mixture of 80:20 PLA and TPS, respectively, a
foam with a uniform structure was obtained and that the expansion and porosity of the
mixture behaved as pure PLA with high porosity (96%). Likewise, Cheng, et al. [294] made
foams by means of scCO2 assisted extrusion of TPS with glyceraldehyde, and improved
the expansion ratio, the resilience rate, the complex dynamic moisture-proof viscosity and
the crystallization rate of the foam by additional integration of crosslinking agents such as
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sodium hexametaphosphate and nano-silica particles. On the other hand, Zabihi et al. [295]
made foams with a mixture of thermoplastic corn starch (TPS) and polystyrene (PS) by melt
extrusion and used glycerol and water as plasticizer. They determined that the addition of
20% PS to TPS caused an expansion of the foams six times higher than that of PS and 60%
higher than that of TPS, while the moisture absorption was 50% less than that of TPS.

5.1.3. Film Casting

The film casting method is the most used for the manufacture of biodegradable films.
This consists of a solution prepared by the stirring and heating of the film-forming polymers
and the solvent, and subsequently the solution is degassed, poured onto a flat and balanced
surface [296]. The drying of the film can be at room temperature or in an oven with
controlled temperature and humidity conditions. The advantages of this method are the
practicality and low cost, while disadvantages are that it is difficult to control the thickness
and uniformity of the film, and therefore the quality [296]. Due to the limitations of the
method, it is difficult to use it for large-scale film production, which is why it is seldom used
in the industry. To make films by the film casting method, polymeric blends, acidifications
and simple and double modifications of native starches have been made to obtain materials
with the appropriate characteristics (Table 3). For example, Pavoni et al. [163] evaluated
the effect of adding lactic or acetic acid to the film-forming solution based on cornstarch
and chitosan. They found that the samples acidified with acetic acid presented higher
stiffness, less deformation, higher values of Young’s modulus and lower percentage of
elongation compared to those acidified with lactic acid. These films also had better water
vapor barrier properties and began degradation after 15 days. Cheng et al. [297] made
packaging films with cassava starch (native and doubly modified) and red cabbage extracts
using the casting technique. They determined that the doubly modified cassava starch
films had better transparency, water resistance, water vapor barrier capacity, and tensile
strength than native cassava starch films. In addition, they determined that anionic cassava
starch formed stable complexes with anthocyanins through electrostatic interactions and
hydrogen bonding, improving the physical and chemical properties of the films. For their
part, Macêdo et al. [296] made a bioplastic of native and modified green banana starch, and
determined that the modification of the starch increased the mechanical properties reaching
a modulus of elasticity of 12.38 MPa, a tensile strength of 27.09 MPa, an elongation of 6.0%,
a resistance to perforation of 251.8 N and a deformation of 2.8 mm.

5.2. Emerging Technologies

The demand for materials with characteristics superior to reinforced and function-
alized materials has led to the development of new technologies for the processing of
materials such as electrospinning, forcespinning, 3D-printing and reactive extrusion. These
manufacturing processes provide materials with structural, material distribution in space,
chemical, physical and biological differential characteristics. These polymeric modifica-
tions allow us to obtain materials with memory, with the capacity to generate and store
energy and regenerate tissues, so these processes give way to the manufacture of third-
generation materials.

5.2.1. Electrospinning

Electrospinning is not a recently created process, however, in the 1990s it was taken
up and perfected by Reneker et al. [298], which is why it is considered an emerging pro-
cess for the manufacture of fibers. Electrospinning is made up of two different processes:
electrospray and spinning. Typical equipment configuration includes a solution tank with
rows, a grounded collector, and high voltage power supply [299]. In this device the poly-
meric solution is pumped towards the tip of the collector that acts as an electrode and a
high voltage between 100 to 500 kV/m is applied. The polymer solution will experience
electrostatic forces due to the repulsion between the surface charges of the polymer and
coulombic forces due to the external electric field [300]. This electrodynamic process causes
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the droplet to accelerate and experience jet bending instability to form the Taylor cone.
The droplet is then split into micro or nanofibers in the grounded collector [299]. Starch
has great potential when it comes to producing nanofibers by electrospinning and it has
been shown that it can be electrospun mixed with other polymers, for example: Sutjarit-
tangtham et al. [299] elaborated natural tapioca starch fibers using a collecting bath with
ethanol at −20 ◦C and obtained fibers of 1.3 to 14.5 µm in diameter from simple solutions of
starch at 3 and 5% concentration, respectively. By X-ray diffraction (XRD) it was determined
that electrospinning did not modify the crystalline structure of starch. Likewise, Fonseca
et al. [301] elaborated electrospun fibers of native and anionic (phosphorylated) corn starch
with high and low amylose content and determined that the fibers obtained from starch
with high amylose content had a homogeneous morphology unlike of the regular starches
that presented binders attached to the fibers and a heterogeneous structure. Therefore,
they concluded that a higher amylose content of starches favors electrospinning. For their
part, Cárdenas et al. [302] compared starch fibers obtained by electrospinning of native,
commercial and cationic potato starch. Through their study they confirmed that the fibers
were cationized with a highly amorphous state and that they had a heat resistance of 300 ◦C
due to the physicochemical changes generated in the fibers.

5.2.2. Forcespinning

Forcespinning is a novel method for the large-scale production of polymeric fibers,
reaching diameters from 50 nm to 1000 nm. This method uses centrifugal force, which
allows for a significant increase in output throughput and nanofiber production [303]. The
forcespinning machine is composed of a spinneret, into which the polymeric solution is
injected. This spinneret has a needle that, when rotating at high speed, prints the fibers
on a crown. The crown is composed of 16 needles distributed 30 cm from the needle and
the fibers are collected with a metal frame (1 × 1 in). The spinning machine can operate
at an angular speed of 3000 to 7000 rpm [304]. The viscosity of the polymer solution and
the evaporation characteristics of the solvent are important parameters for forcespinning.
Starch is a suitable polymer to spin by forcespinning, since Li et al. [305] manufactured
fibers with native corn and potato starches rich in amylopectin (65%). They determined
that the concentration of the crosslinking agents in the solution to be spun was crucial for
obtaining the fibers. The morphology of the maize starch fibers was homogeneous, while
that of potato was heterogeneous with the presence of binders. Regarding the diameter of
the fibers obtained, it was 1.3 ± 0.4 and 1.5 ± 0.6 µm for the fibers of corn starch and potato,
respectively. Li et al. [306] also manufactured fibers by forcespinning blends of potato starch
with polyethylene oxide (PEO) to encapsulate drugs such as ibuprofen and ketoprofen.
The diameters of the nanofibers were 2.6 µm and presented a uniform morphology. These
nanofibers worked well to encapsulate drugs, so starch has the potential to encapsulate
antimicrobial compounds in food packaging.

5.2.3. 3D-Printing

3D printing is a technology that allows rapid prototyping through a 3D printer, adding
layer-by-layer materials based on reconstructed models using computer codes [307]. The
World Economic Forum considers 3D printing as “the third industrial revolution”. 3D
printing has developed rapidly and has been applied in many industries, such as medicine,
aerospace, automotive, food, art, textile, architecture, etc. However, there is a huge gap
in the application of 3D printing for the manufacture of food packaging, since there are
few developments, for example, Leaw et al. [308] developed printed edible corn starch and
gelatin films by 3D. In addition, they evaluated the concentration of glycerol and hawthorn
berry extract on the texture of the printed films. They determined that the 4% glycerol film
had the highest elongation at break of 71.57% and showed inhibition against Pseudomonas
aeruginosa, suggesting that they can be used for antibacterial food packaging. For all
the above, it can be said that there is a lot to do in terms of 3D printing of edible films,
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antibacterial, antioxidant, enzyme inhibitor, deodorizer, coatings with color and aroma for
fruits etc.

5.2.4. Reactive Extrusion

In the reactive extrusion process, the extruder is used as a chemical reactor, which
makes it possible to unify the polymerization and/or modification process of the polymer
and the granulation process in a single stage [309]. This procedure is generally carried
out in co-rotating twin screw extruders, due to its high mixing capacity and continuous
operation [152].The great advantage of this extrusion is that the polymerization reactions
are carried out in the absence of solvents or using a minimal amount of them. This process
is generally used for rapid reactions of 1 to 15 min, such as crosslinking, glycolysis, hy-
drolysis, compatibilization, etc. For example, Nayak [152] used reactive extrusion to make
composites of tapioca starch, polybutylene adipate terephthalate (PBAT), and nanoclay.
Through mechanical tests, it was determined that the tensile modulus and elongation at
break increased with the incorporation of 30% TPS and 44.45% nanoclay. Gutiérrez and
Valencia [309], phosphated corn starch by reactive extrusion using sodium tripolyphos-
phate as a cross-linking agent. However, they determined that phosphating did not favor
the physicochemical properties of the manufactured materials with respect to the TPS
control film. For their part, Bai et al. [310] compatibilized thermoplastic starch and PBAT by
reactive extrusion using reactive epoxy compatibilizer (REC) for the manufacture of films.
The results indicated that REC effectively improves the compatibility of the TPS/PBAT mix-
tures and extends the polymeric chains of PBAT by improving the mechanical properties of
the films.

6. Starch Based Materials Application in Food Industry

A fundamental part in the food packaging industry is to innovate, develop new
materials with improved properties, reduce food waste, and be economically viable and
sustainable, while at the same time complying with the standards of quality, safety and
functionality; contain, protect and conserve. Another important issue is that developed
materials must facilitate product handling, although they must also preserve nutritional
value. Currently, the use of bioplastics has increased significantly, and it is estimated
that by 2022 the production of bioplastics will be around 2.44 million tons due to a great
demand for biopolymers for various applications and product [5]. This increase in the
manufacture of biopolymers as substitutes for conventional packaging is mainly due to the
biodegradability, biocompatibility and low cost of these starch base materials [311] as starch
by itself or in combination with other biopolymers, have been used in the preservation of
fresh products.

One of the strategies to generate interest among consumers and for the packaging
industry to commercialize starch-based materials have been the development of smart
and/or functional materials to extend the shelf life of packaged foods (Figure 3). In this
context, the main work has focused on: (i) improving the materials so they provide a better
barrier to oxygen and water vapor materials by mixing different materials and incorpo-
rating micro/nano structures; and (ii) adding bioactive substances such as antioxidant or
antibacterial agents by means of micro/nano encapsulation [280].
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Active packaging deliberately modifies the product or environment to improve food
safety and quality. Hence, increased attention has been paid to the preparation of bioactive
and smart packaging films by active films having antibacterial, antioxidant, and barrier
properties [312,313]. Other examples of active packaging include oxygen scavengers to
decrease fat oxidation, ethylene scavengers to minimize fruit and vegetable ripening,
humidity and odor absorbers [314–318].

Smart packaging informs the consumer about kinetic changes related to the quality of
the food or the environment it contains, to minimize losses and ensure food quality. Hence,
the temperature can be monitored, providing a thermal history of the foods storage, and
informing the most suitable consumption conditions. Some studies have been carried out
to produce such materials, and commercial packaging is available in the market. Jeder-
man et al. [319] monitored the temperature curves allowing the evaluation of the cooling
efficiency in bananas, the effect of changes in packaging and the respiration heat. Commer-
cial brands are patented by MonitorMark™ and commercialized as a Time–Temperature
Indicators (TTI) sensor developed by 3M™ (3M™, Maplewood, MN, USA) and CoolVu
indicator developed in Freshpoint-Switzerland.

Fish and meat products are highly susceptible to decomposition by oxidation of fats
showing color changes, (e.g., discoloration of pigments such as myoglobin, carotenoids),
and off-odors and flavors (e.g., rancidity as a result of lipid oxidation), which leads to
nutrient losses (e.g., oxidation of vitamin E, β-carotene, ascorbic acid) and adversely affects
the quality [320]. In order to prevent those problems, vacuum packaging has been used
as this method does not always remove all oxygen under the packaging. That is why
it has been necessary to develop novel packaging materials to prevent oxidation and
meat quality loss. In this sense, oxygen scavengers have been supplied in packaging to
eliminate the residual oxygen. The oxygen scavengers are incorporated in sachets, films
or labels to prevent food products contamination or accidental consumption. Among the
substances incorporated are iron powder, ascorbic acid, dyes, enzymes (glucose oxidase
and alcohol oxidase), unsaturated fatty acids (oleic or linoleic acids), and immobilized
yeast [217]. On the other hand, thermoplastic starch films have also been developed with the
purpose of reducing lipid oxidation in foods. Panrong et al. [321] prepared thermoplastic
starch films incorporating low-density polyethylene and green tea. They proved that the
hydrophobicity of films allows a reduction in the lipid oxidation of packaged soybean oil,
which was effectively reduced by up to 38% depending on the TPS ratio used. Similarly,
Piñeros-Hernandez et al., [322] prepared edible cassava starch films carrying rosemary
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antioxidant extracts for use as potential active food packaging. They reported the films
enhanced the UV-blocking properties of the films. In this context, several works have been
mentioned above in Section 4.1.

Smart packaging films based on a change of color have been developed, and they have
pH-sensitive and responsive indicators (e.g., anthocyanins, betacyanins, and curcumin)
in a biopolymer-based matrix [312]. These materials are usually synergistically blended
with other polymers (PVA, PLA, carrageenan, chitosan), can also respond to magnetic
field, or have enzyme-responsive characteristics [313]. Recently, the application of natural
pigments and polymer carriers has shown great potential in smart packaging based on pH-
responsive indicators [323]. A research work conducted by Silva-Pereira et al. [324] revealed
the use of blueberry residues as a potential visual pH indicator in the monitoring of fish
spoilage. The indicator carrier matrix was corn starch and chitosan and showed good pH
sensitivity and thermal stability. Similarly, films based on cassava starch and anthocyanins
showed high pH sensitivity over a wide pH range, which allows monitoring of the quality
of various foods [325]. In addition, potato starch-based films with anthocyanins can
successfully display the color difference at pH 1–12 and detect the fresh stage (pH = 5.8)
and spoiled stage (pH = 8) of pork, demonstrating the potential of potato starch for food
product quality detection [326]. Shapi’i et al. [327] evaluated the effect of incorporating
chitosan nanoparticles into a starch matrix on the antibacterial properties of the film. The
authors found that the starch/chitosan nanoparticle film used to package cherry tomatoes
effectively inhibited the growth of microorganisms (7 × 102 CFU/g) compared to pure
starch film (2.15 × 103 CFU/g). Another way to inhibit the growth of microorganisms in
starch films was reported by Diaz-Galindo et al. [328] by adding a cinnamon oil emulsion
to the matrix that reduced the growth rate of Botrytis cinerea by 66%, preventing further
contamination of the fruit during storage and transport.

The incorporation of anthocyanin-rich bay laurel berry extracts (BBE) into tapioca
starch to develop food packaging films with antioxidant and pH-sensitive properties was
studied by Yun et al. [329]. The work demonstrated a significant increase in the DPPH
radical scavenging ability of the composite film (24.39–75.01% under 5 mg mL−1) with the
incorporation of BBE into the starch matrix. It was observed that when the starch-BBE
film was exposed to hydrogen chloride, the color of the film changed from purple to red.
The film quickly turned blue and then olive when exposed to ammonia gas. Jayakumar
et al. [330] incorporated nutmeg oil, ZnO NP and ham extract into starch/PVA based
films. These films showed pH sensitive and antibacterial properties. Under acidic pH,
the dark purple extract turned cherry red, while at alkaline pH it changed to brownish
yellow to light green at neutral pH. The film mixed with ZnO NP and nutmeg oil inhibited
the growth of the foodborne pathogen Salmonella typhimurium. Similarly, the results of
Mustafa et al. [331] demonstrated a variation in the coloration of smart and bioactive
PVA/starch/propolis/procyanidin rosemary extract films depending on pH; reddish to
blue under acidic pH, blue under neutral pH and yellow under alkaline pH. The maximum
diameters of the film inhibition zone against E. coli and methicillin-resistant S. aureus were
21 and 15 mm, respectively. Table 8 summarizes some applications in the packaging of
various foods, such as fruits and vegetables, bakery goods, meat, and starch-based materials
indicating good prospects for commercial utilization.
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Table 8. Packaging system, food application and mains results of pre-commercial studies of starch based materials.

Packaging System Processing Techniques Function Food Application Results References

Rice starch in combination
with chitosan, emulsifier
(sodium caseinate), and red
palm oil.

Dipping Enhancing the shelf life
of walnuts To coat dried walnut kernels

Films with higher in elongation at break,
but lower in tensile strength. Film is more
flexible than the other corn and wheat
starch films tested in this study. Rice starch
with high flexibility produces a uniform
layer on the surface of walnut.

[332]

Cassava starch at different
concentrations (1%, 2%, 3%
and 4%)

Dipping Delay the ripening of papaya
fruit (Carica papaya)

Coating papaya fruit
(Carica papaya)

All cassava starch coating concentrations
reduced fruit maturation and anthracnose,
with the 2%, 3% and 4% coatings giving
100% disease control.

[333]

Nano-SiO2-potato starch Film Preservation the
white mushroom White mushroom

The water resistance and mechanical
properties of the films were improved
with the addition of nano-SiO2. Resistance
to ultraviolet and thermal aging was also
improved. Finally, they were more
efficient against Escherichia coli (E. coli)
than Staphylococcus aureus (S. aureus),
improving the preservation of white fungi.

[334]

Corn starch (TPS) and
chitosan oligomers Film

Package perishable foods
such as strawberries, ricotta,
and flavored breads,

Strawberries, ricotta, and
flavored breads.

Sachet type packages demonstrated to
have a notable antimicrobial capability
against molds and yeasts. Flavored breads
were the least susceptible product to the
microbial development, while strawberries
and ricotta presented the highest molds
and yeasts growth, respectively.

[335]

Yam starch-glycerol Film
Extend storage life of
strawberries stored at 4 ◦C
and 85% RH

Strawberries

Yam Starch films significantly reduced
decay of the fruits compared to control
and extended the shelf life of strawberries
by 21 days.

[336]
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Thus, Oliveira et al. [333] evaluated different concentrations of cassava starch in the
protection of papaya fruit, reducing the ripening of the fruit and controlling diseases by
100%. Castillo et al. [335] made a Sachet type package of corn starch and chitosan oligomers
for perishable foods such as strawberries, ricotta, and flavored breads. Table 9 lists the
starch-based products currently available and marketed for food packaging applications
where Biotec, Novamont and BioBag Americas are the main manufacturing companies.

Table 9. Commercially available starch-based materials for food packaging applications.

Material Product Manufacturing Company Web Site

Granules based on corn
powder/polyester + corn powder

Bio Degradable Bio One and Bio
Base Rangdaneh Sirjan

RANGDANEH SIRJAN Co.
Sirjan-IRAN

http://www.rangdaneh.ir
(accessed on 20 November 2021)

BIOTEC contains 75% renewable
feedstock and has a 69% biobased
carbon share according to ASTM

D6866 and ISO 16620-2.

BIOPLAST 105
BIOPLAST 300
BIOPLAST 400
BIOPLAST 500
BIOPLAST 900

BIOPLAST GF 106/02
BIOPLAST GS 2189

BIOTEC GmbH and Co. KG
Emmerich am Rhein-Alemania

https://es.biotec.de
(accessed on 20 November 2021)

Starch Mater-Bi Novamont, S.L.U.
Novara-Italia

https:
//www.novamontiberia.es/

(accessed on 20 November 2021)

Starch-PBAT BioAgri Mulch Film BioBag Americas, Inc.
Palm Harbor-Canadian

https://www.biobagusa.com
(accessed on 20 November 2021)

Starch from the potato processing
industry and/or grain, root or

seed flour based resources
Solanyl®

Rodenburg
Oosterhout-

The Netherlands

https://biopolymers.nl
(accessed on 20 November 2021)

7. Conclusions and Future Perspectives

Commercial starch-based materials undoubtedly could play an important role in the
food packaging industry as an environmentally friendly and sustainable alternative to
synthetic packaging. However, their massive production for the food industry is still pend-
ing as these materials do not show the optical, barrier, and mechanical properties of their
synthetic counterparts. Some research has been conducted to overcome these challenges,
such as adapting and improving the usual thermoplastic processing techniques, physical
and chemical modifications of starch, and blending with other biopolymers, plasticizers,
and functional nano/micro fillers. The latter approach is also aimed at developing active
or intelligent packaging to increase the food shelf life or act as a sensor during the food
transport and storage chain.

On the other hand, the starch-based materials are biodegradable, however some
chemical additives used to improve the end-product’s performance could increase their
longevity. Thus, new additives and polymers must be found to enhance the sustainability
of forthcoming starch-based material, preferably from renewable resources. This allows
their incorporation into the earth’s ecological cycles when they reach the end of life stage in
a managed, safe and sustainable way.
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