Theoretical Studies and Computer Modeling of Supramolecular Chemical Systems: Structure, Properties and Reactivity †
Abstract
:Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Novikov, A.S.; Kuznetsov, M.L.; Pombeiro, A.J.L. Theory of the formation and decomposition of N-heterocyclic aminooxycarbenes through metal-assisted [2+3]-dipolar cycloaddition/retro-cycloaddition. Chem. Eur. J. 2013, 19, 2874–2888. [Google Scholar] [CrossRef] [PubMed]
- Melekhova, A.A.; Smirnov, A.S.; Novikov, A.S.; Panikorovskii, T.L.; Bokach, N.A.; Kukushkin, V.Y. Copper(I)-catalyzed 1,3-dipolar cycloaddition of ketonitrones to dialkylcyanamides. A step toward sustainable generation of 2,3-dihydro-1,2,4-oxadiazoles. ACS Omega 2017, 2, 1380–1391. [Google Scholar] [CrossRef] [PubMed]
- Bolotin, D.S.; Burianova, V.K.; Novikov, A.S.; Demakova, M.Y.; Pretorius, C.; Mokolokolo, P.P.; Roodt, A.; Bokach, N.A.; Suslonov, V.V.; Zhdanov, A.P.; et al. Nucleophilicity of oximes based upon addition to a nitrilium closo-decaborate cluster. Organometallics 2016, 35, 3612–3623. [Google Scholar] [CrossRef]
- Bolotin, D.S.; Demakova, M.Y.a.; Novikov, A.S.; Avdontceva, M.S.; Kuznetsov, M.L.; Bokach, N.A.; Kukushkin, V.Y. Bifunctional reactivity of amidoximes observed upon nucleophilic addition to metal-activated nitriles. Inorg. Chem. 2015, 54, 4039–4046. [Google Scholar] [CrossRef] [PubMed]
- Novikov, A.S. 1,3-Dipolar cycloaddition of nitrones to transition metal-bound isocyanides: DFT and HSAB principle theoretical model together with analysis of vibrational spectra. J. Organomet. Chem. 2015, 797, 8–12. [Google Scholar] [CrossRef]
- Novikov, A.S.; Kuznetsov, M.L.; Pombeiro, A.J.L.; Bokach, N.A.; Shul’pin, G.B. Generation of HO• radical from hydrogen peroxide catalyzed by aqua-complexes of the group III metals [M(H2O)n]3+ (M = Ga, In, Sc, Y, La): A theoretical study. ACS Catal. 2013, 3, 1195–1208. [Google Scholar] [CrossRef]
- Mikhaylov, V.N.; Sorokoumov, V.N.; Korvinson, K.A.; Novikov, A.S.; Balova, I.A. Synthesis and simple immobilization of palladium(II) acyclic diaminocarbene complexes on polystyrene-support as efficient catalysts for Sonogashira and Suzuki-Miyaura cross-coupling. Organometallics 2016, 35, 1684–1697. [Google Scholar] [CrossRef]
- Tskhovrebov, A.G.; Novikov, A.S.; Odintsova, O.V.; Mikhaylov, V.N.; Sorokoumov, V.N.; Serebryanskaya, T.V.; Starova, G.L. Supramolecular polymers derived from the PtII and PdII Schiff base complexes via C(sp2)–H···Hal hydrogen bonding: Combined experimental and theoretical study. J. Organomet. Chem. 2019, 886, 71–75. [Google Scholar] [CrossRef]
- Ivanov, D.M.; Novikov, A.S.; Ananyev, I.V.; Kirina, Y.V.; Kukushkin, V.Y. Halogen bonding between metal centers and halocarbons. Chem. Commun. 2016, 52, 5565–5568. [Google Scholar] [CrossRef] [PubMed]
- Mikherdov, A.S.; Katkova, S.A.; Novikov, A.S.; Efremova, M.M.; Reutskaya, E.Y.; Kinzhalov, M.A. (Isocyano group)···lone pair interactions involving coordinated isocyanides: Experimental, theoretical and CSD study. CrystEngComm 2020, 22, 1154–1159. [Google Scholar] [CrossRef]
- Burianova, V.K.; Bolotin, D.S.; Mikherdov, A.S.; Novikov, A.S.; Mokolokolo, P.P.; Roodt, A.; Boyarskiy, V.P.; Dar’in, D.; Krasavin, M.; Suslonov, V.V.; et al. Mechanism of generation of closo-decaborato amidrazones. Intramolecular non-covalent B–H···π(Ph) interaction determines stabilization of the configuration around the amidrazone C=N bond. New J. Chem. 2018, 42, 8693–8703. [Google Scholar] [CrossRef]
- Kinzhalov, M.A.; Kashina, M.V.; Mikherdov, A.S.; Mozheeva, E.A.; Novikov, A.S.; Smirnov, A.S.; Ivanov, D.M.; Kryukova, M.A.; Ivanov, A.Y.; Smirnov, S.N.; et al. Dramatically enhanced solubility of halide-containing organometallic species in diiodomethane: The role of solvent complex halogen bonding. Angew. Chem. Int. Ed. 2018, 57, 12785–12789. [Google Scholar] [CrossRef] [PubMed]
- Mikherdov, A.S.; Kinzhalov, M.A.; Novikov, A.S.; Boyarskiy, V.P.; Boyarskaya, I.A.; Dar’in, D.V.; Starova, G.L.; Kukushkin, V.Y. Difference in energy between two distinct types of chalcogen bonds drives regioisomerization of binuclear (diaminocarbene)PdII complexes. J. Am. Chem. Soc. 2016, 138, 14129–14137. [Google Scholar] [CrossRef]
- Ivanov, D.M.; Kirina, Y.V.; Novikov, A.S.; Starova, G.L.; Kukushkin, V.Y. Efficient π-stacking with benzene provides 2D assembly of trans-[PtCl2(p-CF3C6H4CN)2]. J. Mol. Struct. 2016, 1104, 19–23. [Google Scholar] [CrossRef]
- Mikherdov, A.S.; Novikov, A.S.; Kinzhalov, M.A.; Boyarskiy, V.P.; Starova, G.L.; Ivanov, A.Y.; Kukushkin, V.Y. Halides held by bifurcated chalcogen–hydrogen bonds. Effect of μ(S,N–H)Cl contacts on dimerization of Cl(Carbene)PdII species. Inorg. Chem. 2018, 57, 3420–3433. [Google Scholar] [CrossRef]
- Rozhkov, A.V.; Krykova, M.A.; Ivanov, D.M.; Novikov, A.S.; Sinelshchikova, A.A.; Volostnykh, M.V.; Konovalov, M.A.; Grigoriev, M.S.; Gorbunova, Y.G.; Kukushkin, V.Y. Reverse arene sandwich structures based upon π-hole···[MII](d8M = Pt, Pd) interactions, where positively charged metal centers play the role of a nucleophile. Angew. Chem. Int. Ed. 2019, 58, 4164–4168. [Google Scholar] [CrossRef]
- Novikov, A.S.; Bolotin, D.S. Xenon derivatives as aerogen bond-donating catalysts for organic transformations: A theoretical study on the metaphorical “spherical cow in a vacuum” provides insights into noncovalent organocatalysis. J. Org. Chem. 2023, 88, 1936–1944. [Google Scholar] [CrossRef]
- Il’in, M.V.; Novikov, A.S.; Bolotin, D.S. Sulfonium and selenonium salts as noncovalent organocatalysts for the multicomponent Groebke–Blackburn–Bienaymé reaction. J. Org. Chem. 2022, 87, 10199–10207. [Google Scholar] [CrossRef]
- Il’in, M.V.; Novikov, A.S.; Bolotin, D.S. Aminonitrone–iminohydroxamic acid tautomerism: Theoretical and spectroscopic study. J. Mol. Struct. 2019, 1176, 759–765. [Google Scholar] [CrossRef]
- Shilovskikh, V.V.; Timralieva, A.A.; Nesterov, P.V.; Novikov, A.S.; Sitnikov, P.A.; Konstantinova, E.A.; Kokorin, A.I.; Skorb, E.V. Melamine–barbiturate supramolecular assembly as a pH-dependent organic radical trap material. Chem. A Eur. J. 2020, 26, 16603–16610. [Google Scholar] [CrossRef]
- Bolotin, D.S.; Novikov, A.S.; Kolesnikov, I.E.; Suslonov, V.V.; Novozhilov, Y.; Ronzhina, O.; Dorogov, M.; Krasavin, M.; Kukushkin, V.Y. Phosphorescent platinum(II) complexes featuring chelated acetoxime pyrazoles: Synthetic, structural, and photophysical study. ChemistrySelect 2016, 3, 456–461. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Novikov, A.S. Theoretical Studies and Computer Modeling of Supramolecular Chemical Systems: Structure, Properties and Reactivity. Chem. Proc. 2022, 12, 88. https://doi.org/10.3390/ecsoc-26-13717
Novikov AS. Theoretical Studies and Computer Modeling of Supramolecular Chemical Systems: Structure, Properties and Reactivity. Chemistry Proceedings. 2022; 12(1):88. https://doi.org/10.3390/ecsoc-26-13717
Chicago/Turabian StyleNovikov, Alexander S. 2022. "Theoretical Studies and Computer Modeling of Supramolecular Chemical Systems: Structure, Properties and Reactivity" Chemistry Proceedings 12, no. 1: 88. https://doi.org/10.3390/ecsoc-26-13717
APA StyleNovikov, A. S. (2022). Theoretical Studies and Computer Modeling of Supramolecular Chemical Systems: Structure, Properties and Reactivity. Chemistry Proceedings, 12(1), 88. https://doi.org/10.3390/ecsoc-26-13717