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Abstract: Recent research on human action recognition is largely facilitated by skeletal data, a compact
representation composed of key joints of the human body. However, leveraging the capabilities
of artificial intelligence on such sensory input imposes the collection and annotation of a large
volume of skeleton data, which is extremely time consuming. In this paper, a two-phase semi-
supervised learning approach is proposed to surmount the high requirements on labeled skeletal
data while training a capable human action recognition model adaptive to a target environment. In
the first phase, an unsupervised learning model is trained under a contrastive learning fashion to
extract high-level human action semantic representations from an unlabeled source dataset. The
resulting pretrained model is then fine-tuned on a small number of properly labeled data of the target
environment. Experimentation is conducted on large-scale human action recognition datasets to
evaluate the effectiveness of the proposed method.

Keywords: skeletal action recognition; semi-supervised learning; contrastive learning; domain adaptation

1. Introduction

As a notoriously data-driven learning technique, deep learning has demonstrated
remarkable effectiveness in human action recognition by involving massive training on
large-scale human activity datasets [1,2]. Recently, Graph Convolutional Networks (GCNs),
tailored for skeleton data, which is efficiently extracted from 3D imaging sensors and that
offers the merit of being robust to variations in the environment, have achieved state-of-
the-art performance in human action recognition research [3,4].

Even though it is promising to realize a powerful human action recognition model via
leveraging large-scale public datasets, the operation of the resulting model in practice could
be challenging. Deploying the model into a target environment, where the distributions of
the target data deviate partially from that of the source training data domain due to the
particular imaging configuration adopted, refers to the data domain covariate issue in the
deep learning community [5]. A common strategy to tackle the problem is to conduct extra
fine-tuning rounds with full supervision of the data collected under the target imaging
configuration, in order to eliminate the data discrepancy from the source domain to the
target domain. However, the collection and annotation of a large volume of skeleton
data for fine-tuning is extremely time consuming. Meanwhile, the data collection in real
environments could be highly restricted due to privacy considerations.

This work focuses on an important perspective related to the practical deployment of
a human action recognition model. It is related to the efficient adaptation of a GCN model
from a public dataset domain to a target environment where only a limited number of data
will be available for model refining. The semi-supervised adaptation strategy effectively
circumvents the overfitting issue in learning with a small number of samples. In turn, it
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guarantees a target-environment aware action recognition model that is compatible with
state-of-the-art performance. In the first stage, an unsupervised learning framework is
proposed to discover high-level human action semantic patterns from plenty of unlabeled
skeletal data samples of the source data domain. It is inspired by the recent advances in
contrastive learning [6] which provides pivotal competency for learning domain invariant
representations from unlabeled data. The unsupervised learning phase does not aim to
realize a capable action recognition model but to develop an action-pattern aware pretrained
model for the next stage. In the second stage, the adaptation strategy refines the pretrained
model on a small number of labeled skeletal samples to learn a target domain-specific
prediction model.

The contribution of the proposed work consists of two aspects. First, it investigates
the underlying principles of the skeletal data distribution shift issue during the practical
action recognition model deployment. Second, it investigates domain adaptation strategies
to improve the action recognition models’ generalizability and robustness by introducing
a semi-supervised adaptation strategy which leads to significant reduction of the data
requirement in the target domain while achieving convincing performance. The code is
available at https://github.com/tht106/SSA (accessed on 14 November 2023).

2. Related Work

The research on human action recognition addresses a variety of downstream com-
puter vision-based tasks, such as human activity analysis, anomaly action detection, and
video surveillance in hazardous places. Recently, Graph Convolutional Networks (GCNs)
demonstrated the capability of interpreting topological features from multi-dimensional
skeleton sequences, thereby dominating the research on skeletal human action recogni-
tion [3,4,7]. Yet, the generalization of the action recognition models in real environments
is still challenging due to the data distribution shift caused by the variations in sensory
configuration, e.g., camera views, heights, orientations, locations, and variations in data
collection. Although the current skeletal datasets are devoted to covering the skeletal varia-
tions during data collection (e.g., NTU RGB+D [1] involves data variations by configuring
three camera angles, 16 differences in height and distance, as well as involving 40 actors
into action performance), the expected robustness of the resulting action recognition model
remains vulnerable and can be uprooted while facing domain shifts in skeletal data [8].

Contrastive learning formulates unsupervised representation learning by contrasting
positive pairs against negative pairs from a pre-defined dynamic dictionary [9,10]. In
skeletal action recognition, the contrastive learning scheme regards each skeletal sequence
as a unique class represented by a GCN encoder and exploits the skeletal invariances
and similarities from the dynamic dictionary formulated by skeleton sequences without
using data annotations [6]. Inspired by such advances in contrastive learning, this work is
devoted to a semi-supervised adaptation scheme for human action recognition.

3. Method

This section defines the skeletal data distribution shift issue involved in the practical
deployment of a human action recognition model. It then proposes a two-phase semi-
supervised training framework, depicted in Figure 1, that relies on a significant quantity of
public data (unlabeled) for pretraining and then refines a target-adaptive model by using
only a small number of data (labeled) of the target environment.

3.1. Data Domain Shift in Skeletal Data

A human action recognition model considers the training dataset {X} where
X ∈ RT×V×3 denotes a skeletal sequence composed of T frames in the shape of V hu-
man body joints, each one being defined in a calibrated camera reference frame with
three-dimensional coordinates. Y ∈ RL denotes the action label of X in a range of L cat-
egories. The goal of skeletal action recognition is to train a GCN model, composed of a
graph convolution encoder E and a classification layer C, given the input (Xtrain, Ytrain),
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where Xtrain is uniformly sampled from the dataset {X}. Normally, considering the test
data sampled from {X}, i.e., the training and the test data are i.i.d. (independent identical
distributions), the model achieves a convincing evaluation performance on the test dataset.
However, in practical engineering applications, the target deployment environment always
presents misaligned data distributions given the fact that the imaging configuration can
differ according to the environment, which leads to variations on data distribution such
that Xtrain and XT are not i.i.d., where XT defines the skeletal data sampled in the target
environment {X T , YT}. The data domain shift corrupts the model performance while the
model was well-trained on {Xtrain} but evaluated on {X T}.
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Figure 1. Framework of the proposed semi-supervised adaptation strategy. In the first stage, the
training data (unlabeled) from the source domain is utilized to contrastive learning after data aug-
mentation. The learned backbone is recycled in stage 2 for refining over the data samples (labeled) in
the target domain. Network embedding is denoted with dotted lines if it is updated during training,
and with solid lines otherwise.

3.2. Semi-Supervised Learning

To effectively tackle the underlying issue of skeletal domain shift, a two-stage strategy
is proposed which (i) utilizes sufficient public dataset samples to pretrain a GCN encoder
E with contrastive learning, and then (ii) recycles the pretrained E in the second stage to
refine a target-specific classification layer, CT, exclusively on the target domain samples.
The learnt E and CT reassemble the target domain adaptive action recognition model. The
details are as follows.

• In the first stage, the Extremely Augmented Skeleton (EAS) scheme [6] is used to
augment the training data with {Xaug

train} to enrich the input space in both spatial and
temporal dimensions via eight augmentation operations: spatial shear, spatial flip, axis-
wise rotate and mask, temporal flip, temporal crop, Gaussian noise and Gaussian blur.

The input query-key pairs (Xtrain, Xaug
train) compose a dynamic skeletal dictionary

upon which the skeleton contrastive learning framework learns underlying topological
invariances and semantic similarities from the unlabeled source domain {X}. The training
progress is driven by MoCov2 [11] with the InfoNCE loss:

LIN = −log
exp

(
Zq·Zk

)
/τ.

exp
(
Zq·Zk

)
/τ + ∑Zn∈N exp

(
Zq·Zn

)
/τ

(1)

where Zq denotes the feature representations of the query input Xtrain as Zq = CS(E(Xtrain)),
where CS denotes the multilayer perception (MLP) projection head for contrastive learn-
ing. Likewise, Zk denotes the feature representation of the key input Xaug

train obtained by

CS

(
E
(

Xaug
train

)
, where CS and E are the mean models of CS and E, respectively. N rep-
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resents negative sample representations to the query input. τ acts as the temperature
parameter of the softmax operation in Equation (1).

• In the second stage, the pretrained model is refined on a small number of labeled
skeleton data {X T , YT} of the target environment. It takes the well-learnt skeletal
knowledge-aware GCN encoder E from the first stage and fine-tunes the reassem-
bled GCN model CT(E(·)) over the target domain. This stage is driven by a Cross-
Entropy loss:

LCE = −YT ·log[CT(E(XT))] (2)

Note that the encoder E is free of gradient backpropagation in the second stage (as
illustrated in Figure 1). As the encoder is pretrained, this fine-tuning process will quickly
converge to the target domain data distribution and learn a capable action prediction layer.

4. Experiments

Comprehensive experimentation is conducted to evaluate the effectiveness of the
proposed two-stage method in a cross-domain action recognition scenario.

4.1. Datasets and Implementations

This study employs two public datasets to simulate the skeletal distribution shift
scenario. In particular, NTU RGB+D [1] is considered as the training dataset and PKU-
MMD [2] as the target environment. The former is a popular large-scale skeleton form
human action recognition dataset. It presents 56,880 samples covering 60 human daily
actions recorded in indoor scenes with three cameras mounted in different locations to
support variations in camera views. It is common to utilize such a large-scale dataset in the
research community [3–5] for human action recognition. PKU-MMD is another popular
public skeletal dataset presenting fewer data samples (20,000 instances over 52 actions),
but it involves significant camera view variations in the samples. In this paper, it is
employed to mimic practical environments where data collection configurations could be
inconsistent. The samples related to 50 actions common to the two datasets are utilized
for experimentation. In the first stage, the selected part from the NTU RGB+D dataset is
used for unsupervised contrastive learning, while one tenth of the samples (namely 1884)
of the PKU-MMD dataset is used for model refining in the second stage. Given the GCN
architecture considered, ST-GCN [3] is adopted for the network backbone. The output
dimension of CS and CT is set as 128 and 50, respectively. The parameter τ in Equation (1)
is set as 0.07. For model training, it follows the same optimization details as utilized in [6].

4.2. Results

Experimental results are summarized in Table 1 that reports the Top-1 accuracy [1]
of the resulting models while tested on the full test set of PKU-MMD. As a comparative,
a source-only model is trained with exclusive full supervision using the NTU RGB+D
training dataset with annotations. The results in the first row of Table 1 illustrate that
the resulting model yields convincing results on the NTU RGB+D benchmark, while the
source-only model fails to effectively transfer to the target domain, demonstrating the
negative impacts of domain shift on model performance.

Table 1. Comparative performance of the proposed method against full supervised training.

Model On Benchmark (NTU RGB+D) On Target Domain (PKU-MMD)

Source only 69.07% 57.32%
Adaptation 34.41% 75.74%

Next, the model is adapted by utilizing the proposed semi-supervised learning scheme.
Results in the second row of Table 1 reflect the significant improvement achieved with
the proposed method on the target domain, achieving a gain of 18.42% (from 57.32% to
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75.74%). We conjecture that, as the data annotations of the source domain are not utilized
in contrastive learning, the learnt encoder E is action-semantic aware but not overfitting to
the source domain, which finally results in a capable human action model for PKU-MMD.
However, a severe performance deterioration is also observed on the benchmark NTU
RGB+D evaluation (from 69.07% to 34.41%). It demonstrates that the encoder E does
not form a competent action recognition stage on the source data domain but rather a
reliable intermediate action-semantic aware encoding which is efficiently generated by
unsupervised contrastive learning.

With the goal to identify the principle that drives performance increase with respect to
the different amounts of target domain samples involved for model refining, Table 2 reports
on the results of an experiment where the encoder E learnt in the first stage remains fixed
but the classification layer CT is refined upon different ratios (varying from 5% to 100%) of
samples selected from the target domain PKU-MMD. Experimental results demonstrate that
the model performance tends to increase monotonically along with the ratio of the refining
data samples. Interestingly, even using a very small number (e.g., 5%) of data samples from
the target domain, the model still achieves convincing performance compared to the best
model (85.06% in Table 2) when using 100% of the PKU-MMD dataset. In conclusion, this
study suggests good trade-off conditions between data usage and performance gains while
utilizing the proposed two-stage semi-supervised method.

Table 2. Performance gains related to different proportions of the target data samples for CT refine-
ment training.

Percentage of data use 5% 20% 30% 50% 70% 100%

Accuracy 71.60% 77.33% 81.03% 82.25% 83.28% 85.06%

4.3. T-SNE Action Clusters Visualization

For better understanding of the effectiveness of the proposed method, closer exam-
ination of the embedding features of the two domains is presented using t-SNE [12]. It
is expected that a capable classification model can interpret separable and dense action
clusters on the feature space. Specifically, Figure 2 visualizes the action clusters of the
two respective domains on the last convolutional layer before the classification head as
interpreted by the two ST-GCN models (“Source only” on the upper row and “Adaptation”
at the bottom). The “Source only” model presents well-separated action clusters when
tested on the source domain (left column), which reflects the model’s ability to interpret
feature representations from the source domain on which the classification head easily
determines action-wise classification boundaries. However, under the impacts of domain
shift, the source-only model presents less separable action clusters when tested on the target
domain (right column). Such a discrepancy on action cluster interpretation leads to the
performance difference across the two domains (69.07% vs. 57.32% in Table 1). Conversely,
after applying the proposed semi-supervised learning scheme as a refinement stage, the
model (bottom row) demonstrates effective adaptation to the target domain whose action
clusters are improved in terms of separability. Improvement is observable on both tests
considering the source domain (left column) and the target domain (right column).

4.4. Semi-Supervised Learning vs. Supervised Learning

This subsection presents two experiments to evaluate whether utilizing fully super-
vised learning can reach the same effectiveness as the proposed semi-supervised adaptation
method. First, a model trained with full supervision from NTU RGB+D is then fine-tuned
also with full supervision on 10% data samples from PKU-MMD. Second, a separate model
is trained with full supervision over the combined data samples from NTU RGB+D and
PKU-MMD (10%). Both trained models are tested on the test dataset of PKU-MMD. Experi-
mental results in Table 3 demonstrate that the fully supervised learning method presents
inferior performance compared to the proposed semi-supervised method. Especially as
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the fully supervised transfer learning (pretrain on NTU RGB+D and fine-tuned on PKU-
MMD) only achieves 45.97% on the target domain, representing a 29.77% gap in accuracy
compared to the proposed method.
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domain (PKU-MMD), respectively.

Table 3. Performance of fully supervised learning vs. semi-supervised learning.

Full Supervision Semi-Supervision

NTU RGB+D and 10%
PKU-MMD (Fine-Tuning)

NTU RGB+D and 10%
PKU-MMD (Combined)

NTU RGB+D and 10%
PKU-MMD (Fine-Tuning)

Accuracy 45.97% 62.61% 75.74%

5. Conclusions

This work proposes a simple but efficient method to deploy a skeleton-data-based
human action recognition model to a target environment while requiring only a small
amount of labeled data from the latter. The proposed semi-supervised learning strategy
utilizes contrastive learning to pretrain a model that learns key skeletal representations
from an unlabeled dataset, then fine-tunes the pretrained model on a small number of
labeled data samples in the target domain. Experiments are conducted to demonstrate the
effectiveness of the proposed strategy. It suggests that the semi-supervised learning method
achieves convincing results compared to fully supervised learning that requires voluminous
labeled data from both the source and target domains. The research also experimentally
characterizes a tradeoff between data usage and model performance, providing reference
to develop and deploy future applications.
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