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Abstract: Arsenic contamination in water demands effective, low-cost removal methods.
This study introduces nanomagnetite-coated biochar derived from pecan nutshells for
efficient arsenic adsorption. Utilizing a solvothermal method, uniform magnetite crystals
were grown on biochar in a controlled process at 200 ◦C. The resulting bioadsorbent,
characterized by XRD, SEM, and FTIR, exhibited a narrow size distribution and consistently
high arsenic removal rates (97.30–98.76%). Biochar with varied particle sizes, synthesized
at a short reaction time (6 h), showed the highest removal efficiency of arsenic (98.76%)
and adsorption capacity (7.974 mg/g). This approach offers a sustainable for arsenic
remediation, and ease of magnetic separation.

Keywords: arsenic contaminant; biochar; nanomagnetite; solvothermal

1. Introduction
While arsenic (As) and fluoride (F−) are naturally occurring elements found in the

environment and can be present in groundwater sources, their presence is a serious con-
cern [1,2]. The International Agency for Research on Cancer has classified arsenic as a
primary carcinogen due to its high toxicity. Exposure, even at low levels, can lead to
arsenic poisoning and a range of adverse health effects Therefore, arsenic contamination of
groundwater poses a significant health risk, so it is essential to find alternative and effective
methods to eliminate it. There are various methods to remove arsenic from groundwater,
like precipitation, ion exchange, solvent extraction, filtration, and adsorption [3]. However,
these methods can be expensive, generate a high quantity of waste, or can be difficult to
separate from the water. Nevertheless, the adsorption process can be a proven alternative
to clean arsenic from groundwater, since it is efficient and relatively inexpensive and can be
easily enhanced by reducing the particle size of the absorbent or modifying the surface [4].

Also, it is important to recognize that the literature shows great effort to produce
magnetite nanoparticles because they present some interesting properties, such as high
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magnetization, low toxicity, and mainly because of the property of adsorption of heavy
metals from water and wastewater [5–9]. However, the nanoparticles of magnetite are
prone to aggregate, which can reduce the adsorption capacity [10]. Therefore, it is important
to improve the particles by modifying the surface or, as in this research, creating a surface
suitable for the direct growth of nanoparticles, achieving a homogeneous particle size and
good dispersion, and improving the adsorption capacity of the nanomagnetite [11].

This research explores the alternative of nanomagnetite-coated biochar derived from
pecan nut shells as an efficient arsenic adsorbent. By using solvothermal synthesis, mag-
netite nanoparticles are directly crystallized onto the surface of biochar particles. This
method ensures a homogeneous coating with uniform size and requires short reaction times
at low temperatures, eliminating the need for additional treatments [12]. The resulting
particles exhibit enhanced arsenic and fluoride adsorption capacity.

2. Materials and Methods
Nanomagnetite-coated biochar was synthesized in a 45 mL autoclave. Pecan nutshells

were ground, sieved (0.10–0.18 mm), and pyrolyzed (700 ◦C, 1 h, N2) to produce biochar
(0.18–0.38 mm). A solvothermal reaction, using ethylene glycol, trisodium citrate, urea, and
iron(III) chloride, was performed. Iron chloride was dissolved in ethylene glycol, followed
by the addition of trisodium citrate and urea. Biochar was then added at a 1:1 Fe3+ ratio.
This reaction was conducted at 200 ◦C for 6–12 h, varying by sample group. The resulting
particles were washed, magnetically separated, and dried 60 ◦C for 12 h.

The experimental design included three samples: S11 (control, magnetite only, 10 h
reaction), S15 (biochar, 0.105–0.18 mm, 6 h reaction), and S16 (biochar, 0.18–0.38 mm, 6 h
reaction). All samples were subjected to the solvothermal reaction. Three samples were
tested for arsenic and fluoride adsorption. Arsenic adsorption was assessed at 3 mg/L
initial concentration, pH 3, and a 2 g/L dose for 24 h. Fluoride adsorption was evaluated
at 10 mg/L, pH 2, 2 g/L dose for 4 h. Arsenic was measured by an ICP-OES Analyzer
(iCAP7400 Duo, Thermo Scientific, Waltham, MA, USA), and fluoride with an ion-selective
electrode (9609BNW, Thermo Scientific, USA).

The synthesized nanomagnetite-coated biochar was characterized for structure, mor-
phology, and surface functionality using XRD (PW3040, Xpert-Philips, Almelo, Nether-
lands), scanning electron microscopy (SEM) with EDS microanalysis system (XL 30 ESEM,
Philips, Eindhoven, The Netherlands), Fourier Transform Infrared Spectroscopy (FTIR,
Frontier IR/NIR, PerkinElmer, Waltham, MA, USA).

3. Results
3.1. Characterization of Nanomagnetite-Coated Biochar

The XRD patterns of samples S11, S15, and S16, displayed in Figure 1, exhibit char-
acteristic peaks that align with the standard diffraction peaks for magnetite (Fe3O4) as
indicated by the JCPDS reference 19-0629. The pattern for sample S11 shows well-defined
and relatively high-intensity peaks at the positions corresponding to the standard magnetite
peaks. These peaks include prominent reflections at the positions marked as (311), (440)
and other less intense reflections such as (220), (111), (222), (400), (511), (422), (333), (620),
(533), (622), and (444), indicating a relatively high degree of crystallinity and a well-formed
magnetite structure.
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Figure 1. XRD patterns of nanomagnetite-coated biochar powders prepared for 6 h at 200 ◦C
employing: magnetite nanoparticle (S11), 0.18 mm (S15), and 0.38 mm (S16) biochar particles.

The FTIR spectra for samples S11, S15, and S16 are presented in Figure 2a. All three
samples show a broad adsorption band around 3193 cm−1, which is indicative of O-H
stretching vibrations, likely due to the presence of water or hydroxyl groups adsorption on
the surface. Additionally, they display a band at around 1051 cm−1, which is attributed to
C-O stretching vibrations. There is also a common peak around 1584 cm−1, corresponding
to C=C vibrations. Finally, all three samples show distinct peaks in the 400–600 cm−1 range,
which are assigned to the Fe-O stretching vibrations characteristic of magnetite [13].

(a)

Figure 2. Cont.
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(b) 

Figure 2. FTIR spectra of (a) nanomagnetite-coated biochar (S11, S15, and S16) and (b) S15 before and
after arsenic adsorption.

The FTIR analysis revealed that magnetite within the composite material participates
in arsenic binding, as evidenced by alterations in Fe-O stretching bands below 600 cm−1

following adsorption; furthermore, the emergence of a peak around 830 cm−1 suggests the
formation of Fe-O-As or C-O-As bonds, demonstrating a direct interaction between arsenic
species and the adsorbent surface [13].

The scanning electron microscopy (SEM) image (Figure 3) of sample S15, a nanomagnetite-
coated biochar synthesized at 200 ◦C for 6 h, reveals a morphology characterized by homoge-
neous, spherical particles. These particles exhibit a predominantly spherical shape, indicating
a relatively uniform growth process during solvothermal synthesis. The inset image provides a
zoomed-in view of these particles, highlighting their smooth and rounded surfaces [5]. Particle
size, as observed, is in the nanometer range, with most particles falling within the 95–115 nm
range. The SEM image also shows some degree of agglomeration, with individual spherical
particles tending to cluster together.

 
Figure 3. FE-SEM micrograph of nanomagnetite-coated biochar powders prepared for 6 h at 200 ◦C
employing 0.18 mm biochar particles (S15).
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3.2. Adsorption Process

Figure 4 displays the arsenic and fluoride removal percentages and adsorption capaci-
ties (qe) for samples S11, S15, and S16. All three samples exhibit exceptionally high arsenic
removal percentages, reaching nearly 100%. Among these, S15 demonstrates the highest
adsorption capacity (around 6.4 mg/g), followed by S16, and then S11 with the lowest
(around 4 mg/g). For fluoride removal, S11 exhibits the lowest performance, while S15
shows the highest, followed by S16.

Figure 4. Arsenic and fluoride removal of nanomagnetite-coated biochar powders prepared for 6 h at
200 ◦C employing: no biochar (S11), 0.18 mm (S15), and 0.38 mm (S16) biochar particles.

4. Discussion
All three samples exhibit XRD patterns consistent with the presence of magnetite.

However, the intensities and peak sharpness vary; S11 displays the sharpest and highest
intensity peaks, suggesting well-formed and larger magnetite crystals. S15 and S16 show
broadened and lower intensity peaks, indicating smaller crystallite sizes and/or lower
crystallinity which could be a result of smaller sized magnetite crystals grown on the
biochar surface, with S16 being the most broadened. However, the XRD results confirm the
formation of magnetite on the S15 and S16 nanomagnetite-coated biochar synthesized at 6 h
and 200 ◦C, indicating a shorter synthesis time than normal for nanomagnetite 10 h [5].

The FTIR analysis (Figure 2) reveals that all three samples contain magnetite, as shown
by the presence of the Fe-O bands [13]. The broad O-H band at 3193 cm−1 indicates the
presence of hydroxyl groups or water adsorption on the surface of all the samples. While
the intensity of Fe-O bands is slightly lower in S15 and S16 compared to S11; there is
an increase in the band at 1377 and in the band 1051, this is also observed in 1584 and
3193. This confirms that the surface composition of S15 and S16 has more carbon-based
groups than S11. The FTIR analysis before and after arsenic adsorption on sample S15
strongly suggests that the removal of arsenic involves a combination of mechanisms,
primarily surface complexation with hydroxyl and carbonyl/carboxyl groups present on
the nanomagnetite-coated biochar, as well as direct binding to the magnetite surface [14,15].
The biochar component enhances the availability of oxygen-containing functional groups,
while the magnetite nanoparticles provide specific binding sites for arsenic species, leading
to the high adsorption capacity observed for sample S15.

The SEM image of S15 nanomagnetite-coated biochar shows the successful formation
of homogeneous spherical magnetite nanoparticles with a size between 95 and 115 nm. Al-
though the particles show a tendency to agglomerate, they exhibit a consistent morphology
that suggests a controlled solvothermal synthesis process.
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The enhanced adsorption capacity of S15 over S11 suggests that biochar, by influencing
the material’s morphology and surface area, significantly contributes to arsenic adsorption,
consistent with findings by Shen et al. (2021) [9]. The lower fluoride removal percentages,
compared to arsenic, indicate that the material’s effectiveness for fluoride removal is limited
under the tested conditions. Nevertheless, S15 demonstrated higher efficiency than pure
magnetite (S11) and S16, further highlighting the beneficial influence of biochar. Similar
observations of higher arsenic removal and lower fluoride removal using biochar were
reported by Saikai R. (2017) [16].

The use of biochar in S15 provides a porous support structure with smaller crystallite
sizes, as suggested by XRD, this increases surface area and provides more adsorption sites
for arsenic compared to the pure magnetite of S11. The presence of biochar enhances the
surface groups as suggested by the FTIR results, leading to more surface hydroxyl and
carbon-based groups which promote the binding of arsenic ions through various chemical
interactions [15]. The small size and spherical shape of the magnetite nanoparticles in S15,
as confirmed by SEM, contribute to a high surface-to-volume ratio and provide a large
number of active sites for adsorption.

5. Conclusions
This study demonstrates the successful solvothermal synthesis of nanomagnetite-

coated biochar from pecan nutshells as an efficient and sustainable arsenic adsorbent. The
method produced homogeneously distributed, nanometer-sized magnetite particles on
biochar. Sample S15 exhibited exceptional arsenic removal (98.76%) and fluoride (31.97%)
significantly higher adsorption capacity than pure magnetite (S11) and larger-sized coated
biochar (S16). This is attributed to the synergistic effects of biochar’s porous support,
enhanced surface functional groups, and optimized nanostructure. While effective for
arsenic, the material was less so for fluoride removal. These results highlight the potential
of this cost-effective, scalable, and sustainable adsorbent for arsenic remediation in water
treatment. Further research could investigate the impact of various solvothermal reaction
parameters on the morphology, crystal size, and adsorption capacity of nanomagnetite-
coated biochar.
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