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Abstract: Accurate glioma categorization using magnetic resonance (MR) imaging is critical
for optimal treatment planning. However, the uneven and diffuse nature of glioma borders
makes manual classification difficult and time-consuming. To address these limitations, we
provide a unique strategy that combines image decomposition and local texture feature
extraction to improve classification precision. The procedure starts with a Gaussian filter
(GF) to smooth and reduce noise in MR images, followed by non-subsampled Laplacian
Pyramid (NSLP) decomposition to capture multi-scale image information, making glioma
borders more visible, TV-L1 normalization to handle intensity discrepancies, and local
binary patterns (LBPs) to extract significant texture features from the processed images,
which are then fed into a range of supervised machine learning classifiers, such as support
vector machines (SVMs), K-nearest neighbors (KNNs), decision trees (DTs), AdaBoost, and
LogitBoost, which have been trained to distinguish between low-grade (LG) and high-grade
(HG) gliomas. According to experimental findings, our proposed approach consistently
performs better than the state-of-the-art glioma classification techniques, with a higher
degree of accuracy in differentiating LG and HG gliomas. This method has the potential to
significantly increase diagnostic precision, enabling doctors to make better-informed and
efficient treatment choices.

Keywords: gliomas; magnetic resonance imaging; image decomposition; texture features;
supervised machine learning approaches

1. Introduction

The most common primary brain tumors in adults are gliomas, which originate from
glial cells and mainly impact the central nervous system (CNS) [1]. They typically occur
between the ages of 45 and 65 and are more prevalent in men (7.14 per 100,000) than in
women (5.06 per 100,000) [2]. Glioma formation is significantly influenced by genetic
variations, such as changes in Isocitrate Dehydrogenase 1 and 2 (IDH1 and IDH?2), as
well as environmental variables, such as smoking, drinking, and electromagnetic radiation
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exposure [3]. Depending on where the tumor is located, symptoms could include headaches,
seizures, memory loss, personality changes, and trouble speaking.

Gliomas are classified according to their location (supratentorial, infratentorial, or
pontine), morphology (astrocytoma, oligodendroglioma, or ependymoma) [4], and World
Health Organization (WHO) grades (I-1V) [5]. While grades IIl and IV are categorized as
high-grade (HG), grades I and II are categorized as low-grade (LG). Among other imaging
techniques, magnetic resonance imaging (MRI) has better contrast and sensitivity; therefore,
it is widely used in glioma investigation. However, due to their uneven borders and
fluctuating pixel intensities, gliomas are difficult to detect in MRI scans. Hence, to improve
diagnostic precision, this study suggests a novel method for precisely predicting whether a
glioma is LG or HG.

The structure of this study is outlined as follows: Section 2 explores existing methods
for brain tumor detection. Section 3 introduces the proposed approach for predicting
gliomas. Section 4 compares the experimental results of the proposed and existing tech-
niques, along with an analysis of the critical factors driving the success of the proposed
method. Finally, Section 5 concludes by summarizing the findings and effectiveness of the
suggested approach.

2. Related Works

This section explores several recently developed MRI-based approaches for the de-
tection of gliomas, highlighting their methodologies and summarizing the limitations of
existing techniques.

Sharif et al. [6] proposed an unsupervised learning technique integrated with extreme
learning (ELM) methods for identifying glioma brain tumors. Via this approach, the authors
achieved a sensitivity of 95%, a specificity of 93%, and an overall accuracy of 96.5%. To
improve brain tumor classification performance, Amin et al. [7] implemented a method-
ology integrating discrete wavelet transform (DWT) with convolutional neural networks
(CNNSs), obtaining 98% sensitivity, 92% specificity, and 96% accuracy. Chandra et al. [8]
developed a computer-aided detection (CAD) system for automatic tumor segmentation
and classification using fractional mesh-free partial differential equations (FMFPDEs) and
support vector machines (SVMs). Through this system, they attained an accuracy of 97.5%,
a sensitivity of 97.5%, and a specificity of 96.08%.

Reddy and Ravindra Dhuli [9] developed a system that used an adaptive mechanism,
entropy-based local directional patterns (ELDPs), and linear SVM, yielding an accuracy of
94.44%, sensitivity of 89.17%, and specificity of 97.08%. Aamir Hafeez et al. [10] introduced
a customized CNN framework for assessing gliomas using MRI images. Based on these
sequences of operations, the authors attained 97.85% accuracy, 99.88% sensitivity, and
98.88% specificity. Jainy Sachdeva et al. [11] presented a hybrid model combining residual
and efficient nets to classify gliomas into LG and HG. Through this framework, they yielded
97.59% accuracy and 98% sensitivity. Rachmawanto et al. [12] employed a simple CNN
architecture for glioma tumor prognosis using MRI images, achieving 94.14% accuracy,
95.84% sensitivity, and 90.08% specificity.

2.1. Research Gaps
From the above-mentioned literature review observed the following issues:

1.  Many methods (ELM by Sharif et al. [6], CNN by Hafeez et al. [10]) do not explic-
itly address noise and contrast variations in MRI images. This can affect tumor
boundary visibility;
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Some models, such as DWT-CNN by Amin et al. [7] and FMFPDE-SVM by
Chandra et al. [8], focus on feature extraction but may not fully capture multi-scale
texture and boundary information;

Traditional CNN models (e.g., by Rachmawanto et al. [12]) rely on feature maps but
may struggle with accurate segmentation of glioma regions;

Methods such as ELDP-SVM by Reddy and Dhuli [9] use entropy-based patterns but
may miss finer details in tumor texture;

CNN-based approaches (e.g., those by Hafeez et al. [10] and Sachdeva et al. [11])
require large datasets for training and may overfit small datasets.

After analyzing the aforementioned methods, we have developed a novel approach

that integrates Gaussian filtering (GF), the non-subsampled Laplacian pyramid (NSLP),
principle component analysis (PCA), total variation-L1 (TV-L1) normalization, local binary
pattern (LBP), and supervised learning techniques.

2.2. Key Contributions

The major contributions of our proposed methodology are summarized as follows:

With the help of GF, we significantly smoothen brain MRI images by eliminating
unnecessary details that could affect classification. Further, to improve the visibility of
glioma boundaries, we employed NSLP, since it preserves important high-frequency
details. This allows us to differentiate LG and HG tumors relatively well;

TV-L1 separates essential tumor structures (cartoon component) from noise and minor
texture variations, aiding in robust feature extraction. Further, we passed LBP through
the texture component of TV-L1 decomposition to capture local patterns and edge
information that improve the feature representation for machine learning classifiers.
Due to this strategic combination, the proposed model attained better performance
compared with the existing models

3. Materials and Methods

This section describes the step-by-step implementation of the proposed methodology.

Figure 1 illustrates the overall block diagram of the model, which comprises four main
stages: pre-processing, image fusion, texture feature extraction, and classification.

Brain MRI Images Pre-processing by Image fusion by
(T2-w, and Flair) | _ _ > Gaussian Filtering - NSLP with PCA

and Averaging

1
1
|

v

LG Gliomas
il I Classification by Feature Extraction
boed Supervised Learn- - -~ by TV-LI followed
I
! ing Models by LBP
- )
HG Gliomas [¢--

Figure 1. Workflow the proposed brain tumor detection mechanism.

3.1. Materials

In this work, we utilized the BraTS 2015 dataset [13] to analyze the performance of the

suggested model. This database includes 110 testing cases with both LG and HG gliomas
and 274 training instances with 220 HG and 54 LG gliomas. Each testing case includes
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four MRI sequences: T1, T1C, T2, and FLAIR. To evaluate the efficiency of the presented
approach, we mainly focus on the T2 and FLAIR sequences.

3.2. Pre-Processing

Noise remains a significant challenge in the acquisition of brain MRI tumor images.
This issue can be effectively addressed using simple image enhancement techniques, which
minimize noise while improving the contrast and brightness of images. Over the past
few decades, numerous image denoising methods have been developed to enhance image
quality [14]. Among these, Gaussian filtering (GF) [15] is one of the most widely used
techniques for reducing noise and improving the quality of brain MRI tumor images.
Gaussian filtering effectively smoothens an image, preparing it for subsequent processing.
Following this, image fusion is applied to further enhance diagnostic performance.

3.3. Brain MIRI Image Fusion

The primary objective of image fusion is to improve the model’s ability to detect glioma
brain tumors by accentuating abnormalities. This is achieved by merging T2-weighted
and FLAIR MRI imaging sequences from the same patient. The fusion process utilizes
non-subsampled Laplacian pyramid (NSLP) decomposition combined with principal com-
ponent analysis (PCA) and averaging fusion. Figure 2 illustrates the proposed methodology
for fusing brain MRI images. The step-by-step process of the proposed fusion as follows:

1. Image Decomposition: To achieve image decomposition, in this work, we introduced
the NSLP-based decomposition approach [16]. NSLP is a multi-resolution analysis
strategy that subdivides images into a set of subbands (low-frequency and high-
frequency) at different scales and orientations. In this work, we introduced a two-stage
NSLP decomposition to decompose the enhanced brain MRI gliomas, resulting in
three subbands: one low-frequency (LF) and two high-frequency (HF) subbands. Here,
LF subbands illustrate coarse structures, whereas HF subbands illustrate fine details
and edges. Further, to improve detection accuracy, these subbands are concatenated
using image fusion techniques. To fuse the HF subbands, we utilized principal
component analysis (PCA), while for LF subbands, the averaging rule is considered
as the fusion rule. Via this process, we can preserve the relevant image details and
enhance the overall accuracy of the model;

2.  High-Frequency Fusion: The HF subbands of both brain MRI glioma images are
concatenated using a PCA-based fusion rule, as introduced by Vijayarajan et al. [17].
Here, PCA recognizes the most meaningful principal components within the image.
Therefore, by employing PCA on the HF subbands, we can select and combine the
components that capture the most significant details from both modalities, resulting
in the HF fused subband;

3. Low-Frequency Fusion: Here, the LF subbands from both brain tumor images
(T1-weighted and FLAIR) are merged using a simple approach, namely averaging [17].
The pixel values of corresponding LF subbands of both images are averaged to attain
the fused LF subband;

4. Image Reconstruction: Finally, the fused low-frequency and high-frequency subbands
are recombined using the inverse NSLP. This process reconstructs the final fused
MRI image, which is expected to contain the complementary information from both
T1-weighted and FLAIR images. The implications of the fused process are shown in
Figure 3.
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Figure 2. Block diagram of the proposed fusion mechanism.

(c) (d) (e)

Figure 3. Texture decomposition using TV-L1 approach: (a) T2-weighted brain MRI tumor im-
age; (b) Flair modality brain MRI tumor image; (c¢) Fused brain MRI tumor image; (d) Geometric
component of fused brain MRI tumor image; (e) Texture component of fused brain MRI tumor image.

3.4. Feature Extraction

Features play a crucial role in solving classification problems, with texture features
being particularly significant as they provide valuable information about the intensity
and spatial structure of an image. Building on this concept, this study introduces a novel
approach that combines total-variation L1 (TV-L1)-based cartoon-texture decomposition
with local binary pattern (LBP) analysis to extract meaningful features from fused brain
MRI images. This method ensures the extraction of relevant and discriminative features,
enhancing the classification performance. The step-by-step process of the proposed feature
extraction model as follows:

1.  TV-L1 Decomposition: The primary objective of our method is to decompose the
fused image, F(x,y) into two distinct components: a piecewise smooth (geometric)
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component and a texture component. The geometric component represents the
smooth regions and boundaries of the image, while the texture component captures
oscillating features, including edges and noise. In medical imaging, the texture
component often contains critical structural details that are essential for tasks such
as tumor classification. These structural details can be effectively extracted using the
TV-L1-based cartoon-texture decomposition technique. The TV-L1 method separates
the fused brain MRI tumor image into two components: the cartoon (geometric)
component and the texture component, as outlined in [18]:

F(x,y)=S+T 1)

where 5 gives the cartoon part and which characterizes the geometric component of
the fused image. Similarly, T represents the texture part of the fused image. The car-
toon component of the fused image is attained by minimizing the following objective
function [18]:

minS/Q|VS|+A||F—S||1dQ )

where V represents the gradient operator and A defines the regularization criteria
which is a trade-off between the fidelity criteria and regularization term. In this work,
we chose A as 0.1. Similarly, QO C Z? denotes the image domain and the symbol
.|| represents L! normalization. The first part of Equation (2) represents the TV of
cartoon component and the second part specifies the fidelity to make the cartoon part
S keep close to the fused image, and they are calculated over the image domain Q.
The solution to Equation (2) is resolved by the following optimization [19]:
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where V™~ and V' represent the forward and backward differences. |V S, , | provides
the magnitude of gradient. The parameter ! provides the iteration index. In this, we
chose [ as 50. Dy is defined as changes in time, and D, and D, indicate discrete spatial
distances of the image grid. ¢ and € (0.00001) are constants. The resultant outcome of
TV-L1 decomposition is shown in Figure 3.

Local binary patterns (LBPs): To further enhance classification performance, local
features were extracted from the texture component of the fused image (T) using the
LBP technique [20]. LBP is a simple yet powerful texture descriptor that labels the
pixels of an image by thresholding the neighborhood of each pixel and converting
the result into a binary number. It captures local texture patterns by comparing
the intensity of each pixel with its surrounding neighbors, creating a binary code
that represents the texture. The key advantage of LBP lies in its ability to capture
distinct local texture patterns while establishing spatial relationships between them.
Additionally, its robustness to variations in illumination and high computational
efficiency make it an excellent choice for tasks such as brain tumor classification.
In this work, we consider radius (R) as one, the number of neighboring pixels for
thresholding as eight, and a variant of uniform LBP.

Statistical analysis: By the above-mentioned feature engineering process, we obtained
20 radiomic features and they were analyzed through independent t-tests and ANOVA
to identify significant differences between LG and HG. The statistical analysis revealed
that several features exhibited significant differences between LG and HG:

o  Feature 2 (t-test p = 0.000052, ANOVA p = 0.0044);
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Feature 5 (t-test p = 0.000742, ANOVA p = 0.00026);
Feature 7 (t-test p = 0.001887, ANOVA p = 0.00387);
Feature 8 (t-test p = 0.000005, ANOVA p = 3.73 x 10*9),'
Feature 9 (-test p = 0.000006, ANOVA p = 3.04 x 1077).

For a better understanding, we generated a box plot to visualize the distribution of
each feature between LG and HG, confirming clear distinctions in their values. Figure 4
represents the box plots of LG and HG features.

Boxplots of Features by Tumor Grade (Low-Grade vs High-Grade)
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Figure 4. Box plots representation of features.
3.5. Classification

Features extracted from the TV-L1 followed by the LBP technique were fed to various
supervised ML techniques, including SVM [21], K-nearest neighbors (KNNs) [22], decision
trees (DTs) [23], AdaBoost [24], and LogitBoost [25]. Table 1 represents the hyper parameters
of the above-mentioned classifiers used in the implementation of the proposed model.
Further, the performance of these approaches is assessed through various metrics such as
sensitivity, specificity, precision, area under the curve (AUC), Fl-score, and accuracy.

Table 1. Hyperparameters of classifiers used in the suggested model.

Classifier Key Hyperparameters
SVM Kernel Function: ‘rbf’, and Kernel Scale: ‘auto’
KNN Num Neighbors: 5, and Distance: ‘euclidean’
DT Max Num Splits: 10, Split Criterion: ‘gdi’, and Prune: ‘on’
AdaBoost

Num Learning Cycles: 100, and Learn Rate: 0.1
LogitBoost Num Learning Cycles: 100, Learn Rate: 0.1, and Max Num Splits: 10

4. Results and Discussion

In this section, we discuss the simulation results of the presented approach and
its comparison with the state-of-the-art methods. In addition, we summarize why our
proposed method produces better outcomes compared with others.

To distinguish LG and HG gliomas, at first, we enhanced the contrast of input brain
MRI images using a GF operation. Later, we employed the NSLP decomposition-based
followed by PCA and averaging fusion frameworks to enhance the detection capabilities of
the proposed model. Then, we extracted significant features from the fused images using
the TV-L1 cartoon—texture decomposition approach. Further, we employed the LBP to
retain significant structural features. Finally, the extracted features were fed into supervised
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learning algorithms as mentioned in Section 3.5, which effectively classify glioma brain
tumors into LG and HG categories. All these experiments were conducted by dividing the
dataset into 80% for training and 20% for testing.

Table 2 provides a comparative analysis of the performance metrics for several classi-
fiers, as we described in Section 3.5. Among these, LogitBoost stands out with exceptional
results across nearly all metrics. It achieved a sensitivity of 94.28%, a specificity of 99.29%,
a precision of 97.05%, an F1-Score of 95.64%, an AUC of 96.8%, and the highest accuracy of
98.29%. AdaBoost also performed impressively, with a sensitivity of 85.71%, a specificity of
99.28%, and an accuracy of 96.57%.

Table 2. Classification performance of the various ML models.

Performance Metrics (%)

Classifier
Sensitivity Specificity Precision F1-Score = AUC  Accuracy
SVM 45.71 99.28 94.12 61.53 72.5 88.57
KNN 68.57 94.28 75 71.64 81.43 89.14
DT 31.42 91.43 47.82 37.92 61.43 79.43
AdaBoost 85.71 99.28 96.77 90.9 92.5 96.57
LogitBoost 94.28 99.29 97.05 95.64 96.8 98.29

In contrast, the decision tree (DT) classifier exhibited the weakest performance, with
the lowest sensitivity of 31.42% and precision of 47.82%, resulting in a reduced overall accu-
racy of 79.43%. The KNN and SVM classifiers demonstrated moderate performance. KNN
achieved a sensitivity of 68.57% and an accuracy of 89.14%, while SVM had a sensitivity of
45.71% and an accuracy of 88.57%. Overall, Table 2 clearly indicates that LogitBoost is the
most effective classifier among the five, excelling in most of the evaluated metrics.

Figure 5 illustrates the receiver operating characteristic (ROC) curves for various
machine learning models, evaluating their classification performance. The x-axis represents
the false positive rate (FPR), which measures the proportion of LG tumors incorrectly
classified as HG. The y-axis represents the true positive rate (TPR), which indicates the
proportion of HG tumors correctly identified by the model. An optimal classifier would
have an ROC curve that closely follows the top-left corner, reflecting a high TPR and a low
FPR. From the figure, LogitBoost demonstrates the best performance compared with the
other models. This indicates that the LogitBoost algorithm is highly effective at correctly
identifying malignant brain tumors while minimizing the likelihood of misclassifying
benign tumors.

1

0.9

True positive rate
o
(4

DT
0.2 SVM

KNN
LogitBoost
AdaBoost

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
False positive rate

Figure 5. Receiver operating characteristics (ROCs) of the proposed brain tumor detection model.
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Comparison with the Existing Approaches

Table 3 presents a comparison of various methods based on their performance metrics.
From this, we observed that the ELM achieved a sensitivity of 95%, specificity of 93%, and
an accuracy of 96.5%. The DWT-CNN method had a slightly higher sensitivity of 98% but
a lower specificity of 92%, resulting in an overall accuracy of 96%. The FMFPDE-SVM
method performed well, with a sensitivity of 97.5%, specificity of 96.08%, and an accuracy
of 97.5%. The ELDP-SVM model demonstrated relatively lower sensitivity (89.19%) and
specificity (90.78%), leading to an accuracy of 94.44%. A standard CNN achieved outstand-
ing sensitivity (99.88%) and specificity (98.88%), with an accuracy of 97.82%. The hybrid
model attained a sensitivity of 98% and an accuracy of 97.85%, though its specificity is
not reported. The customized CNN model showed a sensitivity of 95.84%, specificity of
90.08%, and an accuracy of 94.14%. The proposed method stands out, with a sensitivity of
94.28%, the highest specificity at 99.29%, and an accuracy of 98.25%, indicating its superior
performance in balancing both true-positive and true-negative rates while maintaining
high overall accuracy.

Table 3. Comparative analysis of the proposed and existing brain tumor classification approaches.

Evaluation Performance Measures
Method o
Criteria Sensitivity Specificity Accuracy

ELM [6] 80% training and 20% testing 95 93 96.5

DWT-CNN [7] 80% training and 20% testing 98 92 96
FMFPDE-SVM |[8] 5- fold cross validation 97.5 96.08 97.5
ELDP-SVM [9] 10-fold cross validation 89.19 97.08 94.44
CNN [10] - 99.88 98.88 97.85
Hybrid Model [11] 80% training and 20% testing 98 - 97.59
Customized CNN [12] 80% training and 20% testing 95.84 90.08 94.14
The Proposed 94.28 99.29 98.25

Note: ‘- indicates that the metric is not defined in the source work.

The experimental analysis highlights several key factors contributing to the success of
the proposed methodology.

1. By integrating the modalities of brain MRI tumor images based on the NSLP fol-
lowed by the fusion strategies, the presented model significantly detects abnormal
regions within the brain tumors. Unlike relying on individual imaging sequences,
the fusion process enhances tissue information, enabling a more accurate detection
of tumor regions. This fusion-based enhancement is a significant advantage of the
proposed technique;

2. Furthermore, the proposed brain tumor classification methodology outperforms exist-
ing techniques by accurately distinguishing LG and HG gliomas from MRI images.
This is achieved through an efficient extraction strategy that is TV-L1 decomposition
followed by LBP. Here, the TV-L1 identifies crucial details, like patterns and struc-
tural features of the images, whereas the LBP provides the edge and corner features.
Together, these approaches represent a major contribution of the proposed method,
enabling precise and reliable tumor classification.

5. Conclusions and Future Scope

In this work, we suggested a novel approach to differentiate LG and HG gliomas from
MRI scans. Here, at first, Gaussian filtering was applied to minimize unwanted artifacts.
Then, we utilized the NSLP with PCA and averaging image fusion technique to enhance
the overall performance of tumor identification by effectively combining the modalities of
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brain MRI images. Further, for an effective classification, we extracted texture details from
fused images based on the TV-L1 decomposition and LBP. Finally, these extracted features
were applied to various supervised ML classifiers, such as SVM, KNN, DT, AdaBoost, and
LogitBoost, to distinguish LG and HG gliomas. From the experimental results, it is evident
that the developed framework surpasses the existing techniques in accurately identifying
LG and HG gliomas. Hence, we conclude that our model offers a reliable and efficient
tool for MRI-based brain tumor classification. In the future, we will extend our work to
multiclass problems.
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