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Abstract: We present a simple and fast methodology to realize metal contacts on two-dimensional 
nanosheets. In particular, we perform a complete characterization of the transport properties of 
MoS2 monolayer flakes on SiO2/Si substrates by using nano-manipulated metallic tips as metallic 
electrodes directly approached on the flake surface. We report detailed experimental investigation 
of transport properties and contact resistance in back-gated field effect transistor in which the Si 
substrate is used as the gate electrode. Moreover, profiting of the n-type conduction, as well as the 
high aspect ratio at the edge of the MoS2 flakes, we also explored the possibility of exploiting the 
material as a field emitter. Indeed, by retracting one of the metallic probes (the anode) from the 
sample surface, it has been possible to switch on a field-emitted current by applying a relatively low 
external electric field of few-tens of Volts for a cathode-anode separation distance below 1 µm. 
Experimental data are then analyzed in the framework of Fowler-Nordheim theory and its extension 
to the two-dimensional limit. 
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1. Introduction 
Molybdenum disulfide (MoS2) is one of the most investigated transition-metal 

dichalcogenides (TMDs) for exploitation in next-generation two-dimensional (2D) 
devices, including field-effect transistors [1–4], solar cells [5], photodetectors [6,7], field 
emission devices [8–11], chemical or biological sensors [12,13], etc.  

MoS2 has a crystal structure characterized by a hexagonal layer of Mo atoms between 
two layers of S atoms. Layers are bonded together by van der Waals forces. MoS2 flakes 
can be fabricated either by mechanical exfoliation or chemical vapor deposition [14]. Bulk 
MoS2 has 1.2 eV indirect bandgap, while mono-layer (1 L) and bilayer (2 L) MoS2 have 1.8 
eV and 1.6 eV indirect bandgap, respectively [15]. Consequently, both 1 L and 2 L MoS2 
can be used to realize field-effect transistors with high On/Off ratio and photoresponse 
[16]. On the other hand, carrier mobility is typically limited to few-tens cm2 V−1 s−1. 
Moreover, ohmic contacts (with low resistance) are crucial to improving device 
performance [17].  

In this paper, we demonstrate a simple method of realizing electrical contacts on 
MoS2 flakes by using nanomanipulated metallic probes inside a scanning electron 
microscope (SEM). We show that this technique allows complete characterization of the 
back-gated field-effect transistor (FET), as well as checking the field emission properties 
of the MoS2 flake.  

Citation: Giubileo, F.; Urban, F.; Grillo, 

A.; Pelella, A..; Faella, E.; Di  

Bartolomeo, A. Direct Contacting of 2D 

Nanosheets by Metallic Nanoprobes. 

Mater. Proc. 2021, 4, 16. https:// 

doi.org/10.3390/IOCN2020-07931 

Academic Editors: Ana María  

Díez-Pascual and Guanying Chen 

Published: 11 November 2020 

Publisher’s Note: MDPI stays 

neutral with regard to jurisdictional 

claims in published maps and 

institutional affiliations. 

 

Copyright: © 2020 by the authors. 

Licensee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(http://creativecommons.org/licenses

/by/4.0/). 



Mater. Proc. 2021, 4, 16 2 of 6 
 

 

2. Materials and Methods 
The MoS2 flakes studied in this work have been grown on Si/SiO2 substrates by means 

of a chemical vapour deposition technique, in which S powder and a saturated 
ammonium heptamolybdate solution have been used as precursors. Few-layer MoS2 
flakes have been characterized by micro-Raman spectroscopy ( 𝜆  = 532 nm). The 
experimental setup for electrical characterization is realized inside a SEM chamber (see 
Figure 1a) provided with two piezo-driven nano-manipulators for precise positioning 
(step resolution ~5 nm) of metallic probes (tungsten tips). A semiconductor parameter 
analyzer (Keithley 4200-SCS) is then used as a source-measurement unit, to apply bias up 
to ±100 V and to measure current with resolution better than 0.1 pA. Electrical 
measurements are performed at room temperature and in high vacuum (10−6 mbar) after 
gently approaching the tungsten tips on the MoS2 flake (a real image taken inside the SEM 
chamber is shown in Figure 1b) and using the Si substrate as a back gate. 

 
Figure 1. (a) Schematic and real image of the nanomanipulators contacting the MoS2 flake inside 
the SEM chamber. (b) SEM image of a contacted MoS2 flake. (c) Raman spectrum of MoS2 flake. 

Micro-Raman analysis of the MoS2 flake has shown a spectrum (see Figure 1c) with 
two peaks corresponding to the 𝐸  and 𝐴  modes, separated by about 20 cm , 
indicating that the sample under investigation is a monolayer.  

3. Results and Discussion 
In Figure 2a, we report the output characteristics (𝐼   𝑉 ) measured in the range of 

±0.5 V for different values of the gate voltage (𝑉 ). We notice a slight rectification that can 
be explained as the result of asymmetric Schottky barriers forming at the tungsten/MoS2 
interfaces [3]. By varying the distance between the two tungsten tips, we can modulate 
the channel length of the FET, thus realizing an experiment based on the Transfer Length 
Method (TLM) [18,19] to evaluate the contact resistance at the tungsten/MoS2 interface. In 
Figure 2b, we show the measured total resistance 𝑅  versus 𝑑, with 𝑅  =  2𝑅 + 𝑑, 
where 𝑅  is the contact resistance, 𝑅  is the MoS2 sheet resistance, W is the channel 
width (assumed to be equal to the tip diameter, 200 nm), and 𝑑 is the channel length, i.e., 
the separation between the two tips. Experimental data have linear behavior, from which 
specific area contact resistivity and sheet resistance can be evaluated as 𝜌 ≈4 × 10  Ωcm  and 𝑅 ≈ 10  Ω/□ from the intercept and the slope of the linear fit, re-
spectively.  
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The transfer characteristics (𝐼   𝑉 ) reported in Figure 2c have been measured for 
different gate voltage ranges up to ±60 V, with 𝑉 = −5 V, and by positioning the 
tungsten tips at separation of 13 μm. The device has n-type behavior, with a threshold 
voltage of about −10 V, and it can be explained in terms of chemisorption of oxygen on 
MoS2 or sulphur vacancies [20–22]. 

 
Figure 2. (a) Output characteristics (𝐼   𝑉 ) measured for different gate voltage values. (b) 𝑅  vs 𝑑 plot and linear fit. The inset show how 𝑑 is measured. (c) Transfer characteristics 
(𝐼   𝑉 ) measured for different gate voltage ranges. (d) Linear dependence of the hysteresis 
width HW as a function of 𝑉 . 

From the transfer characteristic measured in the range ±50 V, we have estimated the 
on/off ratio as ~ 10 , a subthreshold swing of 𝑆𝑆 ≈ 4 , and a mobility of 𝜇 =1 cm  V  s , a value within the typical range (0.02 − 100 cm  V  s ) reported for MoS2-
based FETs on SiO2 [23,24]. The low mobility can be attributed to the high contact 
resistance and to high defects or traps density [25]. 

In Figure 3c, we show the transfer characteristics measured by sweeping the gate 
voltage different ranges, from ±20 V up to ±60 V. The curves have a clear hysteresis that we 
explain as being caused by negative charge trapping [20]. We observe that the hysteresis 
width (𝐻 ), estimated at 𝐼 =  0.1 nA, has linear dependence on the 𝑉  sweeping range 
(See Figure 3d). This behavior can be ascribed to the trapping process driven by the gate 
voltage and the effects on the MoS2/Si-substrate capacitor. 

Finally, we also investigated the field emission (FE) properties of the MoS2 flake, 
profiting of the n-type conduction and the high aspect ratio of the flake side. By retracting 
the tip-anode at a distance h = 900 nm from the MoS2 edge, we can measure the current 
emitted from the flake under the application of an external electric field (Figure 3a). More 
precisely, we applied a voltage bias of up to 120 V on the anode, and we measured the 
current emitted from the flake (cathode) with a resolution better that 0.1 pA. The 
current−voltage (𝐼   𝑉 ) curves have been measured at fixed cathode-anode separation 
h and for two different values of gate voltage.  
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Figure 3. (a) Schematic of field emission setup. (b) 𝐼   𝑉  field emission curves on a linear scale, 
measured for two different gate voltages. (c) Same 𝐼   𝑉  field emission curves, reported on a 
logarithmic scale. (d) Fowler-Nordheim plots and linear fittings. 

The FE characteristics have been measured by applying a bias voltage on the anode up 
to +120 V, by keeping a fixed gate voltage of 10 V and 40 V, respectively. The measured 
curves are reported on a linear scale (Figure 3b) and on a logarithmic scale (Figure 3c). In-
terestingly, we observe that the FE current is larger for 𝑉 = 40 V, suggesting that the gate 
voltage increases the n-doping of the MoS2 flake [26].  

We analyzed the FE curves in the framework of the Fowler-Nordheim (FN) theory 
[27], for which the FE current is expressed as  

𝐼 = 𝐴 ( 𝑉 /ℎ)𝛷 𝑆 ∙ 𝑒𝑥𝑝 −𝐵 𝛷( 𝑉 /ℎ) , 
where 𝐴 = 1.54 × 10  A V  eV and 𝐵 = 6.83 × 10  V cm  eV / , 𝛷  is the work func-
tion of the emitter, 𝑆 is the emitting surface area, and 𝛽 is the field enhancement factor. Ac-
cordingly, for FE curves, it is expected that 𝑙𝑛(𝐼 /𝑉 ) versus 1/𝑉 is linear (FN plot), and 𝛽 can be evaluated from its slope.  

In Figure 3d, we report the FN plots that demonstrate the FE nature of the measured 
current. For 𝑉 = 40 V, we found a turn-on field 𝐸 = 40 V μm  (defined as the field to 
obtain a FE current of 1 pA) and 𝛽 ≈ 200.  

4. Conclusions 
We demonstrate a simple and fast methodology to realize metal contacts on two-

dimensional nanosheets by gently approaching nanomanipulated tungsten tips inside a 
scanning electron microscope. We contacted a MoS2 monolayer to form a back-gated FET, 
and we performed complete electrical characterization, reporting specific area contact re-
sistivity of 4 × 10  Ω cm , sheet resistance of 10  Ω/□, on/off ratio of 105, subthreshold 
swing of 4 V/decade, and mobility of 1 cm  V  s . Finally, by retracting the tip-anode, 
we performed field emission characterization of the MoS2 flake, reporting that the FE cur-
rent can be modulated by the gate bias. 
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