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Abstract: We report the characterization of back-gated field-effect transistors fabricated using plat-
inum diselenide (PtSeଶ) ultrathin films as a channel. We perform a detailed study of the electrical 
conduction as well as of the photoconductivity. From the gate modulation of the channel current, 
we obtain the signature of p-type semiconducting conduction with carrier mobility of about 30 cm2 

V−1 s−1. More interestingly, PtSeଶ devices exposed to light, either in air and in vacuum, exhibit neg-
ative photoconductivity, which we explain by a photogating effect due to charge trapping in the 
gate dielectric and light-induced desorption of adsorbates. 
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1. Introduction 
Two-dimensional (2D) transition-metal dichalcogenides (TMDs) have been widely 

investigated for their interesting properties and applications [1–4]. More recently, TMDs 
based on group-10 transition metals such as PdSeଶ ad PtSeଶ have attracted growing at-
tention [5–7]. These materials crystallize in an octahedral lattice structure where the tran-
sition metal atoms are coordinated with six chalcogens. The presence of d-electrons in the 
group-10 transition metals gives rise to additional semiconductor bands making the elec-
trical and optical properties largely tunable by the number of layers [8]. Monolayer PtSeଶ 
has an indirect bandgap of ~1.2 eV, which is expected to reduce to 0.3 eV for the bilayer 
and vanish for the bulk [9]. 

The bandgap of PtSeଶ covers the spectral range that is important for telecommuni-
cations and solar energy harvesting [10], and the carrier mobility (theoretically predicted 
up to 4000 cmଶ Vିଵ sିଵ  [11] and experimentally found to be around 200 cmଶ Vିଵ sିଵ 
[12]), competitive with black phosphorus, can enable fast electronic devices [13]. 

In this paper, we study the electrical properties of field-effect transistor realized us-
ing 3 nm-thick PtSeଶ film. We report semiconducting p-type conduction, and relatively 
high hole mobility. 

Interestingly, we report photoconduction measurements that demonstrate that the PtSeଶ devices show negative photoconductivity, which we explain by a photogating ef-
fect due to charge trapping in the gate dielectric and light-induced desorption of adsorb-
ates. 
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2. Experimental Section PtSe2 film, obtained by direct selenization of 0.7 nm thick Pt film (fabrication details in 
ref. [14]), is transferred on SiOଶሺ85 nmሻ/p-Si substrate and it is etched by SF6-based induc-
tively coupled plasma process. The patterned PtSe2 (6 layers thick) is then contacted by Ni(20 
nm)/Au(150 nm) metal leads. A schematic of the PtSe2 FET is shown in Figure 1a. 

 
(a) 

 
(b) 

Figure 1. (a) Schematic of PtSeଶ back-gated FET and measurement configuration; (b) Raman characterization of PtSeଶ 
sheet, showing Eg peak at 176 cm−1 and A1g peak at 205 cm−1. Inset: SEM image of the device. 

In Figure 1b, we show the Raman spectrum for the PtSeଶsample, in which we observe 
the E୥ peak at 76 cmିଵ and the Aଵ୥ peak at 205 cmିଵ that give an indication of multi-
layer PtSeଶ [15]. In the inset, an SEM image of the device is shown. The transistors were 
characterized inside a cryogenic Janis ST-500 Probe Station, working at variable tempera-
ture and pressure, by connecting the probes to a Keytley 4200 source-measurement unit. 
The photoconductivity measurements were performed by using a super-continuous white 
light source (NKT Photonics, Super Compact, DK-3460 Birkerød, Denmark) with wave-
length ranging from 450 nm to 2400 nm and 100 mW/cm2 maximum intensity. 

3. Results and Discussion 
3.1. Electrical Characterization 

We initially applied two- and a four-probe configuration to measure the channel Iୢୱ െ Vୢୱ characteristics. Figure 2a shows that the two techniques yield the same result, 
indicating that the device has good ohmic contacts with low resistance. Therefore, we de-
cided to use the simplest two-probe setup for further electrical characterization. 

Figure 2b, shows an increasing conductance G when the temperature T is raised from 
100 K to 400 K revealing the semiconducting nature of the PtSeଶ nanosheet. The G െ V୥ୱ 
transfer characteristics, where G ൌ Iୢୱ/Vୢୱ is the channel conductance at fixed drain volt-
age, reported in Figure 2b confirm the semiconducting nature of the channel and reveals 
that it has a p-type behavior, as the channel conductance decreases for positively increas-
ing gate voltage. The p-type doping of the PtSe2 channel can be attributed to O2 adsorbates 
[6,16–18] as well as to Pt vacancies [19]. Furthermore, the use of Ni as the contact material 
facilitates hole injection as the Ni Fermi level aligns to the top of the valence band of PtSe2. 

We evaluated the field-effect mobility as μ ൌ ୐୛େ౥౮୚ౚ౩ ୢ୍ౚ౩ୢ୚ౝ౩ (Iୢୱ and Vୢୱ are the drain 

current and voltage, C୭୶ ൌ 3.11 nFcmିଶ is the SiO2 capacitance per area, L and W are 
the channel length and width). The value of 31 cmଶ Vିଵ sିଵ at room temperature is higher 
than that measured in differently fabricated PtSe2 devices [5,12] or in similar devices with 
other TMDs such as PdSeଶ, MoSଶ or WSeଶ [16,20,21]. 
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Figure 2. (a) 𝐼ௗ௦ െ 𝑉ௗ௦ output curves measured in two- and four-probe configurations. (b) 𝐺 െ 𝑉௚௦ 
transfer curve showing p-type behaviour and field-effect mobility of 31 cmଶ Vଵ sିଵ. 

3.2. Photoresponse 
The effect of light on PtSeଶ nanosheets was investigated by illuminating the device 

with a supercontinuous white laser (450–2400 nm), with light pulses of given time dura-
tion and intensity. Figure 3a,b show the device channel current under fixed bias condi-
tions for switching light at the intensity of 30 mW/cmଶ, in air at room pressure and at 1 
mbar, respectively. 

 
(a) 

 
(b) 

Figure 3. (a) 𝐼ௗ௦ drain current subjected to switching light pulses (30 mW/cm2), monitored in air 
at room pressure. (b) 𝐼ௗ௦ drain current subjected to switching light pulses (30 mW/cm2), moni-
tored in air at 10ିଷ mbar pressure. 

After a sequence of 12 pulses, 2 min long, the laser is switched off and the current is 
monitored in dark. Surprisingly, each laser pulse provokes a reduction of the current. 
Such behavior, which is referred to as negative photoconductivity, is opposite to the cur-
rent increase normally observed under the light as an effect of electron–hole (e-h) pair 
photo-generation [22–24]. We point out that current reduction is a reversible phenomenon 
as the device returns slowly to the pre-irradiation state when the light source is turned 
off, with recovery significantly faster in air at room pressure. 

The negative photoconductivity could be caused by a photogating effect due to 
charge trapping in the SiOଶ layer and light-induced oxygen desorption [25,26]. 

Holes photogenerated in the Si substrate and in the PtSeଶ channel can be trapped in 
the SiOଶ gate dielectric and act as a positive gate that lowers the channel conductance of 
the p-type transistor. Simultaneously, electrons in Oଶ (and perhaps HଶO) molecules ad-
sorbed over the PtSeଶ channel can be excited by light into the channel. The neutralized Oଶ molecules can be easily desorbed causing a decrease of the channel doping, hence of 
its conductivity. Both charge trapping and Oଶ  desorption decrease the current by a 
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mechanism that is reversible with characteristic time depending on hole detrapping and Oଶ adsortpion. Obviously, oxygen adsorption is facilitated at room pressure, thus explain-
ing the faster recovery in air at room pressure. 

4. Conclusions 
In conclusion, we investigated the electrical transport in PtSeଶ layers used as the 

channel of back-gated field-effect transistors. The transistor transfer characteristic indi-
cated p-type conduction with mobility up to ~40 cmଶ Vିଵ sିଵ at room temperature. Ex-
posure to light showed a dominant photogating effect, due to charge storage in the SiO2 
dielectric and light-induced desorption of adsorbates that cause negative photoconduc-
tivity. 
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