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Abstract: Semiconductor sol–gel films containing plasmonic nanoparticles are being increasingly 
used in wet analytics (µ-TAS systems) as functional substrates for surface enhanced Raman spec-
troscopy (SERS), as optical elements, and as photovoltaic and photocatalytic devices. A local 
change in the structure of such materials with predictable properties of the modified region opens 
up new possibilities for the creation of integrated circuits and multifunctional systems. Here, we 
considered the mechanism of local modification of TiO2 thin films structure containing plasmon 
nanoparticles as a result of laser annealing. The material processing was carried out by scanning 
with a continuous wave (CW) semiconductor laser at a wavelength of 405 nm and at radiation 
intensity from 35 to 85 kW/cm2. The modification region differed in optical characteristics and 
structural features from the original film. As a result of the laser processing, a heat source was 
formed that ensured the crystal nucleation and growth of brookite up to an intensity of 55.4 kW/cm2. A 
subsequent increase in intensity led to the transformation of brookite into anatase. The crystal 
phase formation in the obtained track was accompanied by a change in the relief in its cross section 
and a decrease in the plasmon resonance peak. The density of the film in the modified region in-
creased, which was accompanied by a decrease in its thickness by 20% from the original film 
thickness. The disappearance of plasmon resonance in the modified region contributed to a de-
crease in the absorption capacity and, as a consequence, to a sharp decrease in temperature at the 
central part of the heat source. 

Keywords: nanocomposites; TiO2 thin films; laser annealing; plasmon resonance; nanoparticles; 
phase transformation 
 

1. Introduction 
In the last decade, nanocomposite materials based on such transparent matrices as 

TiO2, ZnO, and Al-doped ZnO with noble nanoparticles (NPs) have become particularly 
attractive in the emerging fields of photonics [1], catalysis [2,3], and security applications 
[4]. These materials have unique spectral characteristics because of the surface plasmon 
resonance that influences them. 

A number of applications require a local change in optical properties, and for this 
purpose, laser irradiation is a good candidate. A laser beam forms a local heat source on 
the surface of the material, which can be used to carry out local annealing to achieve 
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desired optical properties. However, the effect of laser irradiation parameters on the an-
nealing result is still not fully understood. 

In this work, we study the process of local annealing by CW UV laser irradiation of 
thin Ag-TiO2 films. The square fields of interest were obtained by a constant speed 
line-by-line scanning and different laser intensities for each one. The change in the spec-
tral characteristics depending on the regimes of laser processing was analyzed, and the 
structures of the modified areas investigated. A model describing a heat source formed 
by the laser beam is proposed, and estimates of the values of temperatures and duration 
of annealing depending on the regimes of laser irradiation are given. 

2. Materials and Methods 
The mesoporous amorphous titania films used in this study were produced with tita-

nium tetraisopropoxide by the sol–gel technique as previously described in [5]. The thick-
ness of the film deposited on a glass substrate was 180 ± 10 nm. Silver ions are introduced 
within the mesopority by soaking in an aqueous ammoniacal silver nitrate solution (5 M) 
for 90 min with prior thermal treatment of the sample. After rinsing and drying, the sample 
is exposed to UV light for 10 min to initiate a growth of a high density of Ag NPs which 
leads to the optical absorption of the strurture in range from 400 to 480 nm. 

A CW UV semiconductor laser with a wavelength at 405 nm was used for laser an-
nealing of Ag-TiO2 samples. Double-mode irradiation of the laser was focused with the 
optical system to reach two elliptical spots in the beam with dimensions of 23 µm by 10 µm 
located at a distance 11.5 µm (Figure 1). The structure modification was carried out by 
scanning with the laser beam along a major semi-axis with the speed at 100 µm/s using a 
Thorlabs MTS50/M-Z8 motorized three-coordinate table. 

 
Figure 1. Experimental setup used for laser annealing of Ag-TiO2 nanocomposite films. 

A visual analysis of the sample was applied using an optical microscope Carl Zeiss 
Axio Imager A1M (Germany). The microscope is equipped with objectives ranging up to 
160×. Spectral characteristics in the range of 300–900 nm after laser treatment were 
measured in circular areas of about 200 µm in diameter using an MSFU-K microscope 
spectrophotometer (LOMO). To investigate the resulting structures on the nanoscale, a 
scanning electron microscope (SEM) of CrossBeam workstation Zeiss AURIGA was used. 

3. Results 
The laser processing of the samples was accomplished by line-by-line scanning 

covering the squares with area of 700 × 700 µm2. The distance between two lines was 20 
µm, providing an overlap of laser tracks of 50 lines/mm. The intensity of laser irradiation 
was in range from 35 to 85 kW/cm2. 
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Figure 2a demonstrates the microphotographs of the squares obtained at four dif-
ferent intensities. One can see the change in color with the change of intensity. In partic-
ular, at the intensity of 42.1 kW/cm2, the color of the square visibly seems pink, and at 
55.4 kW/cm2, the obtained square turns to blue. The further increase of intensity up to 
68.8 kW/cm2 leads to formation of the square with stronger and brighter blue, and at the 
highest intensity of 82.5 kW/cm2, the square seems more like the initial film. 

To better understand the change of optical properties, the transmittance spectra were 
measured for considered squares. Figure 2b shows the presence of the minimum and its 
redshift from 435 to 475 nm. It should be noted that the intensity in the minimum is slightly 
increased with an increase in intensity up to 68.8 kW/cm2, but reaching the value of 82.5 
kW/cm2 leads to a distinguishable increase in the minimum intensity from 0.02 to 0.17. 

 
(a) 

 
(b) 

Figure 2. (a) Microphotographs of the squares obtained by the laser annealing in the range of 42.1–82.5 kW/cm2. (b) 
Transmittance spectra of the obtained squares. 

The presence of a minimum in transmittance spectra of Ag-TiO2 films in the 400–500 
nm range is due to the plasmon properties of Ag NPs. In our experiments, the laser an-
nealing of the films activated NPs formation, which is demonstrated in the SEM images 
(Figure 3). The concentration and size of NPs affect the spectral characteristics. In partic-
ular, the more NPs there are, the more redshifted the peak is, and the higher the concen-
tration is, the lower the intensity is [6]. Hence, we conclude that the size of NPs was de-
creased accompanying the concentration decrease as the intensity increased. 

As a result of exposure to laser irradiation, the surface of the material changes. Laser 
annealing causes compaction of Ag-TiO2 films, which reduces its thickness by 10–20% 
compared to the thickness of the original film [4,7], which indicates structural changes in 
the matrix. Thus, local modification occurs not only due to the formation of NPs but also 
due to a change in the structure of the film. 
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Figure 3. SEM images of the squares obtained by laser annealing in the range of 42.5–82.5 kW/cm2. 

4. Discussion 
The change in optical characteristics is associated with both the formation of NPs 

and the change in TiO2 structure. Both of these processes occur when exposed to laser 
irradiation, which forms a heat source on the material surface. The characteristics of this 
source, in turn, are determined by the scanning speed and intensity of laser radiation. 

To better understand the influence of the parameters of a heat source on optical 
characteristics, we proposed considering a model of a volume heat source moving at 
constant speed. The temperature for such a source formed by double-mode beam is de-
termined as follows: 

   𝑇 𝑥, 𝑦, 𝑧 = 𝑑𝑇 𝑥, 𝜏 𝑑𝑇 𝑦, 𝜏, 𝛿 𝑑𝑇 𝑧, 𝜏 𝜏 𝑑𝜏 ++ 𝑑𝑇 𝑥, 𝜏 𝑑𝑇 𝑦, 𝜏, −𝛿 𝑑𝑇 𝑧, 𝜏 𝜏 𝑑𝜏  (1)

where t = R−1(2axrr/υ)0.5 is the effective time of film heating, δ is the distance between two 
spots, and Q(z) is the absorbed energy source from a single laser spot. To calculate Q(z), 
we assumed that the absorptivity of the film consisted of the absorption of the matrix and 
plasmon resonance from silver NPs, which disappears at a certain intensity or tempera-
ture. Calculations of temperatures along the axes were carried out using Miamoto equa-
tions [8] that were extended for the case of a double-mode beam. Within the framework 
of this work, we present only the formula for calculating temperatures: 

   
𝑑𝑇 𝑥, 𝜏𝑑𝑇 𝑦, 𝜏, 𝛿𝑑𝑇 𝑧, 𝜏 = ⎣⎢⎢

⎢⎡𝑒𝑟𝑓𝑐 + 𝜏 − 𝑒𝑟𝑓𝑐 + 𝜏𝑒𝑟𝑓𝑐 − 𝑒𝑟𝑓𝑐𝑒𝑟𝑓𝑐 − 𝑒𝑟𝑓𝑐 ⎦⎥⎥
⎥⎤
 (2)

where υ = 100 µm/s is the scanning velocity, τ is the time-dependent variable, zr = lf /(r2lf)1/3 is 
the coefficient of heat source size on the Z coordinate, r is the average radius, xr and yr are 
the proportionality coefficients for the X and Y coordinates, and lf is the film half-thickness. 
The thermal diffusivity a takes into account heat outflow from the irradiated regions into 
air and substrate. 

Results of the temperature calculations are presented on Figure 4. One can see that 
the temperature for intensity of 42.1 kW/cm2 is in range from 200 to 400 °C along the X 
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and Y axes. Upon reaching these temperatures, crystallization of amorphous titanium 
dioxide into brookite occurs [9], and the process of formation of NPs is activated. Above 
55.4 kW/cm2, a temperature of 400 °C is reached, which leads to the formation of anatase 
from brookite [9]. NP formation continues due to diffuse growth that results in a shift in 
transmission peaks and an increase in their intensity. It should be noted that as the in-
tensity of the temperature distribution increases, it becomes more complex due to the 
complication of the absorptivity when higher temperatures are reached. 

Another important parameter that characterizes laser annealing is the duration time 
of annealing. This parameter can be calculated for certain temperature as the ratio of the 
heating source size and the laser scanning speed. For example, we cross the temperature 
distribution for the X axis at 200 °C and find the cross-section size. At the intensity of 42.1 
kW/cm2, the size is around 48 µm. The ratio of the size to the scanning speed (υ = 100 
µm/s) is 48 ms, which is the desired duration time of annealing. For 200 °C the annealing 
time increases from 48 to 81.5 ms in the intensity range 42.1–82.5 kW/cm2, respectively. 
The temperature does not reach 400 °C at 42.1 kW/cm2, so the duration time changes from 
0 up to 32 ms at 400 °C. 

 
Figure 4. (a) Temperature distribution of the laser heat source on the film surface for different laser 
intensities. (b) Temperature profiles for different intensities in the middle of the laser heat source 
and along the Y axis. (c) Temperature profiles for different intensities in the middle of the laser heat 
source and along the X axis. (d) Temperature profiles for different intensities in the middle of one 
spot and along the X axis. 

5. Conclusions 
As a result of the work, the process of local annealing of Ag-TiO2 thin films by CW 

UV laser radiation has been considered. 
The result of the structure modification was a change in the optical characteristics of 

the material, which manifested itself in the appearance and change of color. Squares with 
a size of 700 × 700 µm2 were recorded by line-by-line scanning, which changed their op-
tical properties depending on the intensity of the laser irradiation. As a result, it was 
shown that an increase in the intensity from 45.1 to 82.5 kW/cm2 led to a change in the 
spectral transmittance in the region of the plasmon resonance peak from 435 to 475 nm. It 
was shown that a change in the optical characteristics in the plasmon peak region is as-
sociated with a change in the size and concentration of NPs in the film as well as with 
structural changes in the material. 

To describe a heat source formed by laser radiation, a thermophysical model of a 
volume source moving at a constant velocity was proposed. The range of temperatures 
and duration of annealing were estimated taking into account the intensity of laser irra-
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diation and scanning speed. As a result of the simulation, it was shown that when the 
intensity was increased from 45.1 to 82.5 kW/cm2, the maximum temperature in the irra-
diated zone changed from 390 to 600 °C. The thermal annealing time at 400 °C in this 
temperature range varies up to 32 ms. 
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