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Abstract: End-point evaluation of stream health is essential for the quantification of water quality.
To this end, many Multi-Metric Indices (MMIs) have been developed to quantify water quality. The
most extensive work has occurred in North America and Europe, while other areas of the world are
in development. In this study, we compared the use of relevant physical, chemical and biological
parameters in MMIs to various other stream health indicators to assess water quality throughout a
three-river corridor along the north central Pacific slope of Costa Rica. Analysis of the data suggested
MMIs were the best indicators of water quality and, more specifically, insect MMIs were the most
predicative. MMIs were also best at pinpointing anthropomorphic impact throughout the corridor.
Further, less complex insect MMIs such as compilations of family diversity using Ephemeroptera,
Plecoptera and Trichoptera (EPT) orders were equally as predictive as the more complex models.
With a need to better understand and use citizen monitors to predict water quality in these tropical
environments, less complex insect MMIs show promise as a solution.
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1. Introduction

End-point evaluation of stream health is essential for the quantification of water qual-
ity [1]. While water quality determiners are often communicated in somewhat subjective
terms such as “swimmable” or “good”, measures supporting these declarations are sci-
entific. Often, legislation specifies specific pollutant levels needed for clean water [2], yet
such specific end-points may not encompass stream health, because in reality it is much
more complex than any one-point measure. Good end-points need to incorporate various
chemical, physical and biological properties to be effective [3,4]. Deriving good measures
and then communicating these critical end-points to the public and policymakers fulfills
societal needs and expectations [5].

To this end, researchers have developed and evaluated a multitude of water quality
indices to describe stream health using physical [6], chemical [7] and biological [8] parame-
ters. More recently, parameters have been incorporated into Multi-Metric Indices (MMIs) to
encompass aggregate aspects of the entire stream environment [4,9]. While this task can be
cumbersome, and in some instances even daunting [10], research suggests MMIs provide
good predictors of disturbance and are certainly preferable over single metrics alone [11].

Within the literature, there are commonalities among parameters used to create MMIs.
In stream physical assessment, discharge and stream morphology are often used [12].
Quantification of the physical stream environmental was pioneered by Rogsen [13], then
further developed to incorporate essential habitat qualities into a useable index [14,15].
Chemical water quality parameters are compiled into various Multi-Metric Indices. The
most prominent is the Water Quality Index (WQI) based on the work of 142 water-quality
scientists [16]. This group compiled nine prominent water chemistry parameters (dissolved
oxygen, fecal coliform/E. coli, pH, biochemical oxygen demand (5-day BOD), temperature
change (from 1 mile upstream), total phosphate, nitrate, turbidity and total solids) into
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an index defining water quality. Multiple variations of the WQI have evolved (reviewed
by Bharti and Katyal [17]) and are effective based on local conditions and parameters
selected. Lastly, biological assemblages (primarily insects and fish) are well established as
water quality predictors. Karr and Chu [8] developed the Index of Biological Integrity (IBI)
allowing quantification of various fish or insect assemblages into an MMI. Various iterations
of indices have evolved through time (reviewed by Herman and Nejadhashemi [18]), with
organism diversity and sensitivity to pollution the most popular for use in water quality
determinations.

While MMIs have demonstrated success in predicting water quality in the US and Eu-
rope [19,20], use in Latin America has been less robust [21–23]. The universal transferability
of MMIs into the tropics is difficult because these environments are rugged, exhibit strong
seasonality and present unique logistical difficulties. Heavy seasonal rains may be the
most difficult problem to overcome as this phenomenon generates annual disturbances and
seasonally influences stream morphology, physiochemistry and the ecological structure of
the ecosystem [24–26]. Yet, even with these limitations, many MMIs have been developed
for general regional use [27,28], and recent research suggests simple MMIs based on key
species richness or sensitivity may work well in the tropics [29]. Concerns over climate
change coupled with land use and population impacts suggest an urgency to develop good
MMIs to predict water quality in these regions [30,31].

In Costa Rica, water quality end-points have been established to meet criteria set
forth by government decree. Executive order 33903 [32] states that it is imperative to
recover and preserve the physical, chemical and biological integrity of surface water bodies
so these waters can be used for various social, economic and environmental purposes
that contribute to the development of the country ensuring a better quality of life for all
its citizens. Within this decree, clear end-points using a Chemical Water Quality Index
(WQI-CR) and benthic macroinvertebrate MMIs adapted from the Biological Monitoring
Workers Party (BMWP-CR) for use in Costa Rica are specified. Qualitative descriptors of
water quality such as “good” or “poor” accompany each MMI. While these indices provide
policymakers and scientists with end-point assessments, critical baseline water quality
monitoring along with rigorous testing and validation is needed to support and validate.
Further, the collection and computational complexity of such indices limit accessibility for
communities where local water boards (ASADAs) are tasked with improving sanitation
and water quality [33,34].

Thus, scientific assessment of water quality while amassing the resources necessary
to train and equip citizen scientists is a necessary societal factor needed to bridge this
gap. Clean water is a basic human and environmental necessity, yet assessing its quality
is an invisible subject requiring specific equipment and expertise that can be particularly
challenging and complex [35]. And as the complexity of this problem increases, effective
governance decreases [36]. This gap clearly exists between effective water quality quantifi-
cation and citizenry use and understanding [34,37]. But studies suggest citizen volunteers
are effective at collection and analysis of water quality data [38]. Therefore, generating
useable indices for citizen science that are substantiated by technical and scientific verifica-
tion is a much-needed endeavor, particularly in parts of the world where this work is most
challenging.

In this study, we compared a suite of MMIs to other stream health indicators to assess
the predictability of water quality throughout a three-river corridor in the north central
Pacific slope of Costa Rica. The comparison and use of MMIs in Costa Rica is limited,
therefore verification of WQI-CR and BMWP-CR effectiveness strengthens understanding
of water quality in the region and use in the tropics. Secondly, successful equivocation of
more complex MMIs using insects identified to families such as BMWP or water chemistries
identified to simplified MMIs such as EPT and PMA fills a gap needed for use in local com-
munities. Development and use of good and simplified MMIs that are able to encompass a
diversity of ecosystems, land use, human impact and seasonality are suggested.
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2. Materials and Methods
2.1. Study Design

This study is part of a larger water quality monitoring project established in the
Bell Bird Biological Corridor (Corredor Biológico Pájaro Campana) and sanctioned by the
corridor (http://www.cbpc.org, accessed on 20 April 2022). There are 16 sampling sites
throughout the study area, spanning a diversity in elevation from near sea level close to the
Gulf of Nicoya up through Monteverde to 1555 m elevation (Figure 1). The sites represent
a variety of 11 life zones that are included within the corridor and belong to one of the
3 riverine watersheds: Aranjuez, Guacimal and Lagartos.

Figure 1. Area of study located on the Pacific Slope in the north-central region of Costa Rica. Each
sampling station is denoted by initials indicating the river system (RA = Rio Arenjuez, RG= Rio
Guacimal and RL = Rio Lagartos) with each sampling station indicated as a red dot. The tourist
destination of Monteverde is located at the top of the study area with the upper most sampling sites
in the forest reserve. Remaining study sites sample the rivers flowing through various land uses
eventually into the Gulf of Nicoya.

Each of the sampling sites are divided between elevations in each river basin and
within the basins themselves. The upper sites include three differing areas in the headwaters
of the Guacimal River. One site is in the Monteverde Reserve (RG-RMV), and another
is outside the reserve near a biological station (RG-BS). The Monteverde Reserve is an
area of biological conservation containing primary and secondary cloud forest originally
established by Quaker families who founded the area. The biological station site is a
secluded area away from the reserve. Two additional headwater sites are located in

http://www.cbpc.org
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relation to the Monteverde Cheese Factory operation. Located in direct proximity to the
Cheese Factory (RG-RS) is where wastewater has historically been discharged. Further
down this river (RG-QC) is a site where a pig farm discharges waste from its factory
operations. Several wastewater lagoons on the property directly discharge into this stream.
A final headwater station (RG-RSL) captures all the water flowing through the area. In the
headwaters of the Lagartos River, a site inside the neighborhood of Las Llanos (RL-LL)
was selected. This area represents an urban dense land use for Costa Rica with abundant
grey water and overland flow entering the streams. Another site below this neighborhood
(RL-LI) captures all the water flowing from the town of Santa Elena. The other area
selected as a headwater and upper station on the Aranjuez River (RA-BC) and just below
another reserve is the Children’s Eternal Rainforest (Bosque Eterno de los Niños). While
the location is much lower in elevation, the characteristics are similar to the headwaters of
Guacimal River.

The mid-elevation sites are all located along pasture and other similar features in this
watershed. Two sites are located along the Guacimal River. One site in the town of Guacimal
(RG-PG) is situated among pastures and farming in this area. Two additional locations
outside of town include a site located outside Guacimal (RG-PVC) and an additional site in
the biological preserve of the Children’s Eternal Rainforest (RG-LR). RG-PVC is impacted
by pasture, while RG-LR is not. Mid-elevation on the Lagartos River is located directly in
a pasture (RL-LG) and the mid-elevation site on the Aranjuez flows from a hydroelectric
plant (RA-CM). All lower elevation sites are located in disturbed areas. Two locations on
Rio Lagartos include a developed neighborhood (RL-LP) and an agricultural site growing
various crops (RL-LS). Along the Guacimal, the location is very manipulated by farms and
the mining of rock material for construction (RG-SA), while, in the Aranjuez (RA-CH),
there is a site next to a large pineapple planation. Characteristics of each site based on
water quality measures appear in Table 1.

Table 1. Summary statistics (means and standard errors) for collected parameters over the study
period (March 2015–March 2019). Sites are organized by elevation (meters). The following pa-
rameters are displayed: EPT—different number of Ephemeroptera, Plecoptera and Trichoptera
families in samples; BMWP/CR—Biological Monitoring Workers Party Index modified for Costa
Rica; PMA—Percent Model Affinity; WQI—Water Quality Index; WQI/CR—Water Quality Index
modified for use in Costa Rica. Site name abbreviations are explained in site descriptions.

Site Elevation (M) EPT BMWP/CR PMA WQI WQI/CR
RG-BS 1555 5.2 ± 0.4 81.7 ± 4.6 46.0 ± 5.2 81.6 ± 1.7 5.2 ± 0.4

RG-RMV 1450 5.5 ± 0.4 73.7 ± 5.3 51.1 ± 2.1 83.3 ± 1.6 6.0 ± 0.4

RG-RS 1372 4.5 ± 0.5 68.1 ± 6.1 37.2 ± 3.6 84.7 ± 1.7 5.7 ± 0.4

RL-LL 1220 3.1 ± 0.2 49.1 ± 3.5 44.1 ± 2.1 79.8 ± 2.0 6.2 ± 0.4

RG-QC 903 5.6 ± 0.4 78.2 ± 4.6 56.5 ± 2.9 75.8 ± 1.7 6.4 ± 0.4

RG-LI 872 6.3 ± 0.5 87.8 ± 6.3 60.4 ± 3.1 77.9 ± 1.3 6.1 ± 0.4

RG-RSL 661 6.8 ± 0.4 93.2 ± 5.1 61.3 ± 3.3 77.9 ± 1.1 6.5 ± 0.4

RG-LR 653 6.8 ± 0.5 95.4 ± 6.7 67.6 ± 2.8 74.8 ± 4.1 6.1 ± 0.4

RG-PVC 644 7.1 ± 0.3 100.6 ± 4.8 67.2 ± 3.5 80.6 ± 1.6 5.8 ± 0.4

RA-BC 568 4.4 ± 0.5 58.4 ± 6.4 43.0 ± 3.5 82.7 ± 1.3 5.5 ± 0.4

RL-LG 336 5.9 ± 0.3 86.9 ± 7.4 54.7 ± 2.5 77.7 ± 1.1 6.3 ± 0.4

RG-PG 306 6.8 ± 0.4 90.2 ± 5.0 58.2 ± 2.7 77.3 ± 1.1 6.9 ± 0.3

RA-CM 280 4.6 ± 0.4 54.2 ± 5.1 50.1 ± 1.8 80.0 ± 1.2 5.7 ± 0.3

RL-LP 113 6.2 ± 0.4 90.3 ± 7.2 51.4 ± 2.1 67.4 ± 3.5 5.8 ± 0.4

RG-001 101 5.3 ± 0.4 66.3 ± 5.5 46.5 ± 2.4 77.6 ± 1.6 5.8 ± 0.4

RA-CH 33 4.2 ± 0.3 42.5 ± 4.4 46.6 ± 2.3 71.8 ± 2.5 6.1 ± 0.4

RG-SA 23 5.6 ± 0.5 75.8 ± 6.2 51.1 ± 1.5 75.4 ± 1.3 6.2 ± 0.4

RL-LS 15 5.1 ± 0.4 67.4 ± 6.9 43.0 ± 2.5 70.0 ± 1.7 6.8 ± 0.3
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Water quality sampling took place during 4 distinct time periods from 2015 to 2019 at
every site. We consistently sampled in March and early May (representing the dry season),
during late August and early September (representing a lull in the wet season) and in
November (representing the end of the wet season). During each sampling event, we
collected aquatic insect samples using EPA rapid bioassessment protocols [39] modified
by using a square net (Wildco Corporation) in place of a kick net. The square net was
placed on the streambed directly below a riffle facing into the current, allowing dislodged
insects to flow into the net. Substrate was disturbed by kicking up an area above the net to
collect a representative sample of macroinvertebrates. A minimum of 3 and not to exceed
5 areas throughout multiple riffles were sampled and combined into 1 sample representing
the stream. All macroinvertebrates collected were sorted and identified to families using
multiple identification aids [40,41].

All other biological, physical and chemical parameters were either directly measured
on-site or taken back to the laboratory for analysis. Measures of discharge were calculated
using a flowmeter (Hach FH 950 handheld meter) along with stream depth and width
profiles. A sterile 100 mL water sample was collected and analyzed for E. coli. Water was
filtered through sterile Nalgene filters using coli-blue agar methodology. All E. coli colony
forming units were counted after a 24 h incubation at 37 ◦C. Total phosphorus samples were
collected in acid-washed 125 mL Nalgene bottles and analyzed using an EasyChem auto
analyzer (Systea Analytical Technologies, Oak Brook, IL, USA). The EasyChem analysis is
compatible with Ascorbic Acid Total Phosphorus Analysis detailed in Standard Methods for
Analysis of Water and Wastewater [42]. Each run of the analysis included both sample and
laboratory duplicates for quality assurance and quality control. All duplicates within 10%
error were to be included in the analysis. All reagents used in this analysis were reagent
grade (up to 99% purity) purchased from Fisher Scientific.

We measured temperature (C), conductivity (µs/cm), pH, dissolved oxygen (mg/L)
and ammonia (mg/L) with a YSI 556 multiprobe meter (Xylem, Yellow Springs, OH,
USA) following pre- and post-calibration QA/QC procedures in accordance with EPA
protocols [43].

2.2. Data Analysis

BMWP-CR was calculated using the Costa Rican Ministry of the Environment and
Energy documentation [32]. Identified families of insects were assigned a tolerance value
with the sum of the values producing an index of water quality. Percent Model Affinity
(PMA) was calculated based on the methodology of Novak and Bode [44]. Here, we mod-
ified the percent of each insect order based upon our reference site collections (RVC-LR)
over the sampling period. EPT was calculated using total Ephemeroptera, Plecoptera and
Trichoptera unique families in each sample [45]. An Index of Biological Integrity Macroin-
vertebrate (IBIM) was calculated using multiple ecological parameters including degree
of dominance (percentage in samples of the most dominate macroinvertebrate family),
total number of macroinvertebrates captured, total number of families captured, percent
tolerant, percent intolerant, total Ephemeroptera, total Plecoptera and total Trichoptera. All
families were assigned tolerance values based on Costa Rican Ministry of the Environment
and Energy documentation [32], with tolerance defined as families with a (1–5 value) and
intolerance with a (6–10 value). The degree of dominance was calculated as the proportion
of total individuals in each family distributed throughout the sample. The IBIM index was
created by assigning a value from 1–5 depending on adherence to high or low quality based
on a similar reference condition [7]. Finally, a Family Biotic Index (FBI) was generated
using tolerance values from Hilsenhoff [46].

The National Science Foundation Water Quality Index (WQI) was calculated using
data from Dissolved Oxygen (DO), Biochemical Oxygen Demand (BOD), pH, TSS, nitrates,
phosphates, E. coli and temperature. A weighted value was assigned to each parameter
to generate the WQI using methodology established in Brown et al. [15]. The Costa Rican
Water Quality Index (WQI-CR) was calculated directly using three parameters: BOD,
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dissolved oxygen saturation and concentration of ammonia nitrogen [31]. This index
assigns a value from 1 to 5 to each parameter based on the concentration of the measure
and then assigns a water quality designation from 3 to 15 after addition of the values. Low
values represent excellent water quality while high values represent poor water quality.

2.3. Statistical Analysis

Results were compiled into a summary statistics table generating means and standard
errors then analyzed using XLstat for all statistical analysis [47]. Principal Component
Analysis (PCA) was used to identify the most influential parameters. Mahalanobis distances
between the sites were calculated to determine the metrics of influence throughout the
watershed. Mahalanobis distance is a statistical tool used to generate a measure of similarity
or dissimilarity among data sets. The calculated distance is unitless, producing a scale
invariant correlation between all the data [48]. As correlations move further from zero,
they are assumed to be more dissimilar [49,50]. This technique has been used in ecological
studies as an improved analysis over traditional rectilinear models [51] and in water quality
studies to generate distribution maps comparing similarity or dissimilarity of various
indicators of water quality [52]. Here, we used this technique to distinguish distances
(similarities or dissimilarities) between stations throughout the watershed to demonstrate
the relationship all stations have to each other.

Finally, we used a Partial Least Squares Regression Variable Importance in the Pro-
jection (PLS-VIP) to identify parameters of influence on each selected variable. The VIP
scores provide a useful measure of which variables contribute most to variance explanation
for a selected PLS model parameter [53]. Further, we used the greater-than-one rule as a
criterion for variable selection of significance in the analysis.

3. Results

The means and standard errors of all measured variables demonstrated the variability
of water quality throughout the corridor (Table 1). However, some patterns emerged.
Discharge increased moving down the elevation of the slope, while nutrient concentrations
were greatest at mid-slope. Many of the sites consisted of over 50% EPT (Ephemeroptera,
Plecoptera and Trichoptera) in insect makeup. To properly analyze the trends in such a
large data set, we used several multivariate approaches, including Principal Component
Analysis (PCA) and Partial Least Squares Regression Variable of Importance in Projection
(PLS-VIP). Overall, the PCA analysis (Figure 2) found loadings on the first and second
components, with 27.83% of the total variance in the data set. All macroinvertebrate indices
had the greatest factor loadings on F1. BMWP/CR was the most influential, with a factor
loading of 0.92, followed by EPT at 0.88 and IBIM at 0.82. The other variables, influencing
the first factor, included TSS with a loading value of −0.45 followed by WQI at 0.32. In all,
the macroinvertebrate indices outperformed all the other parameters based on this analysis.

In further analysis, we used PLR-VIP to examine how each MMI performed. WQI
(representing our chemical analysis) and BMWP/CR (representing our biological analysis)
were analyzed to determine what other measured variables correlated with these MMIs
(Figure 3). For the WQI index, the variables of greatest correlation (>1) were TSS and E. coli
(Figure 3a). The percentage of EPT was the most influential of all the insect indices tested.
For the BMWP/CR index (Figure 3b), the other insect indices were the most influential.
Similar to WQI, TSS and E. coli were the most responsive of all water quality variables.

The analysis suggested that insect multi-metrics, WQI, E. coli and TSS were the most
predictive parameters in this study. As the percent of EPT and other distributions of insects
were important predictors, we further examined insect response to both elevation and
station. First, six families overwhelmingly made up the predominance of insects between
60 and 80% at most stations (Figure 4). The higher elevations contained smaller numbers of
total individuals, with peaks in collections mid-slope (Figure 4a). The most sensitive family
(Perlidae) was very abundant in the mid-slope stations near the forest preserve and absent
in areas impacted by poor water quality with high E. coli concentrations or in the lower
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portions of the corridor (Figure 4b). Further, Leptohyphidae was the most ubiquitous family
throughout all stations and Hydropsychidae and Baetidae tended to increase down-slope
and in areas with increasing organic pollution and declining Leptophlebiidae.
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These patterns generated several working hypotheses relating the distributions of
insect families to each MMI. To test these hypotheses, we conducted a series of analytical
analyses again using PLR-VIP. Concerning both insect and chemical MMIs, Leptohyphidae
was the most influential family (Table 2) strongly influencing (above 1 in the VIP statistic)
both WQI and BMWP/CR. Perlidae, a very important EPT family, was most influential to
the BMWP index. Perlidae was generally absent from sites with organic pollution, while
Leptohyphidae was prevalent throughout all the stations. Hydropsychidae and Baetidae
were influential in our measures of TP, suggesting these families responded to organic
contamination in our study. Hydropsychidae was also influential toward the BMWP index.
While this family is often associated with increasing organic pollution, it may also be
important in these streams as a water quality indicator.

Table 2. Influence of macroinvertebrate families on MMIs. Each Variable of Importance in the
Projection (VIP) statistic is shown, including error at the 95% confidence level. Each result highlighted
in bold represents a value > 1 suggesting significance in the relationship.

Family WQI TP BMWP

Leptohyphidae 2.09 ± 0.26 0.10 ± 0.59 1.33 ± 1.56

Perlidae 0.88 ± 0.50 0.35 ± 0.48 1.73 ± 1.15

Baetidae 0.71 ± 0.81 1.36 ± 0.86 0.02 ± 1.42

Leptophlebiidae 0.43 ± 0.57 0.27 ± 0.70 0.17 ± 1.49

Hydropsychidae 0.34 ± 0.56 1.99 ± 0.71 1.01 ± 1.79

Elmidae 0.19 ± 0.43 0.01 ± 0.74 0.42 ± 1.08

Ultimately, the usefulness of any water quality predictor is derived through its ef-
fectiveness as a measure of human-induced disturbance. Therefore, our final analysis
examined each variable as a predictor of water quality due to land use and impact. Both
WQI and BMWP/CR quantified differences between study sites (Table 3). BMWP/CR
differentiated between good and poor water quality in the upper slope (differences from
other sites and the polluted RL-LL) and throughout the entire corridor. WQI was only
effective for differentiation in the lower corridor and hence where there was greater impact
on water quality. A similar test using TSS and E. coli did not produce any significant
or observable differences to land use. This suggests that the insect MMIs are clearly the
best predictors of water quality throughout the corridor where WQI is useful in the more
impacted and lower portions. Further, other insect MMIs, including EPT and IBIM, were
just as predicative as BMWP/CR in similar tests. Thus, good end-point measures were
possible with any of the macroinvertebrate MMIs.
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Table 3. MD analysis for BMWP (upper correlations) and WQI (lower correlations) showing relationships between these parameters and each stations. Bold
correlations are significant at p < 0.05 and demonstrate the relationships between the stations. All stations are organized from the top of the corridor to the bottom
representing greater development and impact.

RGBS RG
RMV

RG-
RS

RL-
LL

RG-
QC

RG-
LI

RG-
RSL

RG-
LR

RG-
PVC

RA-
BC

RL-
LG

RG-
PG

RA-
CM

RL-
LP

RG-
001

RA-
CH

RG-
SA

RL-
LS

RG-BS 0 0.11 0.33 1.89 0.02 0.06 0.23 0.33 0.63 0.96 0.05 0.13 1.34 0.13 0.42 2.73 0.06 0.05
RG-RMV 0.04 0 0.06 1.08 0.04 0.35 0.67 0.84 1.28 0.41 0.31 0.49 0.67 0.49 0.09 1.73 0.08 0.31

RG-RS 0.13 0.03 0 0.64 0.18 0.69 1.12 1.31 1.88 0.17 0.01 0.87 0.34 0.88 0.01 1.16 0.11 0.63
RL-LL 0.05 0.18 0.34 0 1.51 2.65 3.45 3.81 4.71 0.16 2.53 3.01 0.05 3.01 0.53 0.08 1.26 2.53
RG-QC 0.47 0.79 1.11 0.22 0 0.16 0.39 0.52 0.88 0.69 021 0.25 1.02 0.26 0.25 2.25 0.01 0.13
RG-LI 0.19 0.41 0.63 0.05 0.07 0 0.05 0.11 0.25 1.59 0.01 0.01 1.99 0.01 0.82 3.63 0.26 0.74

RG-RSL 0.19 0.41 0.64 0.05 0.06 0.00 0 0.01 0.10 2.14 0.07 0.02 2.67 0.02 1.28 4.56 0.54 1.18
RG-LR 0.63 0.99 1.34 0.33 0.01 0.13 0.13 0 0.05 2.53 0.13 0.05 3.02 0.05 1.51 4.97 0.69 1.39

RG-PVC 0.01 0.10 0.23 0.01 0.33 0.10 0.11 0.46 0 3.15 0.33 0.19 3.89 0.19 2.89 5.99 1.09 1.96
RA-BC 0.02 0.01 0.06 0.12 0.68 0.32 0.32 0.85 0.06 0 1.43 1.79 0.03 1.80 0.11 0.45 1.22 0.14
RL-LG 0.21 0.44 0.68 0.06 0.45 0.00 0.00 0.11 0.12 0.35 0 0.02 1.89 0.02 0.75 3.49 0.21 0.67
RG-PG 0.26 0.50 0.76 0.08 0.03 0.00 0.00 0.08 0.15 0.40 0.00 0 2.30 0.00 1.02 4.04 0.37 0.93
RA-CM 0.04 0.16 0.31 0.00 0.24 0.06 0.06 0.36 0.01 0.10 1.36 0.10 0 2.31 0.26 0.24 0.82 0.31
RL-LP 2.79 3.52 1.52 2.12 0.97 1.54 1.54 0.77 2.44 3.25 1.47 1.36 2.19 0 1.02 4.05 0.37 0.93
RG-001 0.22 0.46 0.70 0.07 0.05 0.01 0.01 0.10 0.13 0.36 0.00 0.01 0.08 1.44 0 1.00 0.16 0.01
RA-CH 1.33 1.85 2.31 0.88 0.22 0.52 0.52 0.13 1.09 1.65 0.04 0.42 0.92 0.27 0.46 0 1.96 1.10
RG-SA 0.52 0.86 1.19 0.26 0.00 0.08 0.08 0.01 0.37 6.19 0.07 0.05 2.40 0.89 0.06 0.19 0 0.125
RL-LS 1.85 2.45 2.97 1.31 0.45 0.86 0.86 0.32 1.60 2.22 0.81 0.73 1.36 0.10 0.78 0.04 0.40 0
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4. Discussion
4.1. Predictability of the MMIs as End-Point Indicators

Analysis of the data suggests MMIs are better indicators of water quality than the
other individual parameters. Tabachnick and Fidell [54] suggest factor loadings over
0.32 produce statistically meaningful variables in the PCA analysis. Here, all of the macroin-
vertebrate MMIs along with WQI met this threshold. TSS was the only individual param-
eter with predictive power based on this analysis. The more traditional water quality
parameters such as oxygen saturation, nutrients (TP and nitrogen), pH and BOD (Table 1),
along with individual abundances of macroinvertebrates (Figure 4), did not meet this
threshold. The three parameters used for WQI/CR calculation (ammonia nitrogen, BOD
and oxygen saturation) were ineffective predictors of water quality in the corridor. The
incorporation of TSS and E. coli into our WQI strengthened its predictive ability and is
suggested for inclusion in WQI/CR. Overall, our findings support many researchers’ uses
of MMIs as a preferred end-point indicator in predicting water quality and suggests an
accurate use of these indices in tropical watersheds if adjusted to reflect the most predictive
parameters [55–57].

Our findings further suggest that all three areas of analysis—physical, chemical and
biological—were responsive and useful measures of water quality when incorporated
into an MMI. While the MMIs were constructed from various biological and chemical
components, TSS was influential on both. TSS is a good measure of the physical condition
representing the amount of sedimentation or other particulates derived from stream in-
puts [58]. Increasing TSS signals early stages of stream erosion [59] and land use changes
or pollutant impacts [60,61]. The idea that TSS correlates strongly with the insect MMIs
and improves the predictive ability of the WQI over WQI/CR suggests physical impacts
are an important component to monitor in these streams. This finding is in agreement with
Cornejo et al. [62], who showed that sedimentation impacted all measure water quality
variables while nutrient enrichment had a variable impact. While seasonality was not a
strong correlate using discharge, sedimentation inferred through TSS measures was. These
findings suggest water quality studies in the tropics need to closely monitor sedimentation
in a predictive parameter.

One expectation in this study was a response of the MMIs to discharge seasonal or
physiochemical parameters. Rameriz et al. [25] found insect density and biomass (but not
taxonomic composition) along with pH decreasing during the wet season in Costa Rica.
We did not observe any correlations in our data with wet season discharge. Gutiérrez-
Fonseca and Ramírez [63] found Ephemeroptera emergence unaffected by discharge or
physiochemistry. Our overall findings were in general agreement that discharge did not
impact water quality. This may explain why insect MMIs were better predictors than the
individual chemical parameters. While WQI was a predictive index, it did not perform as
well as the insect MMIs, likely due to changing physiochemistry from seasonal precipitation
patterns. This further strengthens the idea that insect MMIs may be the best predictor of
water quality in the tropics.

4.2. Insect Relationships to Physiochemical Parameters

The rivers in this corridor were dominated by aquatic insect communities representing
Ephemeroptera (Baetidae, Leptophlebiidae and Leptohyphidae), Trichoperta (Hydropsy-
chidae), Plecoptera (Perlidae) and Coleopotera (Elmidae). This is in general agreement
with other researchers in Costa Rica. Mena-Rivera et al. [64] found that the occurrence of
Leptohyphidae (83.7%), Hydropsychidae (81.6%) and Baetidae (91.5%) were the dominate
insect families in the central valley of Costa Rica. Kohlmann et al. [65], in their study along
the central Atlantic slope, found very similar results with Elmidae 15.9%, Baetidae 13.2%,
Leptophlebiidae 7.3%, Leptohyphidae 15.9%, Perlidae 3.9% and Hydropsychidae 8.6%,
accounting for 64.8% of all insects collected. Our insect family distribution results were sim-
ilar to Kohlmann et al. [59]’s study, where Chironomids and Physidae were minimal, unlike
Mena-Rivera et al. [64], who reported them as abundant. One additional family, Similidae,
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was abundant in our samples but only in the upper headwaters (where EPT was reduced).
This result again agrees with Kohlmann et al. [65], additionally with Cornejo et al. [62] in
Panama but not with Mena-Rivera et al. [64], suggesting some unique spatial distributions
of insect families in Costa Rica or this mountain range that should be accounted for in the
construction of any insect MMI.

Further, we found the greatest abundance of insects mid-slope, while other studies
found greatest abundance in the headwater regions [66,67]. We know storm events are
strong sorting mechanisms [68] and, in this corridor, the mid-slope is an area of collection
from the steeper gradients above. Rainy season disturbance may explain insect abundance
(but not necessarily taxonomic composition) mid-slope as insects drift into this location [62].
Relatively unimpacted headwaters had lower proportions of EPT (Table 1) than further
down the slope, while up to 80% of all insects collected throughout the lower portions of
this watershed were EPT. Seasonal wet–dry cycles may create a disturbance regime where
only EPT insects predominate [69]. Lower insect productivity in the upper portions of the
watershed may also influence water quality further down the watershed [70]. These factors
need consideration in any water quality study.

Hydropsychidae and Baetids increase with phosphorus enrichment. Hydropsychi-
dae and Baetids have been shown to increase in response to the introduction of nutrients
from surrounding land uses [71,72]. These families are also seen as predictive for indices
used in the tropics [73]. It is also common to find an abundance of these two families in
polluted and nutrient-enriched areas [67,74,75]. Our findings support this idea. Conversely,
Leptophlebiidae and Perlidae did not respond to phosphorus enrichment. Perlidae can be
somewhat variable in water quality predictive ability and may be more abundant in cooler
waters [76]. Our findings support this trend and suggest Perlidae is a good predictor in the
upper and cooler water portions of the corridor. The abundance of Leptophlebiidae and
Leptohyphidae can also be predictive [77]. Even with the ubiquitous abundance of Lepto-
hyphidae in the study, the tendency to increase at sites with greater pollution and influence
of MMIs suggests this family is predictive for water quality. Loss of Leptophlebiidae at
polluted sites may also be a predictive trend for MMI development.

4.3. Use in Predicting Land-Use Impacts in Tropical River Systems

Our analysis demonstrated that both WQI based on chemical analysis and BMWP
based on macroinvertebrates can be used as predictive indices across impacted land-use
areas (Table 2). Yet, macroinvertebrate MMIs provided a better predictive tool than the
chemical based WQI. This is consistent with other studies conducting comparisons [51], sug-
gesting insect indices are better predictors. This is also consistent with the use of BMWP as a
popular and frequently used MMI [78]. While tropical rivers are highly alluvial and subject
to seasonal flooding with sediment impacting the abundance of macroinvertebrates [62,79],
here we suggest insect composition is the best measure of water quality.

Across sites, we did find some patterns in macroinvertebrate distribution that sug-
gested a clear response to enrichment. Plecoptera abundance was elevated at RG-QC,
which had high nutrient pollution from a pig farm above, but was not abundant at RL-LL,
which was clearly impacted by human waste and stormwater rather than agricultural
pollution. While Perlidae was not necessarily suggestive of clean water [65], we found
in this study that abundance may suggest direct human impacts rather than agricultural.
We did find greater Coleoptera (Elmidae) in reference sites and those less impacted by
disturbance. One of the strongest findings was the EPT taxa richness decline along a
disturbance gradient, similar to Lorion and Kennedy [80]. Family numbers (not abundance)
did remain consistent through disturbance, in agreement with Castillo et al. [30].

We found some instances where BMWP/CR was in agreement with Kohlmann
et al. [65], suggesting that the index delivers higher values at sites with high organic
pollution. Other indices, such as PMA and EPT, worked equally as well or better than
BMWP when targeting anthropomorphic enrichment and may be better choices [81]. Most
significantly, the insects responded to site disturbance and were better predictors of organic
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pollution in concert with the chemical and physical parameters measured. This is a unique
finding of this research.

5. Conclusions: Monitoring Water Quality in Tropical Environments

The need for accurate analysis of water quality in the tropics is of continual im-
portance [29]. There is a need to empower communities toward a more comprehensive
understanding of water quality and environmental health useable on a wide scale. The
ability of citizens and local water boards such as ASADAs in Costa Rica to fill data gaps
will (1) generate data in areas that are not well monitored or understood and (2) help
communities understand water quality and provide essential analysis that is currently
lacking in these communities. This is critical for providing public participation in the
governance of water. As reported in the Costa Rica News [82], water quality and its rational
use and conservation by a participating public is one of the greatest needs countrywide.

This research identifies reliable Multi-Metric Indices (MMIs) capable of predicting
human disturbance on water quality in tropical systems. It is also understood that insect
MMIs are much better assessed by citizenry than comparable chemical MMIs [38]. And in
this study (Table 3), insect MMIs were superior in predictive ability over the chemical-based
WQI in various seasons and areas of disturbance. The idea that insect MMIs can be used in
these communities as reliable predictors of water quality even in the presence of uncertainty
is a good starting point [10]. Such an MMI is needed to engage communities in water health
and produce results compatible with chemical testing procedures that can be very difficult
and complex to measure and interpret.

Implications for these findings are widespread. Effective monitoring of water quality
is critical for regulators and scientists but even more important for acceptance by the
public. End users must have confidence that water is regulated to serve their best interests.
The findings that WQI and BMWP-CR are predictive is a good result, but such MMIs are
generally too complex for use by citizen science. The finding that a much easier calculation
of other indices such as PMA or EPT working equally as well opens opportunities for much
greater monitoring of water quality. Creating data collection among citizen scientists who
live in these communities and developing a vast monitoring network will increase our
understanding of water quality and effective management.

Further, using simplified MMIs such as EPT or other insect indices will only increase
total watershed understanding. Simple tests to determine proportions of EPT over 50% and
up to 70% may provide good presumptive information. Because EPT comprises so much of
the total insect orders in these streams, it is proposed that such a model would be useful.
Such information can determine how and where problems are occurring and provide long
term data sets for comparisons to community health. It can mobilize communities into
action to improve streams and limit waste beyond the capabilities of regulators. Successful
monitoring of water quality by community groups is becoming more widespread and is
providing an integral link to the overall understanding of stream water quality [35]. Here,
we suggest further research and integration of these ideas into tropical stream water quality
monitoring.
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